ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2021, 13 (2), 485-500 KapmaTcoki MmaTem. my6a. 2021, T.13, Ne2, C.485-500
do0i:10.15330/cmp.13.2.485-500

\J

Duo property for rings by the quasinilpotent perspective
Harmanci A.!, Kurtulmaz Y.2, Ungor B.?

In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a
new kind of generalizations of commutativity. We call this kind of rings gnil-duo. Firstly, some
properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to
the duo property of rings, in this perspective, we introduce and study right (resp., left) qnil-duo
rings. We show that this concept is not left-right symmetric. Among others, it is proved that if the
Hurwitz series ring H(R; «) is right qnil-duo, then R is right qnil-duo. Every right qnil-duo ring is
abelian. A right qnil-duo exchange ring has stable range 1.
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Introduction

Throughout this paper, all rings are associative with identity. Let N(R), J(R), U(R), C(R)
and Id(R) denote the set of all nilpotent elements, the Jacobson radical, the set of all invertible
elements, the center and the set of all idempotents of a ring R, respectively. We denote the
n x n full (resp., upper triangular) matrix ring over R by M,(R) (resp., U,(R)), and D,(R)
stands for the subring of U, (R) consisting of all matrices which have equal diagonal entries
and Vi (R) = {(a;) € Du(R) | a;j = agip1yj4ryfori=1,...,n—2andj=2,...,n—1}isa
subring of D, (R). Let Z and Z,, denote the ring of integers and the ring of integers modulo 1,
where n > 2.

In [4], E.H. Feller introduced the notion of duo rings, that is, a ring is called right (resp., left)
duo if every right (resp., left) ideal is an ideal, in other words, Ra C aR (resp., aR C Ra) for
every a € R, and a ring is said to be duo if it is both right and left duo. The duo ring property
was studied in different aspects. For example, in [5], the concept of right unit-duo ring was
introduced, namely, a ring R is called right unit-duo if for every a € R, U(R)a C al(R). Left
unit-duo rings are defined similarly. In [9], the normal property of elements on Jacobson and
nil radicals were concerned. A ring R is called right normal on Jacobson radical if J(R)a C aJ(R)
for all 2 € R. Left normal on Jacobson radical rings can be defined analogously. Also in [9],
on the one hand, a ring R is said to satisfy the right normal on upper nilradical if N*(R)a C
aN*(R) for all 2 € R, where N*(R) is the upper nilradical of R. Similarly, left normal on
upper nilradical rings are defined similarly. On the other hand, a ring R is said to satisfy the
right normal on lower nilradical if N,(R)a C aN,(R) for all a € R, where N,(R) is the lower
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nilradical of R. Similarly, left normal on lower nilradical rings are defined similarly. Also, a
ring R is called right nilpotent-duo if N(R)a C aN(R) for every a € R. Left nilpotent duo rings
are defined similarly (see [7]).

Motivated by the works on duo property for rings, the goal of this paper is to approach
the notion of duo rings by the way of quasinilpotent elements, in this regard, we introduce the
notion of gnil-duo rings. Firstly, we investigate some properties of quasinilpotent elements,
which we need for the investigation of gqnil-duo property. Then we study some properties of
this class of rings and observe that being a qnil-duo ring need not be left-right symmetric. It
is proved that any right (resp., left) gnil-duo ring is abelian, and any exchange right (resp.,
left) gnil-duo ring has stable range 1. It is observed that regularity and strongly regularity
coincide for right (resp., left) gqnil-duo rings. We also study on some extensions of rings such
as Dorroh extensions, Hurwitz series rings and some subrings of matrix rings in terms of

gnil-duo property.

1 Some properties of quasinilpotents

Let R be a ring and a € R. The commutant and double commutant of a in R are defined by
comm(a) = {b € R | ab = ba} and comm?(a) = {b € R | bc = cb for allc € comm(a)},
respectively, and R7" = {a € R | 1 + ax is invertible in R for every x € comm(a)}. Elements
of the set R7"! are called quasinilpotent (see [6]). Note that J(R) = {a € R | 1+ ax is invertible
for every x € R}. If a € N(R) and x € comm(a), then ax € N(R) and 1+ ax € U(R). So
J(R) C R7!, N(R) C R7! and R7 does not contain invertible elements, 0 € R7" but the
identity is not in R7". In this section, we start to expose some properties of R1"! and continue
to study some other properties of quasinilpotent elements in rings.

Example 1. There are rings R such that J(R) is strictly contained in R1".

Proof. Let F be a field and R = M, (F) for some positive integer n. Then J(R) = 0 and the
matrix unit Ey, belongs to R7" but not J(R). O

We now mention some of the known facts about quasinilpotents for an easy reference.

Proposition 1. (1) Let R be a ring, n be a positive integer, and a € R. Ifa" € Rl then
a € R in particular every nilpotent element is in R7"! ([3, Proposition 2.7]).

(2) If R is a local ring, then U(R) N R = & and R = U(R) U R7" ([3, Theorem 3.2]).

(3) Let R be aring, a, b € R. Then ab € R7" if and only ifba € R9"! ([11, Lemma 2.2]).

(4) Leta € R and r € U(R). Then r~tar € R1"! ([3, Lemma 2.3]).

(5) Lete € Id(R). Then (eRe)™! = (eRe) N R ([16, Lemma 3.5]).

In the following, we determine quasinilpotent elements in some classes of rings.

Lemma 1. Let R be a ring. Then the following hold.
(1) { [g ZZ] |a,c e RMLp e R} C Up(R)il.

@) { [g Z] |a € RMLp e R} C Dy(R)Mil.

(3) Let A = {o .

‘ b] € Do(R)™! withb € comm?(a). Thena € R,
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Proof. (1) Leta, c € R™, b € R, A = [g i] € Up(R) and B = g Z € comm(A). Then

AB = BA implies 1 — ax and 1 — cz are invertible. Hence I, — AB is invertible. So A € R7".
(2) Let A = B z] € Dy(R) witha € R™!, b € Rand B = g Z € comm(A). Then
AB = BA implies x € comm(a). Then 1 — ax is invertible. Hence I, — AB is invertible. So
A € Dy(R)4ml,

(3) Clear. O

One may think of the following question.
Question 1. Are the reverse inclusions (1) and (2) in Lemma 1 true?

