References

  1. Aron R.M., Klimek M. Supremum norms for quadratic polynomials. Arch. Math. (Basel) 2001, 76 (1), 73–80. doi:10.1007/s000130050544
  2. Cavalcante M.V., Pellegrino D.M., Teixeira E.V. Geometry of multilinear forms. Commun. Contemp. Math. 2020, 22 (2). doi:10.1142/S0219199719500111
  3. Choi Y.S., Kim S.G., Ki H. Extreme polynomials and multilinear forms on \(l_1\). J. Math. Anal. Appl. 1998, 228 (2), 467–482. doi:10.1006/jmaa.1998.6161
  4. Choi Y.S., Kim S.G. The unit ball of \(\mathcal{P}(^2l_2^2)\). Arch. Math. (Basel) 1998, 71, 472–480. doi:10.1007/s000130050292
  5. Choi Y.S., Kim S.G. Extreme polynomials on \(c_0\). Indian J. Pure Appl. Math. 1998, 29 (10), 983–989.
  6. Choi Y.S., Kim S.G. Smooth points of the unit ball of the space \(\mathcal{P}(^2l_1)\). Results Math. 1999, 36, 26–33. doi:10.1007/BF03322099
  7. Choi Y.S., Kim S.G. Exposed points of the unit balls of the spaces \(\mathcal{P}(^2l_p^2)~(p=1, 2,\infty)\). Indian J. Pure Appl. Math. 2004, 35 (1), 37–41.
  8. Dineen S. Complex Analysis on Infinite Dimensional Spaces. Springer-Verlag, London, 1999.
  9. Gámez-Merino J., Muñoz-Fernández G., Sánchez V., Seoane-Sepúlveda J. Inequalities for polynomials on the unit square via the Krein-Milman Theorem. J. Convex Anal. 2013, 20 (1), 125–142.
  10. Grecu B.C. Geometry of three-homogeneous polynomials on real Hilbert spaces. J. Math. Anal. Appl. 2000, 246 (1), 217–229. doi:10.1006/jmaa.2000.6783
  11. Grecu B.C. Smooth 2-homogeneous polynomials on Hilbert spaces. Arch. Math. (Basel) 2001, 76, 445–454. doi:10.1007/PL00000456
  12. Grecu B.C. Geometry of 2-homogeneous polynomials on \(l_p\) spaces, \(1<p<\infty\). J. Math. Anal. Appl. 2002, 273 (2), 262–282. doi:10.1016/S0022-247X(02)00217-2
  13. Grecu B.C. Extreme 2-homogeneous polynomials on Hilbert spaces. Quaest. Math. 2002, 25 (4), 421–435. doi:10.2989/16073600209486027
  14. Grecu B.C. Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces. J. Math. Anal. Appl. 2004, 293 (2), 578–588. doi:10.1016/jmaa.2004.01.020
  15. Grecu B.C., Muñoz-Fernández G.A., Seoane-Sepúlveda J.B. The unit ball of the complex \(P(^3H)\). Math. Z. 2009, 263, 775–785. doi:10.1007/s00209-008-0438-y
  16. Kim S.G. Exposed 2-homogeneous polynomials on \(\mathcal{P}(^2l_p^2)~(1\leq p\leq \infty)\). Math. Proc. R. Ir. Acad. 2007, 107, 123–129.
  17. Kim S.G. The unit ball of \({\mathcal L}_s(^2l_{\infty}^2)\). Extracta Math. 2009, 24, 17–29.
  18. Kim S.G. The unit ball of \({\mathcal P}(^2d_{*}(1, w)^2)\). Math. Proc. R. Ir. Acad. 2011, 111 (2), 79–94.
  19. Kim S.G. The unit ball of \({\mathcal L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2013, 53, 295–306.
  20. Kim S.G. Smooth polynomials of \({\mathcal P}(^2d_*(1,w)^2)\). Math. Proc. R. Ir. Acad. 2013, 113A (1), 45–58.
  21. Kim S.G. Extreme bilinear forms of \({\mathcal L}(^2d_*(1,w)^2)\). Kyungpook Math. J. 2013, 53, 625–638.
  22. Kim S.G. Exposed symmetric bilinear forms of \({\mathcal L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2014, 54, 341–347.
  23. Kim S.G. Polarization and unconditional constants of \({\mathcal P}(^2d_{*}(1, w)^2)\). Commun. Korean Math. Soc. 2014, 29 (3), 421–428. doi:10.4134/CKMS.2014.29.3.421
  24. Kim S.G. Exposed bilinear forms of \({\mathcal L}(^2d_*(1,w)^2)\). Kyungpook Math. J. 2015, 55, 119–126.
  25. Kim S.G. Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space. Mediterr. J. Math. 2016, 13, 2827–2839. doi:10.1007/s00009-015-0658-4
  26. Kim S.G. The unit ball of \({\mathcal L}(^2 {\mathbb R}^2_{h(w)})\). Bull. Korean Math. Soc. 2017, 54 (2), 417–428. doi:10.4134/BKMS.b150851
  27. Kim S.G. Extremal problems for \({\mathcal L}_s(^2\mathbb{R}_{h(w)}^2)\). Kyungpook Math. J. 2017, 57, 223–232.
  28. Kim S.G. The unit ball of \({\mathcal L}_s(^2l_{\infty}^3)\). Comment. Math. 2017, 57 (1), 1–7.
  29. Kim S.G. The geometry of \({\mathcal L}_s(^3l_{\infty}^2)\). Commun. Korean Math. Soc. 2017, 32 (4), 991–997. doi:10.4134/CKMS.c170016
  30. Kim S.G. Extreme \(2\)-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants. Studia Sci. Math. Hungar. 2017, 54 (3), 362–393. doi:10.1556/012.2017.54.3.1371
  31. Kim S.G. The geometry of \({\mathcal L}(^3l_{\infty}^2)\) and optimal constants in the Bohnenblust-Hill inequality for multilinear forms and polynomials. Extracta Math. 2018, 33 (1), 51–66.
