References
- Akar M., Yüce S., Şahin S. On the dual hyperbolic numbers and the
complex hyperbolic numbers. Journal of Computer Science and
Computational Mathematics 2018, 8 (1), 1–6.
doi:10.20967/jcscm.2018.01.001
- Alfsmann D. On families of 2n-dimensional hypercomplex algebras
suitable for digital signal processing. In: 14th European Signal
Processing Conf. (EUSIPCO 2006), Florence, Italy, September 4–8, 2006.
doi:10.5281/ZENODO.52940
- Bergum G.E., Hoggat JR. V.E. Sums and products for recurring
sequences. Fibonacci Quart. 1975, 13 (2),
115–120.
- Cheng H.H., Thompson S. Dual polynomials and complex dual numbers
for analysis of spatial mechanisms. In: Proc. of ASME 24th Biennial
Mechanisms Conference, Irvine, CA, August 19-22, 1996.
doi:10.1115/96-DETC/MECH-1221
- Cihan A., Azak A.Z., Güngör M.A., Tosun M. A study on dual
hyperbolic Fibonacci and Lucas numbers. Ann. Sci. Univ. “Ovidius”
Constanta. Ser. Mat. 2019, 27 (1), 35–48.
doi:10.2478/auom-2019-0002
- Cheng H.H., Thompson S. Singularity analysis of spatial
mechanisms using dual polynomials and complex dual numbers. ASME.
J. Mech. Des. 1999, 121 (2), 200–205.
doi:10.1115/1.2829444
- Cockle J. On a new imaginary in algebra. Philosophical
magazine. London-Dublin-Edinburgh 1849, 3 (34), 37–47.
doi:10.1080/14786444908646169
- Cohen A., Shoham M. Principle of transference-an extension to
hyper-dual numbers. Mech. Mach. Theory 2018, 125,
101–110. doi:10.1016/j.mechmachtheory.2017.12.007
- Fike J.A., Alonso J.J. The development of hyper-dual numbers for
exact second- derivative calculations. In: The 49th AIAA Aerospace
Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, Orlando, Florida, January 4 - 7, 2011.
doi:10.2514/6.2011-886
- Fike J.A., Alonso J.J. Automatic differentiation through the use
of hyper-dual numbers for second derivatives. In: Forth S., Hovland
P., Phipps E., Utke J., Walther A. (eds) Recent Advances in Algorithmic
Differentiation. Lecture Notes in Computational Science and Engineering,
87, 163–173. Springer, Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-30023-3_15
- Fjelstad P., Sorin Gal G. \(n\)-dimensional hyperbolic complex
numbers. Adv. Appl. Clifford Algebr. 1998, 8 (1),
47–68. doi:10.1007/BF03041925
- Güngör M.A., Azak A.Z. Investigation of dual-complex Fibonacci,
dual-complex Lucas numbers and their properties. Adv. Appl.
Clifford Algebr. 2017, 27 (4), 3083–3096. doi:10.1007/s00006-017-0813-z
- Gürses N., Şentürk G.Y., Yüce S. A study on dual-generalized
complex and hyperbolic-generalized complex numbers. Gazi University
Journal of Science 2021, 34 (1), 180–194. doi:10.35378/gujs.653906
- Gürses N., Şentürk G.Y., Yüce S. A comprehensive survey of
dual-generalized complex Fibonacci and Lucas numbers. Sigma J Eng
Nat Sci 2022, 40 (1), 179–187.
doi:10.14744/sigma.2022.00014
- Halici S. On Fibonacci quaternions. Adv. Appl. Clifford
Algebr. 2012, 22 (2), 321–327.
doi:10.1007/s00006-011-0317-1
- Halici S. On complex Fibonacci quaternions. Adv. Appl.
Clifford Algebr. 2013, 23 (1), 105–112.
doi:10.1007/s00006-012-0337-5
- Hamilton W.R. On quaternions; or on a new system of imaginaries
in algebra. The London, Edinburgh and Dublin Philosophical Magazine
and Journal of Science (3rd Series) xxv-xxxvi,
1844–1850.
- Harkin A.A., Harkin J.B. Geometry of generalized complex
numbers. Math. Mag. 2004, 77 (2), 118–129.
doi:10.1080/0025570X.2004.11953236
- Horadam A.F. Complex Fibonacci numbers and Fibonacci
quaternions. Amer. Math. Monthly 1963, 70 (3),
289–291. doi:10.2307/2313129
- Horadam A.F. Quaternion recurrence relations. Ulam Quarterly
1993, 2 (2), 23–33.
- Iyer M.R. Some results on Fibonacci quaternions. Fibonacci
Quart. 1969, 7 (2), 201–210.
- Iyer M.R. A note on Fibonacci quaternions. Fibonacci Quart.
1969, 3 (7), 225–229.
- Kantor I., Solodovnikov A. Hypercomplex numbers: an elementary
introduction to algebras. Springer-Verlag, New York, 1989.
- Majernik V. Multicomponent number systems. Acta Phys. Polon.
A 1996, 90 (3), 491–498.
doi:10.12693/APhysPolA.90.491
- Messelmi F. Dual-complex numbers and their holomorphic
functions. doi:10.5281/ZENODO.22961
- Nurkan S.K, Güven I.A. Dual Fibonacci quaternions. Adv.
Appl. Clifford Algebr. 2015, 25 (2), 403–414.
doi:10.1007/s00006-014-0488-7
- Pennestrı̀ E., Stefanelli R. Linear algebra and
numerical algorithms using dual numbers. Multibody Syst. Dyn. 2007,
18 (3), 323–344. doi:10.1007/s11044-007-9088-9
- Price G.B. An introduction to multicomplex spaces and functions.
Monographs and textbooks in pure and applied mathematics, New-York.
1991. doi:10.1201/9781315137278
- Rochon D., Shapiro M. On algebraic properties of bicomplex and
hyperbolic numbers. An. Univ. Oradea Fasc. Mat. 2004,
11, 71–110.
- Sobczyk G. The hyperbolic number plane. College Math. J.
1995, 26 (4), 268–280.
doi:10.1080/07468342.1995.11973712
- Study E. Geometrie der dynamen: Die zusammensetzung von
kräften und verwandte gegenstände der
geometrie bearb. Leipzig, B.G. Teubner, 1903.
- Tan E., Ait-Amrane N. R., Gök I. Hyper-dual Horadam
quaternions. Miskolc Math. Notes 2021, 22 (2),
903–913. doi:10.18514/MMN.2021.3747
- Toyoshima H. Computationally efficient bicomplex multipliers for
digital signal processing. IEICE Trans Inf Syst. 1989,
E81-D (2), 236–238.
- Yaglom I.M. Complex numbers in geometry. Academic Press, New York,
1968.
- Yaglom I.M. A simple non-Euclidean Geometry and its physical basis:
An Elementary Account of Galilean Geometry and the Galilean Principle of
Relativity. Heidelberg Science Library, 1979.