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Lupas post quantum Bernstein operators over arbitrary
compact intervals

Khan A1, Iliyas M.}, Mansoori M.S.}, Mursaleen M.1%

This paper deals with Lupas post quantum Bernstein operators over arbitrary closed and
bounded interval constructed with the help of Lupas post quantum Bernstein bases. Due to the
property that these bases are scale invariant and translation invariant, the derived results on arbi-
trary intervals are important from computational point of view. Approximation properties of Lupas
post quantum Bernstein operators on arbitrary compact intervals based on Korovkin type theorem
are studied. More general situation along all possible cases have been discussed favouring conver-
gence of sequence of Lupas post quantum Bernstein operators to any continuous function defined
on compact interval. Rate of convergence by modulus of continuity and functions of Lipschitz class
are computed. Graphical analysis has been presented with the help of MATLAB to demonstrate
approximation of continuous functions by Lupas post quantum Bernstein operators on different
compact intervals.

Key words and phrases: post quantum calculus, post quantum Bernstein base, post quantum Bern-
stein operator, modulus of continuity, convergence criteria, rate of convergence.
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Introduction

In 1912, S.N. Bernstein [14] introduced the famous polynomials for any bounded function f
defined on [0, 1] as follows

Bu(f;x) = f ( Pr‘ ) x(1 —x)ﬂ%(%), x € [0,1]. (1)

r=0
This sequence of operators B, : C[0,1] — C[0, 1] defined for any p € IN was proposed to pro-
vide a constructive proof of Weierstrass approximation theorem which attracted the attention
of many researchers due to its applications in CAGD and other areas and is named as Bernstein
polynomials [31].
In 1987, A. Lupas [30] proposed the first g-analogue of Bernstein operators (rational) to
approximate any continuous function defined on [0, 1] via g-calculus as follows

Lyq(f;x) = Xy: f<%> { Prl quzu X (1 —x)y—y‘

[ )
r=0 [T{(1—x)+q 'x}
=1
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Ten years later, G.M. Phillips [42] introduced another generalization of the classical Bern-
stein operators (1) using g-calculus, the so-called Phillips g-Bernstein operators (polynomials)
as follows

Buy(f;x) = Xy: [ ; ] H (1—g°x) <ﬂ> , x€10,1], (2)

=0 [H]q

where By, ; : C[0,1] — CJ[0, 1] defined for any # € N and any function f € C|0, 1].
The Lupas operators L, 4(f; x) have an advantage of generating positive linear operators
for all ¢ > 0, whereas Phillips polynomials generate positive linear operators for 0 < g < 1.
Extension of quantum calculus (g-calculus) is post quantum calculus ((p, g)-calculus).
Recently, first of all, M. Mursaleen et al. [35] applied concept of post quantum calculus or
(p,gq)-calculus in Approximation Theory and introduced (p, q)-analogue of Bernstein opera-
tors based on (p, g)-integers. They also introduced and studied several other operators based
on post quantum calculus in [8-12,36-39]. For similar works in Approximation Theory and its
applications in Computer Aided Geometric Design, one can refer to [1-7,15,17-19, 21-29, 32,
33,41,44-48].
One of the advantage of using the extra parameter p has been discussed in [39].
Firstly, we give certain notations and basic definitions from (p, g)-calculus. For any p > 0
and q > 0, the (p, q) integers [u], 4 are defined by
p::Z;«’ whenp #g #1,
gt ¥ pr=l, whenp=gq+#1,
(1], when p =1,

[Wpg =P P 2P0 4 pgt T
U, whenp =g=1,

where [t]; denotes the g-integers and y = 0,1,2, - - -
The formula for (p, q)-binomial expansion is as follows

R e R V! et ot
(ax+by)ps:=Yp 2 q 2 . a7 b x ,
r=0 P4

(x+ )b = x+y)(px +aqy)(PPx +%y) - (P 'x+ " y),
(1—x)hg=0—x)(p—qx)(p> —g°x) -~ (p" " —¢" ),

where (p, q)-binomial coefficients are defined by

{ : L,,, G p,qgﬁpf!ﬂp,qr

For more details on (p, g)-calculus, one can refer to [17,35,39,43].