Proposition 2. Let (R;);c; be a family of rings for some index set I and let R = [ R;.
Then R9"! = [T;c; R"™".

Proof. Let (a;), (x;) € R. Then (x;) € comm(a;) if and only if x; € comm(a;) for alli € I. Hence
1+ (a;)(x;) is invertible in R if and only if 1 4 a;x; is invertible in R; for every i € I. So the
result follows. O

Let R be an algebra over a commutative ring S. The Dorroh extension (or ideal extension) of
R by S denoted by I(R, S) is the direct product R x S with usual addition and multiplication
defined by (a1, b1)(az,by) = (a1ay + byap + baay, b1by) foray, a, € Rand by, by € S.

Lemma 2. Let I(R, S) be an ideal extension of R by S. Then the following hold.

(1) For (a,b) € I(R,S), (¢c,d) € comm(a,b) if and only if c € comm(a).

(2) (a,b) has an inverse (c¢,d) in I(R,S) if and only if (a +b)(c+d) =1 = (c+d)(a+b)
and bd = db = 1.

Proof. (1) (c,d) € comm(a,b) if and only if (a,b)(c,d) = (c,d)(a, b) if and only if ac + da + bc =
ca+da + bc and bd = db if and only if ac = ca and bd = db if and only if c € comm(a).

(2) (a,b)(c,d) = (0,1) = (c,d)(a,b) if and only if ac + da + bc = ca+da+ bc = 0and bd =
db = 1if and only if ac + da + bc + bd + (—=bd) = (a+b)(c+d) —1=0and bd =db=1. O

Proposition 3. Let I(R, S) be an ideal extension of R by S. Then
(1) (R, 0)7"! = (R,0) N I(R, 5)7",
(2) (0,8) NI(R,8)™" C (0, S)m.

Proof. (1) Let (x,0) € (R,0)7 and (a,b) € I(R,S) with (a,b) € comm(x,0). Then
a € comm(x) and so 1+ xa is invertible in R. We prove (0,1) + (x,0)(a,b) is invertible.
Since S lies in the center of R, a +b € comm(x). Hence 1+ x(a + b) is invertible, say
1+x(a+b)(u+1) = (u+1)(1+x(a+0b)) = 1. This implies that u(x(a + b))+
x(a+b)+u = 0. Hence ((0,1) + (x,0)(a,b))(u,1) = (u,1)((0,1) + (x,0)(a,b)) = (0,1) for
all (a,b) € comm(x,0). So (x,0) € I(R,S)7. Conversely, let (x,0) € (R,0) N I(R,S)4"! and
(r,0) € comm(x,0). Hence, (0,1) + (x,0)(r,0) = (rx,1) is invertible. Let (a,b) be the inverse
of (rx,1). Then (rx,1)(a,b) = (0,1) impliesb = 1l and rxa+rx+a = 0. (a,1)(rx,1) = (0,1)
implies arx +a+rx = 0. Hence (14+a)(1+rx) = 1 and (1 +rx)(1+a) = 1. Hence
(1,0) + (r,0)(x,0) is invertible in (R,0) for all (r,0) € comm(x,0). Thus (x,0) € (R,0)"!
or (R,0) N I(R,S)™ C (R,0)7,
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(2) Let (0,s) € (0,5) N I(R,S)™!. Let (0,b) € (0,5) with (0,b) € c (0 s). Then
(0,1) + (0,5)(0,b) = (0,1 + sb) is invertible in I(R, S). There exists (u,v) € I(R,S) such that
(0,1+sb)(u,v) = (1 +sb)u, (1+sb)v) = (0,1) = (u,v)(0,1+sb) = ((1 ~|—sb)u v(1 + sb)).
Hence (1 +sb)v = v(1 4+ sb) =1 and (1 + sb)u = 0. Hence u = 0. Thus (0,1) + (0,5)(0,b) =
(0,1 + sb) is invertible in (0, S) with inverse (0,v) € (0, S). It follows that (0,s) € (0,5)7 and
so (0,S)NI(R,S)™ C (0,8)4ml, O

The following gives us necessary and sufficient conditions for (0, S)7" to be contained in
I(R,S)™,

Theorem 1. Let I(R,S) be the ideal extension of an algebra R by a commutative ring S. Let
(0,i) € (0,5)4ml. Then (0,i) € I(R,S)4"! if and only if for every (a,b) € comm(0,i) there exists
(u,v) € I(R,S) such that (i(a +b) +1)(u +v) = (1 +ib)v = 1.

Proof. Assume that (0,i) € I(R,S)™!. Let (a,b) € comm(0,i) in I(R,S). Then (0,1) +
(0,7)(a,b) must be invertible. There exists (u,v) € I(R,S) such that (0,1) = ((0,1)+
(0,i)(a,b))(u,v). It follows that (0,1) = ((0,1) + (0,7)(a,b))(u,v) = (ia, 1+ ib)(u,v) =
(iau+ (1+ib)u+v(ia), (1 +ib)v). Theniau + (1 +ib)u +iav = 0and (1+ib)v = 1. They lead
us (i(a+b)+1)(u+0v) = (1+ib)v. Hence (i(a + b) + 1)(u + v) is invertible. Conversely, note
that iau + (1 + ib)u + iav = 0 if and only if (i(a + b) + 1)(u + v) = (1 + ib)v. Assume that for
(0,7) € (0,S) there exists (1,v) € I(R,S) such that (i(a+b) +1)(u+v) = (1 +ib)v = 1. Then
by concealing paranthesis we may reach that (0,1) = ((0,1) + (0,7)(a,b))(u,v) for (a,b) €
comm(0,). Hence (0,i) € I(R,S)TL. O

Let R be a ring and S a subring of R with the same identity as that of R and
T[R,S) ={(ri,r2,---,7n,8,5,...):ri€R,s€S,n>1,1<i<n}

Then T[R, S] is a ring under the componentwise addition and multiplication. Note that
N(T[R,S]) = T[N(R),N(S)] and C(T|R, S]) = T[C(R),C(R) N C(S)].

Proposition 4. Let R be a ring and S a subring of R with the same identity as that of R.

(1) If A = (ay,a3,a3,...,a,,5,5,5,...) € T[R,S]7", then a; € R fori = 1,2,3,...,n and
s € sl

(2)Ifa € R™" and s € ST, then A = (a,s,s,s,...) € T[R,S]7"".

