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Smooth symmetric bilinear forms on £,(*/2)

Kim Sung Guen

In [Carpathian Math. Publ. 2020, 12 (2), 340-352], the author classified the extreme points and
exposed points of the unit ball of the space of symmetric bilinear forms on the space £s(?I%), where
L;(?12,) is the space of symmetric bilinear forms on the plane with the supremum norm. Motivated
by this paper, we classify the smooth points of the unit ball of the space of symmetric bilinear forms

on Ls(%1%).
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Introduction

Throughout the paper, we let n,m € IN,n,m > 2. We write Bg for the closed unit ball of
a real Banach space E and the dual space of E is denoted by E*. An element x € B is called
an extreme point of B if y,z € Bg with x = 1(y + z) implies x = y = z. An element x € B
is called an exposed point of Bp if there is an f € E* so that f(x) = 1 = ||f|| and f(y) < 1
for every y € Bg \ {x}. It is easy to see that every exposed point of B is an extreme point. A
point x € Br is called a smooth point of Bg if there is a unique f € E* so that f(x) =1 = ||f]|.
We denote by ext Bg, exp Bp and sm B the set of extreme points, the set of exposed points
and the set of smooth points of Bg, respectively. We denote by £("E) the Banach space of all
continuous 7-linear forms on E endowed with the norm ||T|| = supy,, 1 [T(x1,...,xn)|. An
n-linear form T is symmetric if T(x1,...,xn) = T(X(1), - -+, Xo(n)) for every permutation o on
{1,...,n}. Ls("E) denotes the closed subspace of all continuous symmetric n-linear forms on
E. Notice that £("E) is identified with the dual of n-fold projective tensor product &, ,E. With
this identification, the action of a continuous n-linear form T as a bounded linear functional
on ®7r,nE is given by

k

k
< Z x(l)fi ® P ® x(n)/i, T> — Z T<x(1)/i’ e ’x(n)/i)_
i=1 i=1
Notice also that £;("E) is identified with the dual of n-fold symmetric projective tensor prod-
uct ®S,7U,E . With this identification, the action of a continuous symmetric n-linear form T as
a bounded linear functional on ®s,n,nE is given by

ko1

< Y E(thf(l),i Q- ® xU(n),i>, T> =) T<x(1),z" o ’x(n),z')’

i=1 (o i=1

YAK 517.982.2
2020 Mathematics Subject Classification: 46A22.

© Kim Sung Guen, 2022



Smooth symmetric bilinear forms on L(%1%) 21

where o goes over all permutations on {1,...,n}. A mapping P : E — R is a continuous
n-homogeneous polynomial if there exists a unique T € Ls("E) such that P(x) = T(x,...,x)
for every x € E. We denote by P("E) the Banach space of all continuous n-homogeneous
polynomials from E into R endowed with the norm [|P|| = sup_; |[P(x)|. For more details
about the theory of multilinear mappings and polynomials on a Banach space, we refer to [3].

The main result about smooth points is known as “the Mazur density theorem”. Recall
that the Mazur density theorem (see [5, p. 171]) says that the set of all the smooth points of
a solid closed convex subset of a separable Banach space is a residual subset of its boundary.
Y.S. Choi and S.G. Kim [1, 2] initiated and characterized the smooth points of the unit balls
of P(?2) and P(%13). B.C. Grecu [4] characterized the smooth 2-homogeneous polynomials

on Hilbert spaces. S.G. Kim [7] classified the smooth points of the unit ball of P (*d.(1,w)?),
where d. (1, w)? = R? with the octagonal norm || (x, ¥) || :max{ |x], |y, W} for0 <w < 1.
S.G. Kim [6, 8, 9] classified the smooth points of the unit balls of £4(?12), £s(32,) and Ls("12,).
Let [72 = R with the supremum norm. S.G. Kim [12] characterized the smooth points of the
unit balls of £("IZ) and Ls("I%) for n,m > 2. In [13], S.G. Kim classified the smooth points

of the unit ball of P(Z]Ri(l)), where IRi(l) = RR? with the hexagonal norm ||(x, y)”h(%) =
2 2

max { ly|, |x| + 3|yl }, and in [10], he classified the extreme and exposed points of the unit ball

of Ls(>Ls(%1)). Recently, S.G. Kim [11] classified the smooth points of the unit ball of £s("l1)
and L("l;) forn > 2.
In this paper we classify the smooth points of the unit ball of £s(>L;(%13))).