1 Essential preliminaries and review of results

M. Mursaleen et al. [35] introduced (p, 9)-Bernstein operators for 0 < g < p < 1 to ap-
proximate any f € C[0,1] as follows

r1 u—r—1
Byupq(fix) = KD 1) [ } P(z L I1 (-7 f<p[ﬂ>, x€[0,1]. (3)

pq s=0 ' H[“l/l]p,q
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Note that the above operator approximate continuous function for sequence g, and p,, satisfy-
ing0<g, <p, <L

Also when p = 1, (p, g)-Bernstein operators given by (3) turns out to equation (2) which
is known as Phillips g-Bernstein operators [42].

On the other hand, another sequence of operators as (p, g)-analogue of Lupas Bernstein
operators L}, : C[0,1] — C[0,1] is introduced by Kh. Khan, D.K. Lobiyal in [28], namely for
allp >0,4>0,

H=k [j (u—k)(u—k=1)  k(k—1) _
) f<p—w£,q]p'q> [H pot

Lha(fix) = 1 = : @)

U . .
k=0 [T{p~1(1 —x)+ g 1x}
j=1

Also note that in [28] authors have discussed only one case in which sequence of operators
LZ,q (f; x) approximates continuous functions for sequence g, and p,, satisfying 0 < g, <p, <1.
Now in this paper we reanalyse the convergence criteria and also discuss the other cases in
which convergence hold by extending [0, 1] to [«, B].

The paper is organized as follows. In Section 2, we define a Lupas (p, g)-analogue of
Bernstein basis functions over [, B] which will be used to construct the operator and which
may be useful to construct Bézier curves and surfaces in CAGD. In Section 3, (p, g)-analogue
of Lupas operators are constructed and their approximation properties via Korovkin's type
approximation theorem are presented and convergence criteria are reanalysed. The conver-
gence criteria has been widely used by many mathematicians in their papers for different
operators using quantum and post quantum calculus (see [8,9, 34] and [28, remark (5.1)]).
In [16], Q.B. Cai and X.W. Xu indicated this as a basic problem of (p, q)-Bernstein-type oper-
ators (3), i.e. choosing (py, q,)-integer satisfying 0 < g, < p, < 1, P}gr(}o Py =1, ngrolo qgu =1
with ngrolo [#]p,q, = oo for which the sequence of operators (3) converges uniformly to con-
tinuous functions defined on [0,1]. Kh. Khan, D.K. Lobiyal in [28] mentioned the following
criteria for convergence in Remark (5.1): let p,, and g, be the sequeces of real numbers sat-

isfying 0 < g, < py <1, P}gr(}opy =1, ngroloqy = 1 and ngrolopy =1, ngroloqy = 1, then

. . (=1]puq
lim = o0 and lim £
yﬁoo[y]p"’q” p—oo  Hlpuau

such that0 < q, < p, <landgq, — 1, py — 1,94 — a,py — basy — oo, a < b, then

li_r)n [#]p,q, = oo. In[16], authors did not give proof but they found out the class of sequences
]/l (o]

pu and g, satisfying the above criteria mentioned in [8]. We present an extended form of a
convergence criteria by theorem and provide proofs. We state a theorem with proof which
guarantees convergence. We show that when p and g are fixed numbers, then convergence
can not be established in some cases. But convergence in those cases can also be achieved by
choosing sequences p, and g, satisfying certain criteria.

Classical Bernstein basis function over arbitrary interval [«, f] is given by

= 1. Later in [8], author presented an assertion: let q,, py

u—a) (B—u)l’
Bf(u;[oc,[ﬂ]): {Z]( &3_@“)# ) for r=0,1,..., 1.
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P. Simeonova et al. defined quantum g-Bernstein basis functions for arbitrary interval [45]
as follows

Bi’(u;[«x,ﬁ];q):[”] -0 (=g 7) Bow) (g oy

r, (B-a)...(F—q" 1)

Motivated by the work of Kh. Khan, D.K. Lobiyal [28], we extend post quantum Bernstein
basis functions and sequence of operators over arbitrary interval [«, B].