Proof. (1) Let A = (ay,ay,...,44,5,5,5,...) € T[R, S]7 and b; € comm(a;) and t € comm(s).
Then B = (by,by, ..., by, t,t,t,...) € comm(A). Let1 = (1,1,...,1,...) denote the identity of
T[R,S]. So 1+ AB is invertible. Therefore 1 + a,b; is invertible fori = 1,2,...,n and 1 + st is
invertible in S. Hence 4; € R7! fori =1,2,...,nand s € S

(2) Leta € R, s € Sl A = (a,s,s,...). If B = (by,by,..., by, t,t,t,....) € T[R,S] lies
in comm(A), then by € comm(a), b; € comm(s) fori = 2,3,...,m and t € comm(s). Hence
1+ aby and 1 + sb; are invertible in R, where i = 2,3, ..., m and 1 + st is invertible in S. Hence
1+ AB is invertible in T[R,S]. So A = (a,s,s,...) € T[R, S]7". O

Let R be a ring with an endomorphism « and let H(R; «) be the set of formal expressions
of the type f(x) = Y_;_oanx", where a, € R for all n > 0. Define addition as componentwise
and x-product on H(R; (x) as follows: for f(x) = Yo ganx" and g(x) = Y obux", fxg =
Yoo cnx", where ¢, = I (})aib,—;. Then H(R;«) becomes a ring with identity containing



Duo property for rings by the quasinilpotent perspective 489

R under these two operations. The ring H(R; «) is called the Hurwitz series ring over R. The
Hurwitz polynomial ring h(R; «) is the subring of H(R; «) consisting of formal expressions of the
form Y (")a;x'. Let e : H(R;a) — R defined by e(f(x)) = ap. Then € is a homomorphism
with ker(e) = xH(R;a) and H(R;«)/ker(e) = R. There exist one-to-one correspondences
between H(R;«) and R relating to invertible elements, commutants and ideals. Let R[[x; a]] be
the skew formal power series ring over R. The sum is the same but multiplicationin H(R, «) is
similar to the usual multiplication of R[x; «]], except that binomial coefficients appear in each
term in the multiplication defined in H(R, «). Also, there is a ring homomorphism € between
R[[x;«]] and R, defined by e(f(x)) = ag, where f(x) = ag + ajx + axx> +--- € R[[x;4]].
Clearly, € is an onto map and R[[x; «]] /ker(e) = R.

Lemma 3. Let R be a ring and « a ring endomorphism of R. Then
() U(H(R;a)) = e 'U(R),
(2 U(R[[x;a]]) = e~ 1U(R).

Proof. It is routine. O
In the next result, we determine the quasinilpotent elements of H(R; «) and R[[x; «]].

Proposition 5. (1) Let H(R; «) be a skew Hurwitz series ring over R. Then
H(R; w)qm’l — efqum'l_
(2) Let R[[x; a]] be a skew formal power series ring over R. Then R([[x; «]])7"! = ¢~ 1R,

Proof. (1) Let f(x) = ag + a;x + ax> + - -- € H(R;«)7" and r € R with r € commg(ag). Then
r € commy g, (a0). Then 1+ f(x)r € U(H(R;)). Hence 1+ agr € U(R). Soag € R, Since
ao = e(f(x)), f(x) € e }(RI!). Conversely, let g(x) = by + byx + box? +--- € e (R,
Then e(g(x)) = by € R, Let h(x) = cg +c1x +cox® +--- € commypy (g 4)(g(x)). Then cp €
commpg(bg) and so 1+ bocy € U(R). So 1+ g(x)h(x) € U(H(R,«)). Hence g(x) € H(R,a)?".
This completes the proof.

(2) Similar that of (1). 0

2 Qnil-duo rings

In this section, we deal with the right duo property on the set of quasinilpotent elements.
By this means we give a generalization of commutativity from the perspective of quasinilpo-
tents.

Definition 1. A ring R is called right qnil-duo if R1"!a C aR?"! for every a € R. Similarly, R is
called left qnil-duo if aR1™! C RT"!q for every a € R. If R is both right and left qnil-duo, then it
is called gnil-duo, i.e. R™"!q = aR?"! for every a € R.

The gnil-duo property of rings is not left-right symmetric as the following example shows.

Example 2. Let S = F(t) denote the quotient field of the polynomial ring F[t| over a field F
anda: S — S defined by a(f(t)/g(t)) = f(t*)/g(t?). Let R = S[[x; a]] denote the skew power
series ring with xa = a(a)x fora € S. Every element of R is of the form a = Y3y a;x'. For any
r=ag+ Y2, a;x' withag # 0 is invertible. Hence R7"! = xR.
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This ring is considered in [2, Lemma 1.3 (3)], [8, Example 1] and in [7, Example 1.5]. As
in the proof of [8, Example 1], for tx™ € tR7"!, there is no g(x) € R such that tx™ =
g(x)t. Hence R is not left gnil-duo. We show that R is right gnil-duo. Let f(x) € R,
g(x) € R. We show that there exists fi(x) € RT"! such that f(x)g(x) = g(x)fi(x). Assume
that g(x) is invertible. Then f(x)g(x) = g(x)(g(x)"1f(x)g(x)) € g(x)RT!, otherwise, let
g(x) = h(x)x™, where h(x) = ag + a;xTax? + - - - is invertible. Then

F()g(x) = F()x" = Fx)x"hi(x) = 2" f; ()1 ()
— 2y (x) (I () L1 () () = g(x) (I () " () (%) € g(x)RP™

since f(x) is not invertible and f1(x) is an application of x™ to f(x) from the right, therefore
fi(x) = x*f(x) € R for some k > 1, by Proposition 1 (4), hy(x) ™' fi(x)hi(x) € R Thus
R is right gnil-duo.

Example 3. (1) All commutative rings, all division rings are gnil-duo.
(2) There are local rings that are not right gnil-duo.

Proof. (1) When R is a commutative ring, it is both right and left qnil-duo. If R is a division
ring, then R1"! = {0}, therefore R is both right and left qnil-duo.