  32. Kim S.G. Extreme bilinear forms on \(\mathbb{R}^n\) with the supremum norm. Period. Math. Hungar. 2018, 77, 274–290. doi:10.1007/s10998-018-0246-z
  33. Kim S.G. Exposed polynomials of \({\mathcal P}(^2\mathbb{R}^2_{h(\frac{1}{2})})\). Extracta Math. 2018, 33 (2), 127–143.
  34. Kim S.G. The unit ball of the space of bilinear forms on \(\mathbb{R}^3\) with the supremum norm. Commun. Korean Math. Soc. 2019, 34 (2), 487–494. doi:10.4134/CKMS.c180111
  35. Kim S.G. Smooth points of \({\mathcal L}_s(^nl_{\infty}^2)\). Bull. Korean Math. Soc. 2020, 57 (2), 443–447. doi:10.4134/BKMS.b190311
  36. Kim S.G. Extreme points of the space \({\mathcal L}(^2l_{\infty})\). Commun. Korean Math. Soc. 2020, 35 (3), 799–807. doi:10.4134/CKMS.c190300
  37. Kim S.G. Extreme points, exposed points and smooth points of the space \({\mathcal L}_s(^2l_{\infty}^3)\). Kyungpook Math. J. 2020, 60, 485–505. doi:10.5666/KMJ.2020.60.3.485
  38. Kim S.G. The unit balls of \({\mathcal L}(^nl_{\infty}^m)\) and \({\mathcal L}_s(^nl_{\infty}^m)\). Studia Sci. Math. Hungar. 2020, 57 (3), 267–283. doi:10.1556/012.2020.57.3.1470
  39. Kim S.G. Extreme and exposed points of \({\mathcal L}(^nl_{\infty}^2)\) and \({\mathcal L}_s(^nl_{\infty}^2)\). Extracta Math. 2020, 35 (2), 127–135. doi:10.17398/2605-5686.35.2.127
  40. Kim S.G. Smooth points of \({\mathcal L}(^nl_{\infty}^m)\) and \({\mathcal L}_s(^nl_{\infty}^m)\). Comment. Math. 2020, 60 (1-2), 13–21.
  41. Kim S.G. Extreme and exposed symmetric bilinear forms on the space \({\mathcal L}_s(^2l_{\infty}^2)\). Carpathian Math. Publ. 2020, 12 (2), 340–352. doi:10.15330/cmp.12.2.340-352
  42. Kim S.G. Geometry of multilinear forms on \({\mathbb R}^m\) with a certain norm. Acta Sci. Math. (Szeged) 2021, 87 (1–2), 233–245. doi:10.14232/actasm-020-824-2
  43. Kim S.G. Geometry of multilinear forms on \(l_1\). Acta Comment. Univ. Tartu. Math. 2021, 25 (1), 57–66. doi:10.12097/ACUTM.2021.25.04
  44. Kim S.G. Smooth polynomials of \(P(^2 \mathbb{R}^2_{h(\frac{1}{2})})\). Preprint.
  45. Kim S.G., Lee S.H. Exposed 2-homogeneous polynomials on Hilbert spaces. Proc. Amer. Math. Soc. 2003, 131, 449–453.
  46. Krein M.G., Milman D.P. On extreme points of regular convex sets. Studia Math. 1940, 9, 133–137.
  47. Milev L., Naidenov N. Strictly definite extreme points of the unit ball in a polynomial space. C. R. Acad. Bulgare Sci. 2008, 61 (11), 1393–1400.
  48. Milev L., Naidenov N. Semidefinite extreme points of the unit ball in a polynomial space. J. Math. Anal. Appl. 2013, 405 (2), 631–641. doi:10.1016/j.jmaa.2013.04.026
  49. Muñoz-Fernández G., Pellegrino D., Seoane-Sepúlveda J., Weber A. Supremum norms for 2-homogeneous polynomials on circle sectors. J. Convex Anal. 2014, 21 (3), 743–764.
  50. Muñoz-Fernández G.A., Révész S.G., Seoane-Sepúlveda J.B. Geometry of homogeneous polynomials on non symmetric convex bodies. Math. Scand. 2009, 105 (1), 147–160.
  51. Muñoz-Fernández G., Seoane-Sepúlveda J. Geometry of Banach spaces of trinomials. J. Math. Anal. Appl. 2008, 340 (2), 1069–1087. doi:10.1016/j.jmaa.2007.09.010
  52. Neuwirth S. The maximum modulus of a trigonometric trinomial. J. Anal. Math. 2008, 104, 371–396. doi:10.1007/s11854-008-0028-2
  53. Ryan R.A., Turett B. Geometry of spaces of polynomials. J. Math. Anal. Appl. 1998, 221 (2), 698–711. doi:10.1006/jmaa.1998.5942
  54. Treanţă S. Constrained variational problems governed by second-order Lagrangians. Appl. Anal. 2020, 99 (9), 1467–1484.
  55. Treanţă S., Arana-Jiménez M., Antczak T. A necessary and sufficient condition on the equivalence between local and global optimal solutions in variational control problems. Nonlinear Anal. 2020, 191. doi:10.1016/j.na.2019.111640