2 Construction of post quantum Lupas basis functions on interval [«, B]

Extension of Lupas type post quantum analogue of the Bernstein functions (rational) over
[«, B] using post quantum binomial expansion is defined as follows.
Forany p > 0 and g > 0, we set

{ " ] p Y (—wy (p— by
p.q

byt B) = , (5)

" . .
:1{1?]‘1(5 — )+ g Nt —a)}

]

where b% (t;a,B), b;’, Lt o, B), -+, by (tw, B) are the (p, q)-analogue of the Lupas g-Bernstein
functions [20] of degree y on the interval [«, B].
Some observations about basis functions (5) are listed below.

1. When p =1and « =0, § = 1, Lupas post quantum Bernstein functions over [«, B] turns
out to be Lupas g-Bernstein functions as given in [20], whereas when p = g = 1, and
« = 0, B = 1, Lupas post quantum Bernstein functions turns out to be classical Bernstein
functions.

2. These basis functions are translation invariant and scale invariant both. While basis of
operator (3) are not translation invariant but scale invariant.

Translation invariance: for any real number ¢

byh(t+ca+c,p+c)=byh(tap).
Scale invariance: for any nonzero real number ¢ # 0
b;’fé(ct; cx, cB) = b;’,’;(t; a, B).
3. These basis functions (5) forms the basis of operator (4) for the valuesa = 0 and g = 1.

4. These basis functions are nonnegative for all p,q > 0, while basis functions of operator
(3) are nonnegative on interval [0, 1] for 0 < g < p < oo.

Further, we construct sequence of operators over an arbitrary interval [, B], using these
basis functions (5) and derive some results which will be useful from computational aspects.
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3 Construction of operators on arbitrary compact intervals

Now, we present post quantum analogue of Lupas Bernstein operators over [«, B] as fol-
lows.
For any p > 0 and g > 0, the operators Lyg b : Cla, B] — Cla, B] are defined by

o Etpha) TH ) ety gy (s

s = 3 T - ©
~ TH{p 1 (p ) + ¢ (x —a)}
=

Again, when p = 1, and &« = 0, 8 = 1, post quantum Lupas Bernstein operators turns out
to be Lupas g-Bernstein operators as given in [30].

Whenp =g =1, a =0, = 1 post quantum Lupas Bernstein operators on [«, ] turns out
to be classical Bernstein operators.

It follows directly from the definition that operators sz;’ﬁ (f; t) possess the end point in-
terpolation property, that is

LheP(fa) = f(w),  LhaP(f;8) = f(B)

forallp >0and g > 0,and all u = 1,2,
Clearly the sequence of operators L s “’5 (t) is positive for all p > 0,4 > 0. Also it is linear

as Lng’ﬁ(af +bg) = aU‘ A ﬁ(f) + bLV o ﬁ(g) forall f,g € Cla,B] and a,b € R. Hence, L%‘rﬁ(t)
is positive linear operator on Cla, B].

4 Some auxillary results for Chebyshev test functions

The following properties hold:
(1) LhaP(1; Betry — 1,

7 u+l
@ Ly (6 550) = Bt
p-1 -1
O L0 ) = o+ (it + Gl U ) (6 — )2 + 20(8 — )2,
or equivalently for x = B u“jla

(1) LysP(1;x) =1,
@) Lya®(tx) =x,

WP, N 2 pr ! (x—a) g (x—a)? [n=1]p, )2 _
(3) Lplg " (£ ) = o+ <Mp,q(ﬁ—a)+ =T/ —) + 4] [mp,§q>(5 @)7 + 2u(x —a).

Proof. Using post quantum binomial expansion, (1) is obvious, namely

— —r=1) r(r-1
{y] p(;« gt >q(2>u,
P

r
=1

we,p . ,Bu +u« . £
Ll’/q (1’ u+1>_z H . .
r=0 [{p~"+q 1u}
j=1
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(2)

(0( + (ﬁ _ a)%mw) |: U :| p(}tfi’)(ét*rfl)qr(rz—l) "

" u+a H Plpa r ’
Lzrqf;(t’.ﬁu_i_l ) :Z T ] _pq
r=0 [T{p'+q¢ u}
j=1
—r [y (=N =r=1) r(r=1)
) (oc—i-(ﬁ—a)pTr[Mj""’) [Z] p T gz u
-y P ,
=0 potoo
,Ho{pf + qlu}
]:

(B—w)pt [ - ] P T

j r
pap (. PUta p.q
Lyl <t'u+1>_“+§ p—1 ‘
"~ _Ho{pf+q1u}
j=

(B—w)pt [ e ] P

" r b
:%Lr; pobooo
[T{p +qu}
j=0
e [y—l ] p(;«—r—léw—r&)qr(r;l) ras)
prab (Pt _h " e
= P4 /u+1 _“+(ﬁ “)Z ‘ufl ) )
=0 IT {p/ + g/u}
j=0
e {y—l] p(y—r—lé(;«—r—z>qr<r;1> (%)r
— (B—au'’s- 2]
st u+1 rg) B2 ,
HO{P]P+47(11”)}
]:
—1 (p=r=1)(u=r=2) r(r—1)
puu -+ (ﬁ)”l[yr]p Ty
e, . u (14 . — &)U P9
= L}y (t,u+1>—a+ o ) 2
r=0 i j(qu
HO{P] + 4 ()}
]:
B B—a)u  Pu+ta
ST T
or equivalently for x = B u“:f
LZ:g’ﬁ(t,x) = x.
B2 N 2 p(x—w) 7 (x—a)? [=1]pq N2
(3) To prove, Ly" (£5,%) = o + <[mp,q(ﬁ—a>+ BB+ Ty >(5 %)+

2a(x — ), consider



Khan A., Iliyas M., Mansoori M.S., Mursaleen M.

740
P Mg 2 U (p=r)(p—r=1) rr=1)
(B — &)=, 2 L
Lk (tz. pu + “) _ ' pA
’ u+1 = H;_:Ol{pj +qlu}
2u—ar [ [ H—1 (B=n)p=r-1) rG-1)
2ip [H]p,q[r—l b ’ P
~ (p-a) T
=0 [Ty {p + giu}
e [ =n)(p=r-1) r(r-1)
p—r lpa r
) Xy: P [Hlpa {r]pq ’ 9
+a® + 20(f—a) o I
r=0 H;‘l:()l{p] + q]u}
y V - 1] <;«—r—1>2<y—r—2>qr<r;1> %)r
_ PRV U N u—1-r [T—I— 1]17/‘1 r p4q
_(5 ‘X) u+1zp [] u—2 . i q
= Hlpag [Tio{p +4/(Gu)}
) B u
+a” 4+ 2a(B oc)u+1
wep (o Buta) o o u (=1l
:>LIW (t U1 > - (ﬁ ‘X) u+1 [l/‘]p,q
-1 (p=r=1)(=r=2) rr=1) gy .y
u—1 " [7’] { } P ’ ’ (7)
s p”1r<p q M) L
=0 [ =1pq [T {p + 4/ (Lu)}
u—1
2 L 00(B — U _ _p_ 2( u_p
o+ 20 (p a)u—i-l (B—a) u+1 [plpg
y { u —12] <;«—r—1>2<y—r—2>qr<r2—1> (%)r
qu (=1, HZ prr=1 " >
u+l [ulpg 5 H]P-;o {r+ 17](%”)}
u

2. Bu +a

uo,p
g (B

or equivalently for x =

1P

b (1 x) =a"+ <

2
2 _
Tt a(ﬁ a)u+1

Cp e wo prhqu (=1, =
>— (B—a) <u+1 Wlpg utl ulpg 1+
s ) u
p—2 pA 245 B
><r;:)p P”*ZHf;o3{Pf+q7(Z—§u)} >+“ +2u(p “)u+1
= u prl . qu qu \ [ —1]pg u
_“H(ﬁ_w(uﬂ[y]p,q u+1<p+qu> e >+20c(,3— %)=
ﬁuuj_la’
prl(x—a) 7 (x — )? = Upa\ ,p 2 B
=0 TG B0 7y ) P~ +2x=).
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Remark 1. Clearly that sz;’ﬁ(At +B) =Ax+Bforallp > 0andgq > 0, A,B € R and for all

u=123,--- . It means that operator Lg:g”g (t) preserves linear test functions.

5 Convergence criteria

Now, we analyse the conditions for convergence by sequence of operators (6) to any con-
tinuous function defined on [«, .

L . _ 1 1
Remark 2. Forq > 0 and p > 0, it is easy to compute that }}gr;o[y]p,q =0or g OF 7= Or ®©
and lim WE@ =1loriorl

p—oco lHlpg P

Consider the following cases.