(2) Let A = Z4[x, y] be the polynomial ring with non-commuting indeterminates x and y
and I be the ideal generated by the set {x3,2, yx, x> — xy, x> — 2,2x,2y}. Consider the ring
R = A/I. By [15, Example 7], R is a local ring. It is easily checked that

R = 10,2,%,y,2+ x,24+y,2 +x +y,x +y} and (RIMiTY2 £ 0,

2 + x belongs to R7"! since it is nilpotent, for x € R and y € R, xy € R™y. 1t is easily
checked that there isno t € R7"! such that xy = yt € yR?"!. Hence R is not right gnil-duo. O

Lemma 4. Let R be a ring with R1"! central in R. Then R is gnil-duo.

Proof. Assume that R7"! is central in R. Leta € R and b € R7"!. Then b being central implies
ab = ba € aR™!, O

Theorem 2. Let {R;};c; be a family of rings for some index set I and R = [[;c; R;. Then R; is
right (resp., left) gnil-duo for each i € I if and only if R is right (resp., left) qnil-duo.

Proof. Assume that R; is right (resp., left) qnil-duo for eachi € I. Leta = (a;) € R, b = (b;) €
R"il By Proposition 2, b; € R?ml for each i € I. By assumption there exists ¢; € R?ml such
that bja; = ajc; for each i € 1. Set ¢ = (c;). Then ba = ac € aR7! Hence RT"!q C aRI"!,
Conversely, suppose that R is right qnil-duo. Let a; € R; and b; € R?ml, where i € I. Let
a = (a;),b = (b;) € R, where i'"-entry of a is a; and the other entries are 0 and i*"-entry of b is
b; and the other entries are 0, respectively. Then a = (a;) € R and by Proposition 2, b € R7".
The supposition implies there exists ¢ = (c;) € R7" such that ba = ac. Comparing entries of
both sides we have b;a; = a;c;. By Proposition 2, ¢; € R?ml. Thus for each i € I, R; is right
gnil-duo. Similarly, it is proven that for each i € I, R; is left gnil-duo. O

Recall that a ring R is called abelian if every idempotent in R is central.
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Theorem 3. Let R be a ring. Then the following hold.

(1) ex — exe and xe — exe € R7! for every x and e?> = ¢ € R.

(2) Right (resp., left) qnil-duo rings are abelian.

(3) Let R be a ring and e € Id(R). If R is a right (resp., left) gnil-duo ring, then eR and
(1 — e)R are right (resp., left) qnil-duo rings. The converse holds if e is central.

Proof. (1) Lett € comm(ex — exe). Then t(ex — exe) = (ex — exe)t. So we have (t(xe — exe))? =0.
Hence 1 — (ex — exe)t is invertible and so ex — exe € R7"!. Similarly, xe — exe € R7".

(2) Let 2 = e € R. By hypothesis, RT"!e C eR7"!. By (1), xe — exe € R1"! for all x € R.
It implies for any x € R, there exists t € R such that (xe — exe)e = et. Multiplying the
latter equality by e from the left we have et = 0. So, xe = exe. Similarly, ex = exe since
ex — exe € R7 by (1). Hence R is abelian.

(3) It is clear by Theorem 2. O

Corollary 1. Let R be a right (resp., left) qnil-duo ring and e € Id(R). Then the corner ring eRe
is a right (resp., left) qnil-duo ring.

Proof. The ring R being right (resp., left) qnil-duo implies that e is central in R by Theorem 3
(2). Hence Theorem 3 (3) completes the proof. O

Theorem 4. Every right (resp., left) qnil-duo ring is directly finite.

Proof. Let R be a right gqnil-duo ring and a4, b € R withab = 1. Sete = 1 — ba. Then e is an
idempotent. By Theorem 3, e is central. So, 0 = ae = ea. Hence 0 = a — ba®. Multiplying the
latter by b from the right, we get 1 = ba. O

There is a directly finite ring that is neither right nor left gnil-duo.

Example 4. Consider the ring R = Mj(Z;). Then R is a directly finite ring but not abelian.
Hence it is neither right nor left gnil-duo.

We apply Theorem 3 to show that full matrix rings and upper triangular matrix rings need
not be right (resp., left) qnil-duo. But there are some subrings of full matrix rings that are
gnil-duo.

Example 5. (1) For any ring R and any positive integer n, M,(R) and U, (R) are neither right
nor left gnil-duo.

(2) If R is commutative, then V;,(R) is gnil-duo.

(3) Vu(R][x; 0]]) is neither right nor left gnil-duo.

Proof. (1) The rings M, (R) and U, (R) are not abelian. By Theorem 3 (2), they are neither right
nor left gnil-duo.
(2) If R is a commutative ring, V;,(R) is also commutative, therefore it is right and left

gnil-duo.
(3) Let R be a ring with an endomorphism . Assume that there exists a; € R such that
X X x a ay as
o(ay) ¢ mR. Let A = |0 «x x] € W(R[[x; o)), B = [O a az} € Va3(R][[x;0]]). As-
0 0 x 0 0 m

sume that there exists D € V3(R[[x;0]])?"! such that AB = BD. Then (1,1) entry of AB is
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o (aq1)x and that of BD isa;xf(x) for some f(x) € R[[x; c]]. This contradicts the choice of ¢ and
a1. Therefore V3(R[[x; 0]]) is not right gnil-duo. Similarly, it can be shown that V3(R[[x; c]]) is
not left gnil-duo. U

Theorem 5. Let R be a local ring with (R1"!)2 = 0. Then R is right (resp., left) gnil-duo.

Proof. By Proposition 1 (2), we have R = U(R) U R7"!. We prove R7"!a C aR7" Leta € R,
b € R 1f ba = 0, then we are done since ba = 0 = a0 € aR7 Otherwise, i.e. if ba # 0,
then we divide the proof in some cases.

Case I. Leta ¢ R7!. Then a € U(R). By Proposition 1 (4), a~'ba € RI"! since b € RT"!,
Then ba = a(a~'ba) € aR?"!.

Case II. Let a € R7™!. By hypothesis, ba = 0, this contradicts with ba # 0.

Therefore R is a right qnil-duo ring. Similarly, we may prove aR7 C R7g for
eacha € R. O

As an illustration of Theorem 5, we give the following examples. Also, the condition
(R712 = 0 in Theorem 5 is not superfluous.

[N O 0

a b
Example 6. (1) Consider the ring R = { [O a
00

anil — [

So, (R7"1)2 = 0. By Theorem 5, R is gnil-duo.