1 Results
Letn > 2. Forj=0,...,n, welet

Fj((xllyl)/---l(xﬂ/yn)> = Z X1 "xl]'ykl o 'ykn,]“
{ll,...,l]‘,kl,...,kn,j}:{l,...,l’l}

Then,
{F()((xl,yl), .., (xn,yn)>, .. .,Fn((xl,yl), e, (xn,yn)> }

is a basis for £;("12,). Hence, dim(Ls("12,)) = n+ 1.1f S € L("1%), then
S((X1,y1), (X0, Yn ) Za] < X1, Y1), (xn,yn))

for some ay, . .., a, € R. By simplicity we denote S = (ay, ..., an)".

Let ]R”J“(}q2 )= R"*! with the L("12)-norm
H(ao,...,an) gy T sup Za] (x1,11), (xn,yn))‘ — H(a()r~~~,ﬂn)tH.
(7o) | Gt o=, k=L

We have the following identification.

Theorem 1. Form,n > 2, the equality Ls(" Ls("1%)) = ,Cs(’”lR”+1

Lo, )) holds.
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Notice that ext Bl:s(ml:s (nlgo)) = ext B (mRn+1

, ex B m n = eX B mmpn al’ld
5(711 >) p ‘Cs( ‘Cs( lgo)) p ( R + )

£5(M%)
smBe, e, o)) = SMBr g -

S.G. Kim [10] classified the extreme and exposed points of the unit ball of the space
]R6

Lo(212) — 'CS(Zngs(zlgo)) = £S(2£s(zlc2>o>>~
Let T € Ls(2Ls(?1%,)). Then, for (t1,t2,t3), (s1,52,83) € R3,
T((t1,t2,t3), (51,52,53)) = atys1 + btasy + ctzss + d(t152 + trs1) + e(t1s3 + £351) + f(t2s3 + £352),
where
a=T(x1y1,x1y1), b = T(x2y2, x2y2), ¢ = T(x1y2 + X2y1, X1Y2 + X2Y1),
d = T(x1y1, x2y2), e = T(x1y1, x1¥2 + X2y1), f = T(x2y2, X1Y2 + X2U1).

Notice that {151, t2So, t383, 152 + t251, 1153 + 351, tass + t3s2 } is a basis for £4(*Ls(12,)) and
dim(Ls(®Ls(?12,))) = 6. For simplicity we denote T = (a,b,¢,d, ¢, f)t.
Let S be a non-empty subset of a real Banach space E. Let

k
conv(S) := {Zt]-ajzog t<Lt+---+t=1a;¢€ Sforke Nand1 §j§k}.
j=1

We call conv(S) the convex hull of S. Recall that the Krein-Milman Theorem [14] states that
every nonempty compact convex subset of a Hausdorff locally convex space is the closed con-
vex hull of its set of extreme points. Hence, the unit ball of £ (2130) is the closed convex hull of
extBp o).

The geometrical structures of the unit ball of the space £5(*I%) were investigated in [6]. In
particular, it was shown that

1 1 1\t
_ _ t t
extBp, ) = exp Bp ) = { + (1,0,0)%,+(0,1,0) ,i(i, —E,j:E) 3
The following presents an explicit formulae for the norm of T € Ls(2L5(%12)).
Theorem 2. Let T € L;(*Ls(?1%)) with T = (a,b,c,d, e,f)f for somea,b,c,d, e, f € R. Then,

IT]| —maX{|a| 0], |d], (Ia—d|+|e|) (Ib—d|+|f|),

Zya+b—c—2dy, Z(ya+b+c—2d\Jrzye—f\)}.
Proof. In [6] it was shown that
1 1 I\t
B t b (L1
extBp o) = {i(l,0,0) ,+(0,1,0) ,i(z, 2,:|:2> }
Let

= (01,00, (0,1,0)"),

( 0 (3-32) )

1) (0101 (- )
))usi=((3-33) (523) )

(1 1 l)f G 1 _1>f> U <<1 1 _1>* <1 1 1>f>
2/ 2/2 7 2/ 2/ 2 7 10 -— 2/ 2/ 2 7 2/ 2/2 .
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Notice that T(U;) = a,T(Uy) = b, T(U3) = d, T(Us) = 3(a—d+e), T(Us) = 3(a—d—e),
T(Ug) = 3(~b+d+f), T(Uy) = 2(~=b+d—f), TUs) = Ya+b+c)+i(—d+e—f),
T(Ug) = 3(a+b—c) — 1d, T(Uy) = 3(a+b+c) + 1(—d —e+ f).