Case 1. When 0 < q < p < 1, then I}Ergo[y]plq = 0 and ngrolo% = %.
Proof. Recall that [y]p; = %, as both p and g satisfies 0 < p < 1,0 < g < 1. So
,}E}c}o p# = 0and ;411_{%0 g" = 0, hence }}1_{{)10 % =0.Now, [y —1],4 = pyf;:gyfl, and [;‘[;]1’7][;"‘7 =
py;;:giil = p:;l <11_(%f%y1> = %(%) .For 0 < % < 1, it is clear that Jiilgo(q/p)F’ =0,
J%(Q/P)”_l = 0, and hence ,}E}c}o% = %. O

Similarly other cases can be proved.

Case 2. When 0 < g < 1 and p = 1, then ’}Er;o[y]plq = 1%17 and ;411_{%0 % =1.

Case 3. When 0 < p < g < 1, then }}%[P‘]M = Oand ;}%% = %

Case 4. When 0 < p < 1 and g = 1, then I}Ergo[y]plq = ﬁ and ngl;lo % =1.

Case 5. When 1 < g < p < oo, then }}grgo[y]p,q = oo and yh_r&% = %,

Case 6. When 1 < p < g < oo, then JE}JP‘]W — coand %}%% _ %

Observe that in all the cases of choosing p and g yll_r}olo (1]p,g # oo and yh_r}rol() % # 1

simultaneously. One can notice from the results for test functions 1,t and > (especially the

expression of sz;’ﬁ (t%; x)) that in order to reach convergence result by the operator, we must

sion of S =
have P}grgo[#]p,q = oo and P}E’&, oy

can not be established. In order to get these limits, we need to choose sequences p, and g,
based on following remarks.

= 1. When p and g are fixed numbers, then convergence

Remark 3. Notice that in Case 1 and Case 3 of Remark (2) convergence can not be established
for fixed p and q. For the Case 2 and Case 6, we need a sequence q = q, — 1 and for Case 4
and Case 5, we need a sequence p = p;, — 1.

Now we propose a theorem to overcome this shortcoming. Here one needs to choose
sequences p = py, and q = q, in place of fixed p and g satisftying Theorem 1.
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Theorem 1. Let p = p, and q = q, be the sequences of postive real numbers such that
. _ . _ . wo_ . no_
ylgrc}o Py =1, yh_r)rc}o gu = 1 and ylgrc}o Py = My, }}1_{{)10 qu = My, where My and M, are any pos-
itive real numbers. Then lim [y}, 4, = o and lim g g,
f—>00 4 U—00 g

The above theorem has been widely used by many authors in different form for different
operators based on g-integer and (p, q)-integer (see [8,9,34], [28, remark (5.1)]). Proof has not
been provided yet, however in [16], Q.B. Cai and X.W. Xu has found the class of sequences g,
and p, satisfying 0 < q, < p, < land g, — 1, p, — 1 such that ylgn [#]p,.9, = 0. To prove

the above Theorem 1, first we prove the following lemma.

Lemma 1. Let a, be a sequence of positive real numbers such that lim a, =1 and lim(a, )" =M,
U—roo U—oo

where M is any positive real number. Then yh_{n [#]a, = oo.

Proof. To prove this we need [13, Theorem 3.6.4 and Remark (a)].
Following cases are arised.

Case 1. 1 < ay < oo forall g > mp and some my € IN. We have [u],, = 11__{1;‘: =

T+ay+a+---4a, P >1+1414---+1 = p Hence u < [y, for all 4 > mg. Thus
ulglc}o[”]”ﬂ =
Case 2. ay = 1for all u > mg and some mg € IN. We have [p],, = p for all u > my. Hence

ylglgo[]’l]ﬂy = oo.