(2) Let R denote the ring in Example 3. Then Rl — {0,2,x,9,24+x,24+y,2+x+y,x+y}
and (R7)2 =£ (0 and 2 + x belongs to R7"! since it is nilpotent and (2 + x)?> # 0. Since R is
local and R does not contain invertible elements, R = J(R). To complete the proof we
may assume that x, y € R7"!. Then xy = 2 and xy € R7"y. It is easily checked that there is no
t € R7! such that xy = yt € yRT"!. Hence R is not right qnil-duo. Compare to Theorem 5.

€ D3(Z4)}. Then

b
a ]6Ra€224,b,c€Z4
0

S O X
[N O 0

Note that by Theorem 5, if R is a division ring, D,(R) is a gnil-duo ring. One may ask
whether D, (R) is gnil-duo over a domain R. The following example answers negatively.

Example 7. Consider the ring D,(R[[x]]) in [9, Example 1.4 (1)]. It is proved that D,(R[[x]]) is
neither right nor left normal property of elements on Jacobson radical. Since J(Dy(R[[x]])) =
D, (R[[x]]))7"!, Do(R][x]]) is neither right nor left gnil-duo.

Theorem 6. Let R be a domain. If Dy(R) is right (resp., left) gnil-duo, then R is right
(resp., left) qnil-duo.

Proof. Assume that D, (R) is right qnil-duo. Leta € Rand b € Rl Consider A = [g 2] #0,

B = {g g] # 0. Let X = {g Z] € comm(B). Then I — BX is invertible since 1 — bx is

c
0
BA = AC. Then ba = ac and ad = 0. By hypothesis d = 0. By Lemma 1(3), ¢ € R9". Tt follows
that ba = ac € aR7!, Hence R1"!g C gRI™!, O

invertible in R. Hence BA € D,(R)1"A. There exists C = [ ﬂ € D,(R)™! such that
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Recall that a ring R is said to have stable range 1 if for any a, b € R satisfying aR 4+ bR = R,
there exists y € R such that a 4 by is right invertible (cf. [14]). In [12], a ring R is called exchange
if for any x € R, there exists e € Id(R) such thate € Rxand 1 — e € R(1 — x), and it is proved
that for an abelian ring R, R is exchange if and only if it is clean, and R is exchange if and only
if idempotents lift modulo every left (or right) ideal.

Theorem 7. The following hold.

(1) Right (resp., left) gnil-duo exchange rings have stable range 1.

(2) Right (resp., left) gnil-duo regular rings (in the sense of von Neumann) are strongly
regular.

Proof. (1) Let R be a right gnil-duo exchange ring. By Theorem 3, R is abelian. Hence [17,
Theorem 6] implies R has stable range 1.

(2) Let R be a gnil-duo regular ring and a € R. There exists b € R such that a = aba. Then
ab = (ab)?, ba = (ba)? € Id(R). By Theorem 3, ab is central. So, a = aba = a?b. Hence R is
strongly regular. O

Let R be a ring. The Jacobson radical of the polynomial ring R[x] is J(R[x]) = N|x], where
N = J(R[x]) N R is a nil ideal of R. Then N € R and J(R[[x]]) = xR[[x]]. Therefore,
R[[x]]™" = xR[[x]]. One may wonder whether or not R[x| and R[[x]] are gnil-duo. The follow-
ing example shows that R[x] and R[[x]] need not be right qnil-duo.

Example 8. (1) Let F be a field, R = M, (F) and consider the ring R[x]. Observe that M, (F|x])
is not right (or left) qnil-duo for any positive integer n > 2 by Example 5. It follows that R[x|
is not right (or left) gnil-duo since M,,(F)[x] = M, (F[x]).

(2) Let R = A/ (ab — ba — 1) denotes the Weyl algebra discussed in [9, Example 1.2 (2)]. Let
S = R[[x]]. Then S9! = xR[[x]] = J(R][[x]]), R is a domain and R[[x]] is abelian. It is proved
that R[[x]] is neither right normal nor left normal on J(R). Therefore, R[[x]] is neither right
gnil-duo nor left qnil-duo.

Question 2. Under what conditions are the rings R[x| and R[[x|] right gnil-duo?

Theorem 8. Let R be an algebra over a commutative ring S. Consider the Dorroh extension (or
ideal extension) I(R,S) of R by S. If I(R, S) is right qnil-duo, then so is R.

Proof. Assume that I(R,S) is right gnil-duo. Leta € R, b € R7". Then (a,0) € I(R,S) and
(b,0) € I(R,S)7, Indeed, let (x,y) € comm(b,0). By Lemma 2, x € comm(b). Since R is an
algebra over S, we have x + y € comm(b). Then 1+ b(x + y) is invertible in R with inverse .
Again by Lemma 2, (0,1) + (b,0)(x, y) is invertible in I(R, S) with the inverse (¢t — 1,1). Then
(b,0)(a,0) € I(R,S)7"(a,0). There exists (c,s) € I(R,S)T! such that (b,0)(a,0) = (a,0)(c, s).
So, ba = a(c+s).

To complete the proof we show ¢ +s € R7", Let x € comm(c +s). Then cx + sx = sc + xs.
Since R is an algebra over S, sx = xs, this implies cx = x¢, and so x € comm(c). Hence
(x,0) € comm(c,s). Since (c,s) € I(R,S)7, (0,1) + (c,s)(x,0) is invertible in I(R, S). Thus
1+ (c + s)x is invertible in R by Lemma 2(2). So, c +s € R7". Therefore R is right qnil-
duo. O



494 Harmanci A., Kurtulmaz Y., Ungor B.

Proposition 6. Let R be a ring and S a subring of R. If T[R, S] is right gnil-duo, then so are R
and S. The converse holds if STl C Rl

Proof. Assume that T[R, S| is right qnil-duo. Leta € R, b € R7. Let A = (4,0,0,0,...),
B = (b,0,0,0,...) € T[R,S]. By Proposition 4, B € T[R, S]7"!. By supposition there exists C =
(c1,¢2,- + ,Cm,t,t,....) € T[R,S]9"! such that BA = AC. Hence ba = ac;. By Proposition 4,
c; € Rl Similarly, lets € S, t € Sl and C = (0,s,s,s,...), D = (0,t,t,t,....) € T[R,S].
By Proposition 4, D € T[R, S]7!. There exists D’ = (dy,da,d3,...,d;, u,u,u,...) € T[R,S]7!
such that DC = CD'. By Proposition 4, u € $7" and ts = su € sS7".