By the bilinearity of T and the Krein-Milman theorem,

||| = sup {’T(LLLz)! 1Ly, Ly € ext Bﬁs(Zl%o)} = sup [T(Uj)|.
1<j<10

Forzi, - ,z6 € R, we let

Yl(Zl, ,26) =, X1 = [1,0,0,0,0,0],
Yo(zy, -+ ,26) := 22, X,:=10,1,0,0,0,0],
Y3(z1,+ -+, 26) = 24, X3 :=[0,0,0,1,0,0],
1 rl 11
Ya(zi, - 26) = 5 (21 — 23+ 25), Xy:=5,0,0, 2,2,0}
1 rl 1 1
YS(Zl, ,Z6) 5(21 _Z4_25) X5 D _510101_51_510]/
Ye(z 26) = = (—23 + 24 + Z¢) X-—'O—lolol}
6 1, 746 _2 2 4 6)s 6'__/ 2/ /2r /2r
r 1 1 1
Y7(Z11 IZ6) == 5(_Z2 +Z4 - Z6)I X7 = _0/ _EIOI E/OI _§:|/
1 1 rt11 111
Y, = — —(— Xg:= |-, = - —= =, =
S(le /Z6) 4(21 +ZZ +Z3) + 2( Z4 +25 +Z6)/ 8 _4/ 4/ 4/ 2/ 2/ 2:|/
1 rt1 1 1
Y9(le e 126) O Z(Zl +ZZ _23) - 524/ X9 - _Zr 17_11_51070}1
1 1 111 1 11
Yio(z1,- -+ ,26) := Z(zl +20+23) + 5(—24 —25+26), Xi0:= Z’Z’Z’_E'_E'E]'

Notice that forj =1, ..., 10,
X;j-T=T(U;) =Y(ab,cde,f).

Lemmal. LetT = (a,b,c,d,e, f)' € Ls(2Ls(?12)) and H € Ls(*Ls(%1%))* with |T|| = |H|| =
|H(T)| = 1. Suppose that HT:l: (61,.--,06) H <1 for somedy,...,0 € R. Then,

Y0
where
01 := H(ts1), vy := H(tos2), v3 := H(t3s3)
vy = H(t152 + £251), vs 1= H(t153 + £351), Ve 1= H(t2s3 + t352).
Proof. It follows that
1> max{’H(T+ (61,...,%)")

H(T — (51/--'156>t>’}
H(T) = H((61,.4)")] }

4

4

= max{)H(T) + H(((slw . ~/56>t>

—1+ )H((él,...,éé)t)\ =1+ )jé‘%‘”ﬁ

which implies that Z] 190 = 0. O
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By Lemma 1, we can characterize sm B, 2/ 212 ).

Theorem 3. Let T = (a,b,¢,d,e, f)! € Ls(2Ls(*I,)) with ||T|| = 1. Then T € sm B, 2p, 2p2,)) if
and only if there is jo € {1,...,10} such that

IT(Uj,)] =1 and |T(Uy)| <1 forall k # jo.

Proof. Necessity. Suppose that T € sm B 2 (22 ))- We claim show that there is jo € {1,...,10}
such that [T(U;,)| = 1 and |T(Uy)| < 1 for all k # jo.

Otherwise. There are j; # j» € {1,...,10} such that |T(U};,)| = |T(U},)| = 1. Fork = 1,2,
let Hy = sign(T( ]k))éu , where 0y, € Ls (2Ls(%1%))" is defined by 5u].k(L) = L(Uj,) for all
L € Ls(?Ls(%12,)). Then,

Hi # Hy, ||Hil| =1 = Hi(T), Vk =1,2.

