References

  1. Abel U. Asymptotic approximation with Kantorovich polynomial. Approx. Theory Appl. 1998, 14 (3), 106–116.
  2. Acar T. Asymptotic formulas for generalized Szász-Mirakyan operators. Appl. Math. Comput. 2015, 263, 233–239. doi:10.1016/j.amc.2015.04.060
  3. Acar T., Ulusoy G. Approximation by modified Szász-Durrmeyer operators. Period. Math. Hungar. 2016, 72 (1), 64–75. doi:10.1007/s10998-015-0091-2
  4. Acar T., Aral A., Raşa I. Modified Bernstein-Durrmeyer operators. Gen. Math. 2014, 22 (1), 27–41.
  5. Aral A., Inoan D., Raşa I. On the generalized Szász-Mirakyan operators. Results. Math. 2014, 65 (3–4), 441–452. doi:10.1007/s00025-013-0356-0
  6. Acu A.M., Manav N., Sofonea D.F. Approximation properties of \(\lambda\)-Kantorovich operators. J. Inequal. Appl. 2018, 202 (2018). doi:10.1186/s13660-018-1795-7
  7. Bernstein S.N. Démonstation du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 1912, 2 série, 13 (1), 1–2.
  8. Cal J., Valle A.M. A generalization of Bernstein-Kantorovich operators. J. Math. Anal. Appl. 2000, 252 (2), 750–766. doi:10.1006/jmaa.2000.7119
  9. Cárdenas-Morales D., Garrancho P., Raşa I. Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 2011, 62 (1), 158–163. doi:10.1016/j.camwa.2011.04.063
  10. DeVore R.A., Lorentz G.G. Constructive Approximation. Grundlehren Math. Wiss., Springer-Verlag, Berlin, 1993.
  11. Duman O., Özarslan M.A., Della Vecchia B. Modified Szász-Mirakjan-Kantorovich operators preserving linear functions. Turkish J. Math. 2009, 33, 151–158.
  12. Gadjiev A.D. The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P. Korovkin. Dokl. Akad. Nauk SSSR 1974, 218 (5), 1001–1004. (in Russian)
  13. Gadjiev A.D., Aral A. The estimates of approximation by using a new type of weighted modulus of continuity. Comput. Math. Appl. 2007, 54 (1), 127–135. doi:10.1016/j.camwa.2007.01.017
  14. Gül H., İlarslan İ., Aral A., Başcanbaz-Tunca G. Generalized Lupaş operators. AIP Conf. Proc. 2018, 1926 (1), 020019. doi:10.1063/1.5020468
  15. Holhoş A. Quantitative estimates for positive linear operators in weighted space. General Math. 2008, 16 (4), 99–110.
  16. İçöz G. A Kantorovich variant of a new type Bernstein-Stancu polynomials. Appl. Math. Comput. 2012, 218 (17), 8552–8560. doi:10.1016/j.amc.2012.02.017
  17. Kantorovich L.V. On some expansions in polynomials in the form of S.N. Bernstein. Dokl. Akad. Nauk SSSR 1930, 21, 563–568; 22, 595–600. (in Russian)
  18. Lenze B. On Lipschitz-type maximal functions and their smoothness spaces. Proc. Netherl. Acad. Sci. A 1988, 91, 53–63.
  19. Lupaş A. The approximation by means of some linear positive operators. In: Müller M.W., Felten M., Mache D.H. (Eds.) Approximation Theory, 86. Akademie Verlag, Berlin, 1995, 201–227.
  20. Mohiuddine S.A., Özger F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter \(\alpha\). RACSAM 2020, 114 (70).
  21. Mursaleen M., Ahasan M. The Dunkl generalization of Stancu type \(q\)-Szász-Mirakjan-Kantorovich operators and some approximation results. Carpathian J. Math. 2018, 34 (3), 363–370. doi:10.37193/CJM.2018.03.11
  22. Mursaleen M., Ansari K.J., Khan A. Approximation by Kantorovich type \(q\)-Bernstein Stancu operators. Complex Anal. Oper. Theory 2017, 11 (1), 85–107. doi:10.1007/s11785-016-0572-1
  23. Totik V. Uniform approximation by Szász-Mirakjan type operators. Acta Math. Hungar. 1983, 41 (3–4), 291–307. doi:10.1007/bf01961317
  24. Totik V. Approximation by Szász-Mirakjan-Kantorovich operators in \(L^p(p>1)\). Anal. Math. 1983, 9 (2), 147–167. doi:10.1007/bf01982010
  25. Weierstrass K. Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen Sitzungsberichteder. Königl. Preuss. Akad. Wiss. Berlin 1885, 2, 633–639.