Case 3.0 < a, < 1forall u > mgand some mg € IN. Let b, = ai# We have [],, = T=a,

m(1/a) -1 " "
((H;,,)) <((1/Ha1))—1 > - ((H;,,)) [H]i — ((‘1;:) [H]by- Clearly 0 <a, <1=1< % <oo=1< by <oo
lim (a,)"
: _ . _ p—oo . .
for all 4 > myg. By Case 1 P}grgo[y]b# = 0. So, ngrolo[]/t]ay = T X I}gxgo[y]by = co. O
Proof of Theorem 1. Leta, = Z—z,
Puyp _ lim
Y N T o jmp
Ml = =\ ) = o e = e, limoay = e =1
Pu—4qu q (ﬁ) —1 Qu = " qu T ngolo Tu
}ilrgo(py)ﬂ M
and ylgn (ap)t = 22 o = a5 > 0, hence by Lemma 1, we have ylgn [#]a, = oo. Finally,
o0 H—oo o8}
. ILII}O(%)F .
Y [kl = "oy gy ey = .
: —Uppgn _ pp =gl gl (%)H_l A e AN Y & S O
Consider Wopaw — pi—dhi — qh (%)u_l = 2\ (a1 = o\ T |-

1—(a )1\ (1—a#)(1+a#+a,24+w+a,’172) B 1+a,4+al7;+~~+a,’jfz+a,’jfl—aﬁ71 Myl
Now, T = — =
1—(ay) ( —b—aﬁ [V]ay

j _ " _
1-— ) . Hence b Uppan 1 <1 O > = lim =ty _ lim L lim (1 O ) =

an Mﬂy [V]py,qy e ay[ﬂ]ay p—>o0 (1]p.q p—o0 A1 p—o0 Ay Mﬂy

1(1-0)=1. 0

1—ay) (L+ay+ad+--taly >+al ) Taytad+-tal, 2
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Observe that Lemma 1 is quantum version of Theorem 1. Now, we state a theorem which
guarantees this approximation process to approximate every continuous function from the
space C|a, B] by sequence of operators (6) for all p > 0 and g > 0, via Korovkin type approxi-
mation and using Remark 3.

Theorem 2. Let us consider sequences 0 < py,, g, < oo for each y € IN such that lgn pu =1,
I,l [e0]

lim g, = 1 and lim p;j = M, lim q;f = My, where M; > 0 and M, > 0. Then for each

f € Cla, B, Lg:g”g (f; x) converges uniformly to f on Cla, B].

Proof. Let us recall the following Korovkin’s theorem.
Let (T,) be a sequence of positive linear operators from Cla,B] into Cla,p]. Then

li;n T, (f, x) —f(x)||c[a,/3] =0, forall f € C|a, B] if and only if li;n | T (fi, x) —fl'(X)Hc[a,ﬁ] =0,

fori =0,1,2, where fo(t) = 1, fi(t) = t and f,(t?) = 2.

We need to show that if the sequence of operators converges for the test functions 1, t and
t2, then any continuous function can be approximated with the help of these positive linear
operators.

Since sz;’ﬁ (f; x) are positive linear operators, the Korovkin’s theorem implies that

LhaP(fix) = f(x)

if and only if Lng’ﬁ(tm, x) — x™forall x € [a,f] and m = 0,1, 2.
Following cases can arise.
Case 1. If we choose sequences p, and g, satisfying 0 < g, < p, < 1forall u > Np

and some Ny € N, such that lgn qgu =1, lgn qﬁ = M, M > 0, then by squeeze theorem for
p—ro0 H—ro0

sequences, we have lim p, = 1and lim qf, < lim pZ < 1 and hence lim pZ = K, where K is

some positive real number.

Case 2. If we choose sequences p, and g, satisfying 0 < p, < g, < 1forall u > Ny
and some Ny € NN, such that ylgn pu =1, ylgn pﬁ = M, M > 0, then squeeze theorem for
sequences implies that 1211 gy = land lim q;f = K, where K is some positive real number.

“I/l oo

U—0

Case 3. When 1 < g, < py < o for all 4 > Ny and some Ny € N, such that yh_{n pu =1

. }l _ . _ . }l _
and P}grolo pu = M, M > 0, then by squeeze thorem we have ylgr;o gy = land P}grgo q. = K, where

K is some positive real number.
Case 4. When 1 < p, < g, < oo for all u > Np and some Ny € N, such that lim g, =1

U—0

and ;411—{%0 qu = M, M > 0, then by squeeze thorem we have ;411—{%0 py = 1 and ;411—{%0 ru =K,

where K is some positive real number.

