References

  1. Barros A., Ribeiro E. Integral formulae on quasi-Einstein manifolds and applications. Glasg. Math. J. 2012, 54 (1), 213–223. doi:10.1017/S0017089511000565
  2. Blair D.E. Riemannian Geometry of Contact and Symplectic Manifolds. Birkhauser, Boston, 2010.
  3. Blair D.E., Koufogiorgos T., Papantoniou B.J. Contact metric manifolds satisfying a nullity condition. Israel J. Math. 1995, 91 (1–3), 189–214. doi:10.1007/BF02761646
  4. Boeckx E. A full classification of contact metric \((\kappa,\mu)\)-spaces. Illinois J. Math. 2000, 44 (1), 212–219. doi:10.1215/ijm/1255984960
  5. Boyer C.P., Galicki K. Sasakian Geometry. Oxford University Press, Oxford, 2008.
  6. Dai X. Non-existence of \(*\)-Ricci solitons on \((\kappa,\mu)\)-almost cosymplectic manifolds. J. Geom. 2019, 110 (2), 30. doi:10.1007/s00022-019-0491-1
  7. Dai X., Zhao Y., De U.C. \(*\)-Ricci solitons on \((\kappa,\mu)'\)-almost Kenmotsu manifolds. Open Math. 2019, 17 (1), 874–882. doi:10.1515/math-2019-0056
  8. Ghosh A. Quasi-Einstein contact metric manifolds. Glasg. Math. J. 2015, 57 (3), 569–577. doi:10.1017/S0017089514000494
  9. Ghosh A. \((m,\rho)\)-quasi-Einstein metrics in the frame-work of \(K\)-contact manifolds. Math. Phys. Anal. Geom. 2014, 17 (3–4), 369–376. doi:10.1007/s11040-014-9161-6
  10. Ghosh A. Generalized \(m\)-quasi-Einstein metric within the framework of Sasakian and \(K\)-contact manifolds. Ann. Polon. Math. 2015, 115 (1), 33–41. doi:10.4064/ap115-1-3
  11. Ghosh A., Patra D.S. \(*\)-Ricci Soliton within the frame-work of Sasakian and \((\kappa,\mu)\)-contact manifold. Int. J. Geom. Methods Mod. Phys. 2018, 15 (7), 1850120. doi:10.1142/S0219887818501207
  12. Ghosh A. \(m\)-quasi-Einstein metric and contact geometry. RACSAM 2019, 113 (3), 2587–2600. doi:10.1007/s13398-019-00642-3
  13. Hamada T. Real hypersurfaces of complex space forms in terms of Ricci \(*\)-tensor. Tokyo J. Math. 2002, 25 (2), 473–483. doi:10.3836/tjm/1244208866
  14. Huchchappa A.K., Naik D.M., Venkatesha V. Certain results on contact metric generalized \((\kappa,\mu)\)-space forms. Commun. Korean Math. Soc. 2019, 34 (4), 1315–1328. doi:10.4134/CKMS.c180446
  15. Ivey T.A., Ryan P.J. The \(*\)-Ricci tensor for hypersurfaces in \(\mathbb{CP}^n\) and \(\mathbb{C}\mathbf{H}^n\). Tokyo J. Math. 2011, 34 (2), 445–471. doi:10.3836/tjm/1327931396
  16. Janssens D., Vanhecke L. Almost contact structures and curvature tensors. Kodai Math. J. 1981, 4 (1), 1–27. doi:10.2996/KMJ/1138036310
  17. Kaimakamis G., Panagiotidou K. \(*\)-Ricci solitons of real hypersurfaces in non-flat complex space forms. J. Geom. Phys. 2014, 86, 408–413. doi:10.1016/j.geomphys.2014.09.004
  18. Limoncu M. Modification of the Ricci tensor and applications. Arch. Math. 2010, 95 (2), 191–199. doi:10.1007/s00013-010-0150-0
  19. Majhi P., De U.C., Suh Y.J. \(*\)-Ricci soliton on Sasakian \(3\)-manifolds. Publ. Math. Debrecen 2018, 93 (1–2), 241–252. doi:10.5486/PMD.2018.8245
  20. Naik D.M., Venkatesha V., Kumara H.A. Certain types of metrics on almost coKähler manifolds. Ann. Math. Qué. 2021. doi:10.1007/s40316-021-00162-w
  21. Parakasha D.G., Veeresha P. Para-Sasakian manifolds and \(*\)-Ricci solitons. Afr. Mat. 2019, 30 (7–8), 989–998. doi:10.1007/s13370-019-00698-9
  22. Tachibana S. On almost-analytic vectors in almost-K\(\ddot{a}\)hlerian manifolds. Tohoku Math. J. 1959, 11 (2), 247–265. doi:10.2748/tmj/1178244584
  23. Tanno S. The topology of contact Riemannian manifolds. Illinois J. Math. 1968, 12 (4), 700–717. doi:10.1215/ijm/1256053971
  24. Venkatesha V., Naik D.M., Kumara H.A. \(*\)-Ricci solitons and gradient almost \(*\)-Ricci solitons on Kenmotsu manifolds. Math. Slovaca 2019, 69 (6), 1447–1458. doi:10.1515/ms-2017-0321
  25. Venkatesha V., Kumara H.A., Naik D.M. Almost \(*\)-Ricci soliton on paraKenmotsu manifolds. Arab. J. Math. 2020, 9 (3), 715–726. doi:10.1007/s40065-019-00269-7
  26. Wang Y. Contact 3-manifolds and \(*\)-Ricci soliton. Kodai Math. J. 2020, 43 (2), 256–267. doi:10.2996/kmj/1594313553