Hence, T  sm B, of o))

Sufficiency. Let H € Ls(2Ls(*1%,))* be such that H( ) = 1 = ||H|| with vy := H(t151),
vy := H(ts2), v3 := H(t3s3), v4 := H(t15p + £251), v H(t153 + t351), Ue := H(t253 + t352).
For simplicity we denote H := [v1, v2, U3, U4, U5, Ug)-

Claim. H = sign(T(U},)) Xj,-

We divide into ten cases as follows.

Casel. jp = 1.

It follows that

1 =sign(T(Uy))a.
By Theorem 2, there is N € IN such that
1 t 1
— < il
HTi (0,N,0,o,0,0,0) H <1, HTi (o 0,
t
,0,0)H§1, HTi(OOOO )H<1 HTi(OOOOO )H<1

,o,o,o)tH <1,
1
N

By Lemma 1, v; = v3 = v4 = v5 = v = 0. It follows that

HTi (0,0,0,

1 =av; =sign(T(Uy))v,

which shows that v; = sign(T(U)) and H = sign(T(Uy))X. Therefore, T € sm By (2 (22 ).

Case 2. jo = 2.
It follows that
1 = sign(T(U))b.
By Theorem 2, there is N € IN such that
N
,0,0)H§1, HTi(OOOO )H<1 HTi(OOOOO )H<1

HT:I:( 00000) H<1 HTi(OO ,o,o,o)tHgl,

1
N

By Lemma 1, v; = v3 = v4 = v5 = v = 0. It follows that

HTi (0,0,0,

1 = by, = sign(T(Uy))va,
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which shows that v, = sign(T(Uz)) and H = sign(T(U>))Xo. Therefore, T € sm By 2. 2p2,))-

Case 3. jo = 3.
It follows that

= sign(T(U3))d.
By Theorem 2, there is N € IN such that
1
‘N
O>H§L HTi(OOOOO )H<1

HTi(NOOOOO>H<1 HTi(

1
N/

onﬁﬁYHgL

1

HTi(Q&N0ﬁ£>H§L HTi(QQQQ

By Lemma 1, v; = vy = v3 = v5 = v = 0. It follows that
1 = dvy = sign(T(U3))vs,

which shows that vy = sign(T(Us)) and H = sign(T(Us))Xs. Therefore, T € sm By a2 2p2,))-

Case 4. jp = 4.
It follows that

125%MT@M»%@—d+%)

By Theorem 2, there is N € IN such that

(oo hod)| <1 fre(hoon ko) <
HTi(Q%ﬁﬁﬁﬁY”gL HTi(QQ%ﬁﬁﬁYHgL HTi(OOOOO >H<L

By Lemma 1, v1 = —v4 = 05,0y = v3 = v = 0. It follows that
1 =avy + bvy + cv3 + dvy + evs + fog = v1(a —d +e) = 2sign(T(Uy))v1,

which shows that v; = w and H = sign(T(Us))X4. Therefore, T € sm B, 2z (2.

Case 5. jp = 5.
It follows that

(a—d—e).

N[ =

= sign(T(Us))
By Theorem 2, there is N € IN such that

=
)hi(&%ﬁﬁﬁﬁyHgL ﬁi(aa

‘ﬁi(%ﬁﬁ, QQW§1,HTi<1ooo >H<1

N’
1

< < .
N’O’O'O> H <1, HTj: <0 0,0,0,0, ) H 1
By Lemma 1, v; = —v4 = —05,0 = v3 = v = 0. It follows that

= avy + bvy + cv3 + dvg + evs + fvg = vi(a —d —e) = 2sign(T(Us))vy,

which shows that v; = M and H = sign(T(Us))Xs. Therefore, T € sm B, (2 (212 ).
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Case 6. jp = 6.
It follows that

1 =sign(T(Us))
By Theorem 2, there is N € IN such that

(—b+d+f).