Suppose that R and S are right gqnil-duo and gl C Rl Tet A € T[R,S], B € T|R, S]q””,
where A = (ay,ap,...,an,5,s,...), B = (by,by,...,bm,t,t,...), we prove BA = AC for some
C € TI[R,S]%"l. By Proposition 4, b; € R1"! fori = 1,2,...,m and t € S7. By supposition
b; € Rl implies b;a; = a;c; for some c; € Rl We divide the proof in some cases.

Case I. n < m. Then bja; € R7!g;. Since R is right gnil-duo, there exist ¢; € Rl such
that bja; = ajc; foreach1 < i < n. Forn+1 < i < m, bjs € R?s. There exist c; € R
such that bjs = sc;. For ts € S§7ls, there exists | € S such that ts = sl € sS7". Let C =
(c1,¢2,...,cm,1,1,1,...). By Proposition 4 (2), C € T[R, S]7!. Then BA = AC € ATI[R, S]7!.

Case II.n > m. Let1 < i < m. Then b;a; € R7!3; and since R is right gnil-duo, there exist
¢; € R such that bja; = ajc;. Form+1 < i < n, ta; € STy, By sl ¢ Rl we have
ta; = ajc; € a;R7! for some ¢; € R, For ts € Sils, by supposition, there exists | € ganil
such that ts = sl € sS9"! Let C = (cy1,¢p,...,cn, 1,11, ...). By Proposition 4 (2), C € T[R, S]amil,
Then BA = AC. Hence T[R, S]7 A C AT|R, S]9"!. It completes the proof. O

Theorem 9. (1) Let H(R; «) be a skew Hurwitz series ring over a ring R. If H(R; «) is right
gnil-duo, then R is right gnil-duo.

(2) Let R[[x;«]] be a skew formal power series ring over a ring R. If R[[x;«]] is right
gnil-duo, then R is right gnil-duo.

Proof. (1) Suppose that H(R;«) is a right gnil-duo ring. Leta € R and b € R. By the
definition of € and Proposition 5, there exist f(x), g(x) € H(R;a) with f(x) € H(R;«)7" and
e(f(x)) = a, e(g(x)) = b. There exists h(x) = co + c1x + %% + - - - € H(R;a)?"! such that
f(x)g(x) = g(x)h(x). Hence e(f(x)g(x)) = e(g(x)h(x)) implies ab = bcy € bR, Thus
Ry C pRI"!, The proof of (2) is similar to that of (1). 0

Note that by Proposition 5, we have the following equalities
H(R;a)iml = ¢~ 1R and R([[x; a]]) T} = e~ TR™!,
Here we raise the following two questions.

Question 3. By using the preceding equalities, one can prove the inverse statements in Theo-
rem 9 (1) and (2) as: if R is right gnil-duo, then

(1) is H(R; «) right gnil-duo?

(2) is R[[x; a]] right gnil-duo?

3 Some subrings of matrix rings

Besides, for any ring R and any positive integer n > 2, M,,(R) is not right (or left) qnil-duo,
in this section, quasinilpotent elements of some subrings of full matrix rings are determined
for the purpose of the use whether or not their subrings to be right (or left) gnil-duo.
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The rings L(s+)(R). Let Rbe aring and s, t € C(R).

a 0 0

Let L(;1)(R) = { [sc d te] € M3(R) | a,c,dye, f € R},where the operations are defined
00 f

as those in M3(R). Then L, ;)(R) is a subring of M3(R).

a 0 0
sc d te
00 f
(1) A is invertible in L, ;y(R) if and only ifa, d and f are invertible in R.
(2 Ifa,d, f € R1™, then A € Ly (R)T.

Lemma5. Let A = € L(s+)(R). Then the following hold.

a 0 0
sc d te] € L(s4)(R). Assume that a, d and f are
0 0 f
invertible with ax = xa = 1,dz = zd = 1 and fv = vf = 1, where x,z,v € R. Consider

Proof. (1) One way is clear. Let A =

x 0 O
B= lsy z tu} € L(;)(R), wherey = —zcx and u = —zev. Then AB = BA = I5.

0 0 v
x 0 0
(2) Assume thata, d, f € R7"!. We prove that A € L(S,t)(R)q”il. LetB = [sy z tu] € Ls,n(R)
0 0 o
with B € comm(A). It is easily checked that x € comm(a), z € comm(d), v € comm(f). Then
1+ ax 0 0
1+ax,1+dz, 1+ fo are invertiblein R. By (1), Iz + AB = |scx +sdy 1-+dz tdu+tev| is
0 0 1+ fo
invertible. So A € L(s,t)(R)q”il. O
a 0 0
Lemma6. Let A = [sc d te] € L(s+)(R). Then the following hold.
00 f

(1) If A € Loy (R)™, thena € R,
() If A € L50)(R)7, then f € RT"L,
(3) A € Ligg)(R)™ ifand only ifa,d, f € RT".

a 0 0 x 00
Proof. (1) Let A = [O d te| € L(Olt)(R)q”il and x € comm(a). Consider B = [0 0 O] €

00 f 000
Lo, (R). Then B € comm(A). Since A € Lg;)(R)"!, I + AB is invertible in L) (R). By

Lemma 5 (1), 1 4+ ax € U(R). Therefore a € R7"!.

(2) Similar to the proof of (1).

(3) The sufficiency follows from Lemma 5 (2). For the necessity, a, f € R7"! by (1) and (2),
respectively. Also, by the similar discussion in (1), we obtain d € R7"/, O
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Theorem 10. Let R be a ring. If L (o) (R) is right gnil-duo, then R is a right gnil-duo ring.

Proof. Assume that Lo (R) is right qnil-duo and leta € Rand b € R, Consider A =

a 00 b 00
[0 0 o] ,B = lo 0 0] € Li(R). By Lemma 5, B € L (R)?!. By supposition there
0 00 000
x 0 0
exists B’ = [0 z tu] € L) (R)"! such that BA = AB'. Itimplies ba = ax. By Lemma 6 (1),
00 v
x € Rl Hence ba = ax € aR™!, Thus R1"!g C gRMI, O

There are right qnil-duo rings R such that the rings L, ;)(R) need not be right gnil-duo as
shown below.

Example 9. The ring Ly 1)(Z4) is not right gnil-duo.

