References

  1. Abdeljawad T., Agarwal R.P., Karapinar E., Kumari P.S. Solutions of he nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 2019, 11 (5), 686. doi:10.3390/sym11050686
  2. Acar O. Generalization of \((\alpha-F_{d})\)-contraction on quasi metric space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68 (1), 35–42. doi:10.31801/cfsuasmas.443587
  3. Adigüzel R.S., Aksoy Ü., Karapinar E., Erhan I.M. On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. 2020. doi:10.1002/mma.6652
  4. Alqahtani B., Aydi H., Karapinar E., Rakocevic V. A Solution for Volterra Fractional Integral Equations by Hybrid Contractions. Mathematics 2019, 7 (8), 694. doi:10.3390/math7080694
  5. Afshari H., Alsulami H.H., Karapinar E. On the extended multivalued Geraghty type contractions. J. Nonlinear Sci. Appl. 2016, 9 (6), 4695–4706. doi:10.22436/jnsa.009.06.108
  6. Afshari H., Aydi H., Karapinar E. On generalized \(\alpha\)-\(\psi\)-Geraghty contractions on b-metric spaces. Georgian Math. J. 2018, 27 (1), 9–21. doi:10.1515/gmj-2017-0063
  7. Afshari H., Aydi H., Karapinar E.Existence of fixed points of set-valued mappings in \(b\)-metric spaces. East Asian Math. J. 2016, 32 (3), 319–332. doi:10.7858/eamj.2016.024
  8. Afshari H., Baleanu D. Applications of some fixed point theorems for fractional differential equations with Mittag–Leffler kernel. Adv. Difference Equ. 2020, 2020, 140. doi:10.1186/s13662-020-02592-2
  9. Afshari H., Kalantari S., Karapinar E. Solution of fractional differential equations via coupled FP. Electron. J. Differential Equations 2015, 2015 (286), 1–12.
  10. Afshari H., Kalantari S., Baleanu D. Solution of fractional differential equations via \(\alpha\)-\(\psi\)-Geraghty type mappings. Adv. Difference Equ. 2018, 2018, 347. doi:10.1186/s13662-018-1807-4
  11. Bota M.-F., Chifu C., Karapinar E. Fixed point theorems for generalized (\(\alpha\)-\(\psi\))-Ciric-type contractive multivalued operators in \(b\)-metric spaces. J. Nonlinear Sci. Appl. 2016, 9 (3), 1165–1177.
  12. Bota M.-F., Karapinar E., Mlesnite O. Ulam-Hyers stability results for fixed point problems via alpha-psi-contractive mapping in \(b\)-metric space. Abstr. Appl. Anal. 2013, 2013, 825293. doi:10.1155/2013/825293
  13. Babu A.S., Došenović T., Ali Md. M., Radenović S., Rao K.P.R. Some Prešić type results in \(b\)-dislocated metric spaces. Constr. Math. Anal. 2019, 2 (1), 40–48. doi:10.33205/cma.499171
  14. Chifu C. Common fixed point results in extended \(b\)-metric spaces endowed with a directed graph. Res. Nonlinear Anal. 2019, 2 (1), 18–24.
  15. Öztürk A. A fixed point theorem for mappings with an \(F\)-contractive iterate. Adv. Theory Nonlinear Anal. Appl. 2019, 3 (4), 231–235. doi:10.31197/atnaa.644325
  16. Gülyaz-Özyurt S. A fixed point theorem for extended large contraction mappings. Res. Nonlinear Anal. 2018, 1 (1), 46–48.
  17. Gülyaz-Özyurt S. On some \(\alpha\)-admissible contraction mappings on Branciari \(b\)-metric spaces. Adv. Theory Nonlinear Anal. Appl. 2017, 1 (1), 1–13. doi:10.31197/atnaa.318445
  18. Nashine H.K., Gupta A., Agarwal R. P. Positive solutions of nonlinear fractional differential equations in non-zero self-distance spaces. Georgian Math. J. 2017, 24 (4), 545–569. doi:10.1515/gmj-2017-0040
  19. Kadelburg Z., Radenović S. Notes on some recent papers concerning \(F\)-contractions in \(b\)-metric spaces. Georgian Math. J. 2018, 1 (2), 108–112. doi:10.33205/cma.468813
  20. Karapinar E., Aydi H., Mitrović Z.D. On interpolative Boyd-Wong and Matkowski type contractions. TWMS J. Pure Appl. Math. 2020, 11 (2), 204–212.
  21. Karapinar E. A short survey on the recent fixed point results on \(b\)-metric spaces. Constr. Math. Anal. 2018, 1 (1), 15–44. doi:10.33205/cma.453034
  22. Karapinar E., Chen C.-M., Fulga A. Nonunique coincidence point results via admissible mappings. J. Funct. Spaces 2021, 2021, 5538833. doi:10.1155/2021/5538833.
  23. Karapinar E., Fulga A., Rashid M., Shahid L., Aydi H. Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 2019, 7 (5), 444. doi:10.3390/math7050444
  24. Karapinar E., Samet B. Generalized \(\alpha\)-\(\psi\)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012, 793486. doi:10.1155/2012/793486
  25. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
  26. Marasi H.R., Afshari H., Daneshbastam M., Zhai C.B. Fixed points of mixed monotone operators for existence and uniqueness of nonlinear fractional differential equations. J. Contemp. Math. Anal. 2017, 52, 8–13. doi:10.3103/S1068362317010022 (translation of Izv. Nats. Akad. Nauk Armenii Mat. 2017, 1, 78–84. (in Russian))
  27. Nazam M., Arshad M., Park C., Acar Ö., Yun S., Anastassiou G. A. On solution of a system of differential equations via fixed point theorem. J. Comput. Anal. Appl. 2019, 27 (3), 417–426.
  28. Eloe P.W., Jonnalagadda J. Quasilinearization and boundary value problems for riemann-liouville fractional differential equations. Electron. J. Differential Equations 2019, 2019 (58), 1–15.
  29. Podlubny I. Fractional Differential Equations. Academic Press, San Diego, 1999.
  30. Roshan J.R., Parvaneh V., Sedghi S., Shobkolaei N., Shatanawi W. Common fixed points of almost generalized \((\alpha,\psi)_s\)-contractive mappings in ordered b-metric spaces. Fixed Point Theory Appl. 2013, 2013, 159. doi:10.1186/1687-1812-2013-159
  31. Samet B., Vetro C., Vetro P. Fixed point theorems for \(\alpha\)-\(\psi\)-contractive type mappings. Nonlinear Anal. 2012, 75 (4), 2154–2165. doi:10.1016/j.na.2011.10.014
  32. Zhu T. Existence and uniqueness of positive solutions for fractional differential equations. Bound. Value Probl. 2019, 2019, 22. doi:10.1186/s13661-019-1141-0