References
- Abel U. Asymptotic approximation with Kantorovich
polynomial. Approx. Theory Appl. 1998, 14 (3),
106–116.
- Acar T. Asymptotic formulas for generalized Szász-Mirakyan
operators. Appl. Math. Comput. 2015, 263, 233–239.
doi:10.1016/j.amc.2015.04.060
- Acar T., Ulusoy G. Approximation by modified Szász-Durrmeyer
operators. Period. Math. Hungar. 2016, 72 (1),
64–75. doi:10.1007/s10998-015-0091-2
- Acar T., Aral A., Raşa I. Modified Bernstein-Durrmeyer
operators. Gen. Math. 2014, 22 (1), 27–41.
- Aral A., Inoan D., Raşa I. On the generalized Szász-Mirakyan
operators. Results. Math. 2014, 65 (3–4), 441–452.
doi:10.1007/s00025-013-0356-0
- Acu A.M., Manav N., Sofonea D.F. Approximation properties of
\(\lambda\)-Kantorovich operators.
J. Inequal. Appl. 2018, 202 (2018).
doi:10.1186/s13660-018-1795-7
- Bernstein S.N. Démonstation du théorème de Weierstrass fondée sur
le calcul de probabilités. Commun. Soc. Math. Kharkow 1912, 2
série, 13 (1), 1–2.
- Cal J., Valle A.M. A generalization of Bernstein-Kantorovich
operators. J. Math. Anal. Appl. 2000, 252 (2),
750–766. doi:10.1006/jmaa.2000.7119
- Cárdenas-Morales D., Garrancho P., Raşa I. Bernstein-type
operators which preserve polynomials. Comput. Math. Appl. 2011,
62 (1), 158–163. doi:10.1016/j.camwa.2011.04.063
- DeVore R.A., Lorentz G.G. Constructive Approximation. Grundlehren
Math. Wiss., Springer-Verlag, Berlin, 1993.
- Duman O., Özarslan M.A., Della Vecchia B. Modified
Szász-Mirakjan-Kantorovich operators preserving linear functions.
Turkish J. Math. 2009, 33, 151–158.
- Gadjiev A.D. The convergence problem for a sequence of positive
linear operators on unbounded sets, and theorems analogous to that of
P.P. Korovkin. Dokl. Akad. Nauk SSSR 1974, 218
(5), 1001–1004. (in Russian)
- Gadjiev A.D., Aral A. The estimates of approximation by using a
new type of weighted modulus of continuity. Comput. Math. Appl.
2007, 54 (1), 127–135.
doi:10.1016/j.camwa.2007.01.017
- Gül H., İlarslan İ., Aral A.,
Başcanbaz-Tunca G. Generalized Lupaş operators.
AIP Conf. Proc. 2018, 1926 (1), 020019.
doi:10.1063/1.5020468
- Holhoş A. Quantitative estimates for positive linear operators in
weighted space. General Math. 2008, 16 (4),
99–110.
- İçöz G. A Kantorovich variant of a new type Bernstein-Stancu
polynomials. Appl. Math. Comput. 2012, 218 (17),
8552–8560. doi:10.1016/j.amc.2012.02.017
- Kantorovich L.V. On some expansions in polynomials in the form of
S.N. Bernstein. Dokl. Akad. Nauk SSSR 1930, 21,
563–568; 22, 595–600. (in Russian)
- Lenze B. On Lipschitz-type maximal functions and their smoothness
spaces. Proc. Netherl. Acad. Sci. A 1988, 91,
53–63.
- Lupaş A. The approximation by means of some linear positive
operators. In: Müller M.W., Felten M., Mache D.H. (Eds.) Approximation
Theory, 86. Akademie Verlag, Berlin, 1995, 201–227.
- Mohiuddine S.A., Özger F. Approximation of functions by Stancu
variant of Bernstein-Kantorovich operators based on shape parameter
\(\alpha\). RACSAM 2020,
114 (70).
- Mursaleen M., Ahasan M. The Dunkl generalization of Stancu type
\(q\)-Szász-Mirakjan-Kantorovich
operators and some approximation results. Carpathian J. Math. 2018,
34 (3), 363–370. doi:10.37193/CJM.2018.03.11
- Mursaleen M., Ansari K.J., Khan A. Approximation by Kantorovich
type \(q\)-Bernstein Stancu
operators. Complex Anal. Oper. Theory 2017, 11
(1), 85–107. doi:10.1007/s11785-016-0572-1
- Totik V. Uniform approximation by Szász-Mirakjan type
operators. Acta Math. Hungar. 1983, 41 (3–4),
291–307. doi:10.1007/bf01961317
- Totik V. Approximation by Szász-Mirakjan-Kantorovich operators in
\(L^p(p>1)\). Anal. Math. 1983,
9 (2), 147–167. doi:10.1007/bf01982010
- Weierstrass K. Über die analytische Darstellbarkeit
sogenannter willkürlicher Functionen einer reellen
Veränderlichen Sitzungsberichteder. Königl. Preuss.
Akad. Wiss. Berlin 1885, 2, 633–639.