Proof. Let A =

N W O

000 2 0
1 2 1| € Ly )(Z4) and B = |1 2 € L(11)(Z4)™!. Assume that
003 00

x 00 000
there exists C = [y z v] € L(Ll)(Z4)‘7”” such that BA = AC. Then BA = |2 0 3] and
0 0 u 002
0 0 0
AC = |x+2y 2z 2v+4u|. BA= ACimplies 3 = 20 + u and 2 = 3u. These equations lead
0 0 3u
us to contradiction. Hence L(q1)(Zy4) is not right gnil-duo. O

The rings H, ;)(R). Let Rbe aringand s, t € C(R) be invertible in R. Let

a 00
Hip(R) = {lc d e] € M3(R) a,c,d,e,fER,adsc,dfte}.
00 f

Then H(, ;)(R) is a subring of M3(R).

a 00 x 00
c de|,B=ly z u
00 f 00w
(1) AB = BA ifand only ifax = xa, dz = zd, fv = vf.

(2) A is invertible with inverse B if and only ifax = xa = 1,dz =zd =1, fv = vf = 1.
(3) A € Hs ;) (R)™! if and only ifa, d, f € R™™.

Lemma?7. Let A = € H(4)(R). Then

Proof. (1) The necessity is clear. For the sufficiency, suppose that ax = xa, dz = zd, fv = vf.
The matrix AB has cx + dy as (2,1) entry, du + ev as (2,3) entry and BA has ya + zc as (2,1)
entry, ze + uf as (2,3) entry. To show AB = BA it is enough to get cx + dy = ya + zc and
du+ev =ze+uf. Now scx +sdy = ax+d(sy — x) = ax —dz = xa — za+za — dz = sya + szc.
So, cx + dy = ya + zc since s is invertible. Similarly, we get du + ev = ze + uf.

(2) One way is clear. Assume thatax =xa =1,dz =zd =1, fo =vf = 1. Let B € H,;)(R)
withy = —zcx and u = —zev. Then AB = BA = Is.
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x 0 0
sTlx 0 —t7ly|.

0 O y
Then D € comm(A). In fact, scx = (a —d)x and tey = (d — f)y. Hence I3 + AD is invertible
in H ) (R). It follows that 1 4+ax, 1+ fy € U(R). So, a,f € Rl As for d € R, let

(3) Assume A € H(slt)(R)‘?””. Letx € comm(a),y € comm(f)and D =

0 0 0
r € comm(d)and D = |—s7lr r tlr} . Then D € comm(A). By assumption I3 + AD €
0 0 0

U(H(s4(R)). Hence 1 +dr € U(R). Henced € R Conversely, suppose that a, d, f € RI™!,
Let B € comm(A). Then x € comm(a), z € comm(d) and v € comm(f). By supposition,
1 +ax, 1+dy and 1+ fo are invertible. By part (2), I3 + AB € U(H(;(R)). Hence A €
Hgp (R)9", This completes the proof. O

Theorem 11. Let R be a ring. Then R is right qnil-duo if and only if H(, ;(R) is right gnil-duo.

a 0 0
Proof. Assume that R is a right gnil-duo ring. Let A = [c d e| € Hgy(R) and
00 f
x 0 0
B= |y z u| € H(Slt)(R)q”il. By Lemma 7, x, z, v € R There exist x/, z/, v/ € R
10 0 v
such that xa = ax', zd = dz/, vf = fo'. Lety = s 1(¥' —Z/) and v’ = t71(z' — ¢') and
x' 0 0
B = |y 7 u’] . Then B’ € H(slt)(R)‘?””. We next show that BA = AB’. It is enough to see
0 0 o

ya+zc = cx' +dy and ze + uf = du’ + ev’. We start with, cx’ +dy’ = cx’ +ds~x’ — ds~ 17
Multiplying the latter from the left by s and using the fact that s is central, we have

s(ex’ +dy') = scx’ +dx' —dz' = (sc+d)x' —zd = ax’ — zd = xa — zd
= (xa —za) + (za — zd) = sya + szc = s(ya + zc).

Since s is invertible, ya + zc = cx’ + dy’. Similarly, du’ + ev’ = dt~'z — dt 10’ + ev’. Multiply-
ing the latter from the left by t and using the fact that ¢ is central, we have

t(du' +ev') =dz' —do' +ted =zd + (te —d)v' = zd — fo' = zd — of
=zd—zf+zf —vf =z(d—f)+ (z—0)f = t(ze + uf).

By using invertibility of ¢, we get du’ + ev’ = ze + uf. Conversely, suppose that H, ) (R) is
a right qnil-duo ring. Leta € R and b € R?!. Consider A = al3, B = bl; € H4(R). By
x 00
Lemma7, B € H(s,t)(R)"””. By supposition, there exists B’ = [y z ul € H(s,t)(R)q”ﬂ such
0 0w
that BA = AB'. Tt implies ba = ax. Again by Lemma 7, x € R%"!. Hence ba = ax € aR7".
Thus R™ilg C gRIMI, O
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Generalized matrix rings. Let Rbe aringand s € U(R). Then {ﬁ ﬁ] becomes a ring denoted

by K;s(R) with addition defined componentwise and multiplication defined in [10] by

[al xl] {az xz} _ [a1a2+sx1yz a1x2+x1b2]
vi bi] ly2 b2 viay +biya  syixp + biby]

In [10], Ks(R) is called a generalized matrix ring over R.

Lemma 8. Let R be a ring. Then the following hold.

Wua) ={ |7 3] Ka(R) [d U},

@ cka®) = { |5 0] e ko®) o e cmy ).

Proof. (1) Let A = {” b] € U(Ko(R)). There exists B = [’ZC y] € Ko(R) such that AB =

c d t
BA = I, where I is the identity matrix. Then we have ax = xa = 1 and dt = td = 1. So, a and

b] € Ko(R) witha, d € U(R). Letx = a1, t =d},

d are invertible. Conversely, let A = [Z p

X

k=—a'bdland! = —dlca!. Then B = [l

ﬂ is the inverse of A in Ky(F).