- p-1
In all the cases we get lim [u],, 4. = co, lim = Lpuan _ 1,and thus lim £ = 0, which
p—yoo PRI p—oo  Hlpuau ji—oo [Mlpuap
implies
p—1 2 2
2 p}‘ (x B 0() q}l (x - DC) [l’l - 1]?;41‘7]4) 2
o+ + —a)” + 2a(x —«a
(W G0 G5 T i) B + 26r=0)

—a?+ (x—a)® + 20(x —a) = 2%

This completes the proof. O
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Remark 4. To show the convergence of sequence of operators (6) to any continuous function
defined on [0, 1], authors of [28] have discussed only some particular part of Case 2, consid-
ered in the proof of Theorem 2. They have taken condition on choosing sequences p, and q,
. . < . — . —_ . n — . H —
satisfying 0 < q, < p, < 1 such that ;415130 Py =1, ylgrc}o gu = 1 and ylgrc}o P =1, }}1_{{)10 qu =1,

while we take more general condition on sequences p, and q, in above Theorem 2.

Theorem 3. Let f € Cla, B], g(x) = f(a + B — x). Then forany p > 0,9 > 0,

Proof. The proof of above theorem follows easily along the lines of [40] and using the following

relations o
Pln—rhy P
[l/‘]p,q 1]

==
==

lpq = (p)" ' [1]

4

1
'p

==

and
r(2u—r+1)

V] _ V] (pq)
r(r+1)
gy AT (pg) 2

Remark 5. Forp = 1, « = 0 and B = 1 this equality coincides with [40, formula (10), Theo-
rem 3].

0

6 The Rate of Convergence

In this section, rates of convergence of the operators (6) obtained by modulus of continuity
and for the functions of Lipschitz type will be studied.
For any continuous function f € Cla, B], the modulus of continuity w(f;¢) is given by

w(f;0) = sup |f(x) = f(u)]

uxelw,pl, |x—u|<é
and it satisfies the two conditions below

[x — ul

lim w(f;6) =0  and |f(x) — f(u)] < w(f,5)< 5 +1> forall f € E.

6—0

Theorem 4. Letp,q > 0,6 > 0 and f € C|a, b]. We have

ILLa P (F2) = F() ) < 20(f360),

where

(P x—w) 7> (x — a)? =14 (e a)? 2
o= (B a1+ T006 9 Tty ) B =~ e eP)

Proof. For u € [, B], we take

P ) = )] < w0 {14 S (= s .
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|

Then using Lemma (2.2) we get

LB i) = F) ey < wlFs0){ 1+ 5LESP(x = 5w

g*(x —a)?

[ —1]pq 02— (x—a)? ?
R s e e R )“ i >>}'

NI—=

1

If we choose

(P x—w) 7> (x — a)? =14 (e a)? 3
0= (o) * om0 7 ) B~ eF)

then we have

ILLa P (Fru) = F) | clg < 2w (f360).

So we have the desired result. O

Now we compute the rate of convergence for the functions of Lipschitz class.
Let f € Cla, Bl and 0 < p < 1. We recall that f € Lipy(p) if | f(u) — f(v)| < M|u — v|° for
allu,v € [a, B].

Theorem 5. Forall f € Lipp(p) we have HLng’ﬁ(f;u) — fW)llclap < M&(u), where

(P x—w) 7> (x — a)? =14 (e a)? 3
= () o9 T7e ) ) B~ =)

and M is a positive constant.

Proof. Let f € Lipp(p) and 0 < p < 1. By (6) and linearity of Lfﬁ’qﬁ(f;u), we have

ILEAP (Fu) — fu)] < LygP(f(x) — fF)]) < MLESP(Jx — ulP).

Using the Holder’s inequality with [ = 2 and r = 52, we have

pd 2

NI

Ly P (fu) — f(u)] < ML ((x —u)?))2,

if we choose 6 = §;, then our proof is completed. O

7 Graphical Analysis

Finally, let us consider the function f(x) = 2 + sin5x for graphical analysis. In Figures
1,2, 3,4, 5 and 6, we have presented approximation of this function by Lupas post quantum
Bernstein operators (6) on different intervals [«, B] for different values of p, g and p.