N —

i
o,o,o)tH <1, HY’i:(0,0,0,0,%%,O)tH <1.

re(ogogod] <t [r=(

HTi( 00000)H<1 HTi(OON

By Lemma 1, v = —v4 = —v,v1 = v3 = 05 = 0. It follows that

000, 8) <

1 =avy + bvy + cv3 + dvg + evs + fog = va(b—d — f) = —2sign(T(Ug)) v,

which shows that v, = _%2(116)) and H = sign(T(Us))Xe. Therefore, T € sm B, 2, (2p2,))-

Case 7. jop=7.
It follows that
1— sign(T(Uy))%(—b +d—f).
By Theorem 2, there is N € IN such that
HTi( ;w);oo)H<1 HTi( ;0000 )H<1
HTi( 0000)H<1 HTi(QQ%ﬁﬁﬁYHgL HTi(QQQQ%ﬁYHgL
By Lemma 1,
Up = —0U4 = 04,01 =03 =05 = 0.
It follows that

1 =avy 4+ bvy + cv3 +dvg + evs + fog = va(b—d + f) = —2sign(T(Uy))vy,
which shows that v, = —%2(117)) and H = sign(T(Uy))Xy.
Therefore, T € sm By 27 22 ))-

Case 8. jp = 8.
It follows that

1 1
1 = sign(T(Us)) <Z(a +b+c)t(—d+e —f)).
By Theorem 2, there is N € IN such that

i (hgooon)| <1 [re(ho—foon)]<
(oo = re ooz <

HTi( ,0,0,0,0, )H<1
By Lemmal, v, = v =v3 = —%04 = %05 = —%06. It follows that

1 = avy + bvy + cvz + dvy + evs + fog = vy (a +b+c+2(—d+e —f)) = 4sign(T(Us))v1,
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which shows that v; =

Case 9. jo = 9.
It follows that

w and H = sign(T(Us))Xs. Therefore, T € sm B, (2, (212 ).

: 1 1
1= s1gn(T(U9))(Z(a +b—c)— Ed).
By Theorem 2, there is N € IN such that

HTi<$,4;OOOO>H<1 HTi(é&);OOO>H<1
HTi(%ﬁﬁi%ﬁﬁ>H§L HTi(OOOO )H<1 HTi(OOOOO )H<1
By Lemmal, v, = v = —v3 = —%04, vs = v = 0. It follows that

1 =avy 4+ bvy + cv3 +dvg + evs + fog =v1(a+b—c—2d) = 4sign(T(Uy))vy,

which shows that v; = w

Case 10. jo = 10.
It follows that

and H = sign(T(Uy))Xo. Therefore, T € sm B, 2z (2p2)).-

1= sign(T(U)) (3(a+b+¢) +5(~d —e+ ).

By Theorem 2, there is N € IN such that

1 1 t 1 1 t
- _ = < — E— <
|7+ (5 —x0000) | <1, |r+(50o-g000) <1
1 1 t 1 1 t
Tj:<_/ AV SN IAL ) H<1/ HTj: ENIAZAYAIEINN L ) H<1/
H NOOZN00 - <N0002N0 -
Ti( ,0,0,0,0, — )H<1
H 2N -
By Lemmal, v, =v) =03 = —%04 = —%05 = %06. It follows that

= avy + bvy + cv3 + dvg + evs + fog =vi(a+b+c—2d —2e +2f) = 4sign(T(Uy))vy,

which shows that v; = M and H = sign(T(Uyo))X10. Therefore, T € sm B 2 (22
We complete the proof. O
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Y crarri [Carpathian Math. Publ. 2020, 12 (2), 340-352] aBTOop KAacudikyBaB eKCcTpeMaAbHi Ta
BUCTaBAEHI TOUKV OAMHIUHOI KYAi TPOCTOPY cuMeTpudHMX biAiHiimmx dpopm Ha mpoctopi Ls(%12,),
ae L5(?1%) — ue mpocTip cumerpuanmx 6iAiHiiHIX dpOPM Ha MAOLIMHI i3 CyTpemym HOpMOM. Y
ITPOAOBXEHHsI pe3yAbTaTiB 3raAaHOi CTaTTi MU KAacudikyeMo HelepepBHi TOUKM OAMHIYHOL KyAi
MPOCTOPY cuMeTpudHMX biiHiimmx popm Ha Ls(%12).

Kntouosi cnosa i ¢ppasu: TAaAKa TOUKa, IPOCTIP CUMETPUIHMX OiAIHIHIX dpopM.



