References
- Abdeljawad T., Agarwal R.P., Karapinar E., Kumari P.S. Solutions
of he nonlinear integral equation and fractional differential equation
using the technique of a fixed point with a numerical experiment in
extended b-metric space. Symmetry 2019, 11 (5),
686. doi:10.3390/sym11050686
- Acar O. Generalization of \((\alpha-F_{d})\)-contraction on quasi
metric space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
2019, 68 (1), 35–42. doi:10.31801/cfsuasmas.443587
- Adigüzel R.S., Aksoy Ü., Karapinar E., Erhan I.M. On the solution
of a boundary value problem associated with a fractional differential
equation. Math. Methods Appl. Sci. 2020. doi:10.1002/mma.6652
- Alqahtani B., Aydi H., Karapinar E., Rakocevic V. A Solution for
Volterra Fractional Integral Equations by Hybrid Contractions.
Mathematics 2019, 7 (8), 694.
doi:10.3390/math7080694
- Afshari H., Alsulami H.H., Karapinar E. On the extended
multivalued Geraghty type contractions. J. Nonlinear Sci. Appl.
2016, 9 (6), 4695–4706.
doi:10.22436/jnsa.009.06.108
- Afshari H., Aydi H., Karapinar E. On generalized \(\alpha\)-\(\psi\)-Geraghty contractions on b-metric
spaces. Georgian Math. J. 2018, 27 (1), 9–21.
doi:10.1515/gmj-2017-0063
- Afshari H., Aydi H., Karapinar E.Existence of fixed points of
set-valued mappings in \(b\)-metric
spaces. East Asian Math. J. 2016, 32 (3), 319–332.
doi:10.7858/eamj.2016.024
- Afshari H., Baleanu D. Applications of some fixed point theorems
for fractional differential equations with Mittag–Leffler kernel.
Adv. Difference Equ. 2020, 2020, 140.
doi:10.1186/s13662-020-02592-2
- Afshari H., Kalantari S., Karapinar E. Solution of fractional
differential equations via coupled FP. Electron. J. Differential
Equations 2015, 2015 (286), 1–12.
- Afshari H., Kalantari S., Baleanu D. Solution of fractional
differential equations via \(\alpha\)-\(\psi\)-Geraghty type mappings. Adv.
Difference Equ. 2018, 2018, 347.
doi:10.1186/s13662-018-1807-4
- Bota M.-F., Chifu C., Karapinar E. Fixed point theorems for
generalized (\(\alpha\)-\(\psi\))-Ciric-type contractive multivalued
operators in \(b\)-metric spaces.
J. Nonlinear Sci. Appl. 2016, 9 (3), 1165–1177.
- Bota M.-F., Karapinar E., Mlesnite O. Ulam-Hyers stability
results for fixed point problems via alpha-psi-contractive mapping in
\(b\)-metric space. Abstr. Appl.
Anal. 2013, 2013, 825293. doi:10.1155/2013/825293
- Babu A.S., Došenović T., Ali Md. M., Radenović S., Rao K.P.R.
Some Prešić type results in \(b\)-dislocated metric spaces. Constr.
Math. Anal. 2019, 2 (1), 40–48.
doi:10.33205/cma.499171
- Chifu C. Common fixed point results in extended \(b\)-metric spaces endowed with a directed
graph. Res. Nonlinear Anal. 2019, 2 (1),
18–24.
- Öztürk A. A fixed point theorem for mappings with an \(F\)-contractive iterate. Adv. Theory
Nonlinear Anal. Appl. 2019, 3 (4), 231–235.
doi:10.31197/atnaa.644325
- Gülyaz-Özyurt S. A fixed point theorem for extended large
contraction mappings. Res. Nonlinear Anal. 2018, 1
(1), 46–48.
- Gülyaz-Özyurt S. On some \(\alpha\)-admissible contraction mappings on
Branciari \(b\)-metric spaces.
Adv. Theory Nonlinear Anal. Appl. 2017, 1 (1), 1–13.
doi:10.31197/atnaa.318445
- Nashine H.K., Gupta A., Agarwal R. P. Positive solutions of
nonlinear fractional differential equations in non-zero self-distance
spaces. Georgian Math. J. 2017, 24 (4), 545–569.
doi:10.1515/gmj-2017-0040
- Kadelburg Z., Radenović S. Notes on some recent papers concerning
\(F\)-contractions in \(b\)-metric spaces. Georgian Math. J.
2018, 1 (2), 108–112. doi:10.33205/cma.468813
- Karapinar E., Aydi H., Mitrović Z.D. On interpolative Boyd-Wong
and Matkowski type contractions. TWMS J. Pure Appl. Math. 2020,
11 (2), 204–212.
- Karapinar E. A short survey on the recent fixed point results on
\(b\)-metric spaces. Constr. Math.
Anal. 2018, 1 (1), 15–44. doi:10.33205/cma.453034
- Karapinar E., Chen C.-M., Fulga A. Nonunique coincidence point
results via admissible mappings. J. Funct. Spaces 2021,
2021, 5538833. doi:10.1155/2021/5538833.
- Karapinar E., Fulga A., Rashid M., Shahid L., Aydi H. Large
contractions on quasi-metric spaces with an application to nonlinear
fractional differential equations. Mathematics 2019,
7 (5), 444. doi:10.3390/math7050444
- Karapinar E., Samet B. Generalized \(\alpha\)-\(\psi\)-contractive type mappings and
related fixed point theorems with applications. Abstr. Appl. Anal.
2012, 2012, 793486. doi:10.1155/2012/793486
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications
of Fractional Differential Equations. North-Holland Mathematics Studies,
Elsevier, Amsterdam, 2006.
- Marasi H.R., Afshari H., Daneshbastam M., Zhai C.B. Fixed points
of mixed monotone operators for existence and uniqueness of nonlinear
fractional differential equations. J. Contemp. Math. Anal. 2017,
52, 8–13. doi:10.3103/S1068362317010022 (translation of
Izv. Nats. Akad. Nauk Armenii Mat. 2017, 1, 78–84. (in
Russian))
- Nazam M., Arshad M., Park C., Acar Ö., Yun S., Anastassiou G. A.
On solution of a system of differential equations via fixed point
theorem. J. Comput. Anal. Appl. 2019, 27 (3),
417–426.
- Eloe P.W., Jonnalagadda J. Quasilinearization and boundary value
problems for riemann-liouville fractional differential equations.
Electron. J. Differential Equations 2019, 2019 (58),
1–15.
- Podlubny I. Fractional Differential Equations. Academic Press, San
Diego, 1999.
- Roshan J.R., Parvaneh V., Sedghi S., Shobkolaei N., Shatanawi W.
Common fixed points of almost generalized \((\alpha,\psi)_s\)-contractive mappings in
ordered b-metric spaces. Fixed Point Theory Appl. 2013,
2013, 159. doi:10.1186/1687-1812-2013-159
- Samet B., Vetro C., Vetro P. Fixed point theorems for \(\alpha\)-\(\psi\)-contractive type mappings.
Nonlinear Anal. 2012, 75 (4), 2154–2165.
doi:10.1016/j.na.2011.10.014
- Zhu T. Existence and uniqueness of positive solutions for
fractional differential equations. Bound. Value Probl. 2019,
2019, 22. doi:10.1186/s13661-019-1141-0