Figures 1, 3 and 5 represent approximation of function f(x) = 2 + sin5x by Lupas post
quantum Bernstein operators (6) for = 20. Figures 2, 4 and 6 represent approximation of this
function by Lupas post quantum Bernstein operators (6) for y = 40. If we compare a figure on
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0.8
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0.4

0.2

-0.2

0.4

-0.6

e For q=1.05, p=1.15 | |
For g=1.15, p=1.35

e For q=1.05, p=1.15 | ]
For g=1.15, p=1.35
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Figure1: p = 20 Figure 2: y = 40

-0.6 ———For q=0.30, p=0.45 | | -0.6 ——— For q=0.30, p=0.45 | |
For q=0.60, p=0.75 For g=0.60, p=0.75
0.8 - For q=0.90, p=0.95 | - -0.8 |- For q=0.90, p=0.95 | 1
— fUNCtiON — fLNCtiON
A . . -1 :
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Figure 3: u = 20 Figure 4: yu = 40

———— For q=1.05, p=1.15
E 0.8 For q=1.15, p=1.35
For q=1.25, p=1.55
— fUnction

——— For g=1.05, p=1.15
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0.4 0.4
0.2 0.2
o 0
02 0.2
0.4 0.4
06 0.6
08 0.8
T 25 2 15 T3 25 2 15
Figure 5: y = 20 Figure 6: u = 40

left side by a figure on right side, wich means that y increases from 20 to 40, approximation
becomes better for fixed p and g, which is also theortically true by Theorem 2.

Note, that Figures 1, 2 represent graphs on interval [0, 2], and Figures 5 and 6 represent
graphs on interval [—3, —1.5], when p and g tends to 1 from right. The graphs of operators
represented by blue colour are much closer to graph of function in comparison to graphs of
operators represented by red and green colours. It is also theoretically true by Theorem 2
(Case 3 and Case 4), approximation becomes better, when sequences p, and g, converges to 1
from right.
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Y miif cTaTTi pO3rASHYTO IIOCTKBAHTOBI 3a Aymamom oneparopyu bepHinTeltHa HaA AOBIABHMM
3aMKHYTHUM i 06MeXXeHIM iHTepBaAOM, TOOY AOBAHVIMM 3a AOIIOMOTOI0 AyIaIaiBChKIMX IOCTKBAHTO-
BUX 6asuciB bepHIITelHa. 3aBASKIM BAACTUMBOCTI, IITO T1i 6a3ycy € iHBapiaHTHMMM BiAHOCHO MacIIITa-
byBaHHs Ta BiAHOCHO TPaHCASIIN, OTPMMaHI pe3yAbTaTH Ha AOBIABHMX iHTepBaAaX € BaXKAVBIMI
3 TOUKM 30py oOumcAeHb. AOCAIAXKEHO allpOKCUMAIIiHI BAACTMBOCTI TOCTKBAHTOBMX 3a AyTIaIliom
oneparopis bepHITeliHa Ha AOBIABPHMX KOMIIAKTHMX iHTepBaAaX Ha OCHOBI Teopemy Tuiry Kopos-
kiza. O6roBOpeHO GiABII 3aTaAbHY CUTYALIIO AASI BCIX MOXKAMBMX BUITAAKIB IITOAO 361KHOCTI IOCAI-
AOBHOCTi TIOCTKBAHTOBMX 3a AyIIaIlIOM OIIepaTopiB A0 6y Ab-5IKOI HellepepBHOi (PYHKIIiT, BI3HaueHO1
Ha KOMITaKTHOMY iHTepBaAi. O6uncaeHO MIBMAKICTD 361KHOCTI 3a MOAYAeM HeTlepepBHOCTI Ta PyH-
KIisiMM Kaacy Aimmmra. Aast AeMOHCTpalil alpoKcUMallil HellepepBHUX (pyHKIIIN TOCTKBaHTOBIMMA
3a Aymariom orepaTropamMu bepHInTeliHa Ha Pi3HMX KOMITAaKTHMX iHTepBaAax IpeACTaBA€HO rpadpi-
UHMIA aHaAi3 3a Aonomororo nporpamu MATLAB.

Kntouosi cnosa i ppasu: TMOCTKBAHTOBE UMCAEHHs, IOCTKBAHTOBMI 6a3uc bepHInTeliHa, MOCTKBaH-
TOBMIL onlepaTop bepHiTeliHa, MOAYAD HeTIepepBHOCTI, KpUTePiii 361KHOCTI, IMBUAKICTD 361KHOCTI.



