References

  1. Abel U., Agratini O. On the variation detracting property of operators of Balázs and Szabados. Acta Math. Hungar. 2016, 150 (2), 383–395. doi:10.1007/s10474-016-0642-x
  2. Acar T., Aral A., Cárdenas-Morales D., Garrancho P. Szász-Mirakyan type operators which fix exponentials. Results Math. 2017, 72 (3), 1393–1404. doi:10.1007/s00025-017-0665-9
  3. Acar T., Aral A., Gonska H.On Szász-Mirakyan operators preserving \(e^{2ax}\), \(a>0\). Mediterr. J. Math. 2017, 14 (1), 6. doi:10.1007/s00009-016-0804-7
  4. Acu A.M., Aral A., Raşa I. Generalized Bernstein Kantorovich operators: Voronovskaya type results, convergence in variation. Carpathian J. Math. 2022, 38 (1), 1–12. doi:10.37193/cjm.2022.01.01
  5. Acu A.M., Raşa I. New estimates for the differences of positive linear operators. Numer. Algorithm 2016, 73 (3), 775–789. doi:10.1007/s11075-016-0117-8
  6. Acu A.M., Raşa I. Estimates for the differences of positive linear operators and their derivatives. Numer. Algorithms 2020, 85 (2), 191–208. doi;10.1007/s11075-019-00809-4
  7. Agratini O. On the variation detracting property of a class of operators. Appl. Math. Lett. 2006, 19, 1261–1264. doi:10.1016/j.aml.2005.12.007
  8. Aral A., Cárdenas-Morales D., Garrancho P. Bernstein-type operators that reproduce exponential functions. J. Math. Inequal. 2018, 12 (3), 861–872. doi:10.7153/jmi-2018-12-64
  9. Aral A., Erbay H. A note on the difference of positive operators and numerical aspects. Mediterr. J. Math. 2020, 17 (2), 45. doi:10.1007/s00009-020-1489-5
  10. Aral A., Otrocol D., Raşa I. On approximation by some Bernstein Kantorovich exponential-type polynomials. Period. Math. Hungar. 2019, 79 (2), 236–254. doi:10.1007/s10998-019-00284-3
  11. Aral A., Limmam L.M., Ozsarac F. Approximation properties of Szász-Mirakyan-Kantorovich type operators. Math. Methods Appl. Sci. 2019, 42 (16), 5233–5240. doi:10.1002/mma.5280
  12. Deniz E., Aral A., Gupta V. Note on Szász-Mirakyan-Durrmeyer operators preserving \(e^{2ax}\), \(a>0\). Numer. Funct. Anal. Optim. 2017, 39 (2), 201–207. doi:10.1080/01630563.2017.1358179
  13. Bardaro C., Butzer P.L., Stens R.L., Vinti G. Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis (Berlin) 2003, 23 (4), 299–346. doi:10.1524/anly.2003.23.4.299
  14. Gonska H., Pitul P., Raşa I. On differences of positive linear operators. Carpathian J. Math. 2006, 22 (1–2), 65–78.
  15. Gonska H., Pitul P., Raşa I. On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. In: Agratini O., Blaga P. (Eds.) Proc. Int. Conf. “Numerical Analysis and Approximation Theory”, Cluj-Napoca, Romania, July 5–8, 2006. Casa Cărtiide Stiintă, Cluj-Napoca, 2006, 55–80.
  16. Gonska H., Raşa I. Differences of positive linear operators and the second order modulus. Carpathian J. Math. 2008, 24 (3), 332–340.
  17. Gupta V., Tachev G. On approximation properties of Phillips operators preserving exponential functions. Mediterr. J. Math. 2017, 14 (4), 177. doi:10.1007/s00009-017-0981-z
  18. Gupta V., López-Moreno A.-J. Phillips operators preserving arbitrary exponential functions, \(e^{ax},\) \(e^{bx}\). Filomat 2018, 32 (14), 5071–5082. doi:10.2298/FIL1814071G
  19. Karslı H. On convergence of Chlodovsky and Chlodovsky–Kantorovich polynomials in the variation seminorm. Mediterr. J. Math. 2013, 10 (1), 41–56. doi:10.1007/s00009-012-0186-4
  20. Lorentz G.G. Bernstein Polynomials. University of Toronto Press, Toronto, 1953.
  21. Lupaş A. The approximation by means of some linear positive operators. In: Müller M.W., Felten M., Mache D.H. (Eds.) Approximation Theory, 86. Akademie Verlag, Berlin, 1995, 201–227.
  22. Păltănea R. A note on Bernstein Kantorovich operators. Bull. Transilv. Univ. Braşov Ser. III 2013, 6(55) (2), 27–32.