(2) Let A = {Z Z] € C(Ko(R)). By commuting A in turn with the matrices [(1) 8] and

[8 (1)] in Ko(R) we reach at A = [g 2 . For the converse, let A = B g] € Ko(R), where

a € C(R). Then clearly, A commutes with every element of Ky(R). So, A € C(Ky(R)). O
[a b

d

Proposition 7. Let R be a ring and A = . ] € Ko(R). Ifa,d € R, then A € Ko(R)4",

Proof. Suppose that a, d € R7. Let B = [;C y] € Ko(R) with B € comm(A). Then

t
x € comm(a), t € comm(d). Letr = 1+4ax, v =1+dt, s = ay + bt and u = cx + dz. By as-
sumption, 7 = 1 +ax and v = 1 + dt are invertible in R. Letk = —r~'sv~land | = —o~lur—1.
-1
Then I, + AB = [; Z] is invertible with the inverse C = [1’ ] vkl} . O

Let Rbearing,a, b € R. Definel, —r,: R — Rby (I —1,)(r) =ar—rband [, —r,: R — R
by (I, —r,)(r) = br —ra. In [1], a local ring R is called bleached if for any a € J(R) and any
b € U(R), the abelian group endomorphisms [, — r, and I, — r; of R are surjective. Such rings
are called uniquely bleached if the appropriate maps are injective as well as surjective. In [13],
R is a weakly bleached ring provided that for any a € J(R), b € 1+ J(R), I, —ly and I, — I,
are surjective and it is proved that matrices over 2-projective free rings are strongly J-clean.
It is proved that all upper triangular matrices over bleached local rings are strongly clean.
In [12, Example 2] and [1, Theorem 18] it is proved that a local ring R is weakly bleached if
and only if the 2 x 2 upper triangular matrix ring U, (R) is strongly clean. In the preceding,
the maps of the form I, — r;, play a central role. In this vein, we make use of the abelian group
endomorphisms [, — 1}, to get the following result as partly the converse of Proposition 7.
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Theorem 12. Let R be a ring and A = {Z Z

y € comm(d) and for the abelian group endomorphisms I, —ry and I, —ry, b € Ker(ly —ry)
and c € Ker(l, —ry), thena, d € Ranil,

} € Ko(R)1"!. If for any x € comm(a) and

Proof. Assume that A = K Z

Iy —ry, b € Ker(ly —ry) and ¢ € Ker(ly —ry). Then b € Ker (I —ry) implies (I, —ry)(b) = 0.

} € Ko(R)!, x € comm(a) and y € comm(d), for I, — r, and

So, xb = by. ¢ € Ker(l, — ry) implies (I, —x)(c) = 0. So, yc = cx. Let B = [ ] € Ko(R

Then xb = by and yc = xc give rise to B € comm(A). By hypothesis, I + AB is invertible.
Then Lemma 8 implies 1 — ax and 1 — dy are invertible. Hence a, d € R9"l. O

We may determine the set Ko(R)7" for some rings R.

b

Proposition 8. (1) If R is a local ring, then A = [Z J

] € Ko(R)7! if and only ifa, d € R,

(2) Let R be a ring. Then A = [a 0

0 d] € Ko(R)7! if and onlyifa,d € Ryl

Proof. (1) Assume that R is a local ring and A = [Z Z

Proposition 1, d € U(R). In this case, 1 4+ d can not belong to U(R). By Lemma 8, I + A can
not belong to U(Ky(R)). This contradicts A € Ko(R)4"!. Tt follows that d € R9"!. Similarly, we
obtain a € R7"!. The converse is clear by Proposition 7. Proof of (2) is clear. O

} € Ko(R)™!, and d ¢ R By

There are some classes of rings R in which Ky(R) being a right qnil-duo ring implies R
being a right gnil-duo ring.

Theorem 13. Let R be a ring. Then Ky(R) being a right qnil-duo ring implies R being a right
gnil-duo ring if R is one of the following rings.

(1) R is local.

(2) R has no nonzero zero divisors.

Proof. (1) Let R be alocal ring. Assume that Ko(R) is a right qnil-duo ring. Leta € R, b € R7"!,

Consider A = B 2}, X = {g g] € Ko(R). By Proposition 7, X € Ko(R)7"!. There exists

/ / . .
X = [;C, i,] € Ko(R)%! such that XA = AX’'. Hence ba = ax’. By Proposition 8, x’ € R,
So, ba = ax’ € aR7M!,
et e a ring having no nonzero zero divisors. Assume that K 1s a right gnil-duo
(2) LetR Db ing having divi A hat Ko(R) i ight qnil-d
ring. Leta € R, b € R1L Ifa = 0 or b = 0, there is nothing to do. Leta # Oand b # 0

and consider A = [g S], B = [g 2] € Ko(R). By Proposition 7, B € Ko(R)4"!. There exists

I _
B = B, i,] € Ko(R)1"! such that BA = AB'. Tt implies ba = ax’ = at', ay’ = 0 and az’ = 0.

Hence x' = t' and i’ = 2’ = 0. Hence x’ € R7"! by Proposition 8. O
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Y Wit cTaTTi MM 30CepeAXyeMOCh Ha AyaAbHIl BAACTUBOCTI AASI KiAellb Uepe3 KBa3iHiABIIOTeHTHi
eAeMeHT, II0 Aa€ HOBIIA BUA y3araAbHEHb KOMYTaTMBHOCTI. My Ha3uBaeMOo Iieit BUA Kirelrs gril-duo.
Hacamniepea AOBeAECHO A€sIKi BAQCTMBOCTI KBa3iHIABIOTEHTIB y KiAbIL. IT0TiM MHOXIHY KBa3iHiAb-
MOTEHTIB 3aCTOCOBAHO AO AyaAbHOI BAACTMBOCTI KiAellb, 3 i€l TOUKM 30Py MM BBOAVIMO i BUBYaEMO
ripasi (BiaTIOBiAHO AiBi) qnil-duo xiabist. My okasyeMo, 110 1ie IOHSTTS He € AiBO-TIpaBO CUMETPHU-
uryM. Cepea iHIIIOTO A0BeaeHO, 110 sKio Kiabue H(R; a) psiais I'ypsita € mpasum gnil-duo, To R
e npasuM gnil-duo. Koxwse npase gnil-duo xiab1e € aberesum. ITpase qnil-duo kinblle 06MiHy Mae
cTabirbHWMII paHT 1.

Kntouosi cnosa i ppasu: KBasiHIABIIOTEHTHMI eAeMeHT, duo Kiablle, qnil-duo xiabIe.



