References
- Abel U., Agratini O. On the variation detracting property of
operators of Balázs and Szabados. Acta Math. Hungar. 2016,
150 (2), 383–395. doi:10.1007/s10474-016-0642-x
- Acar T., Aral A., Cárdenas-Morales D., Garrancho P.
Szász-Mirakyan type operators which fix exponentials. Results
Math. 2017, 72 (3), 1393–1404.
doi:10.1007/s00025-017-0665-9
- Acar T., Aral A., Gonska H.On Szász-Mirakyan operators preserving
\(e^{2ax}\), \(a>0\). Mediterr. J. Math. 2017,
14 (1), 6. doi:10.1007/s00009-016-0804-7
- Acu A.M., Aral A., Raşa I. Generalized Bernstein Kantorovich
operators: Voronovskaya type results, convergence in variation.
Carpathian J. Math. 2022, 38 (1), 1–12.
doi:10.37193/cjm.2022.01.01
- Acu A.M., Raşa I. New estimates for the differences of positive
linear operators. Numer. Algorithm 2016, 73 (3),
775–789. doi:10.1007/s11075-016-0117-8
- Acu A.M., Raşa I. Estimates for the differences of positive
linear operators and their derivatives. Numer. Algorithms 2020,
85 (2), 191–208. doi;10.1007/s11075-019-00809-4
- Agratini O. On the variation detracting property of a class of
operators. Appl. Math. Lett. 2006, 19, 1261–1264.
doi:10.1016/j.aml.2005.12.007
- Aral A., Cárdenas-Morales D., Garrancho P. Bernstein-type
operators that reproduce exponential functions. J. Math. Inequal.
2018, 12 (3), 861–872. doi:10.7153/jmi-2018-12-64
- Aral A., Erbay H. A note on the difference of positive operators
and numerical aspects. Mediterr. J. Math. 2020, 17
(2), 45. doi:10.1007/s00009-020-1489-5
- Aral A., Otrocol D., Raşa I. On approximation by some Bernstein
Kantorovich exponential-type polynomials. Period. Math. Hungar.
2019, 79 (2), 236–254.
doi:10.1007/s10998-019-00284-3
- Aral A., Limmam L.M., Ozsarac F. Approximation properties of
Szász-Mirakyan-Kantorovich type operators. Math. Methods Appl. Sci.
2019, 42 (16), 5233–5240. doi:10.1002/mma.5280
- Deniz E., Aral A., Gupta V. Note on Szász-Mirakyan-Durrmeyer
operators preserving \(e^{2ax}\), \(a>0\). Numer. Funct. Anal. Optim.
2017, 39 (2), 201–207.
doi:10.1080/01630563.2017.1358179
- Bardaro C., Butzer P.L., Stens R.L., Vinti G. Convergence in
variation and rates of approximation for Bernstein-type polynomials and
singular convolution integrals. Analysis (Berlin) 2003,
23 (4), 299–346. doi:10.1524/anly.2003.23.4.299
- Gonska H., Pitul P., Raşa I. On differences of positive linear
operators. Carpathian J. Math. 2006, 22 (1–2),
65–78.
- Gonska H., Pitul P., Raşa I. On Peano’s form of the Taylor remainder,
Voronovskaja’s theorem and the commutator of positive linear operators.
In: Agratini O., Blaga P. (Eds.) Proc. Int. Conf. “Numerical Analysis
and Approximation Theory”, Cluj-Napoca, Romania, July 5–8, 2006. Casa
Cărtiide Stiintă, Cluj-Napoca, 2006, 55–80.
- Gonska H., Raşa I. Differences of positive linear operators and
the second order modulus. Carpathian J. Math. 2008,
24 (3), 332–340.
- Gupta V., Tachev G. On approximation properties of Phillips
operators preserving exponential functions. Mediterr. J. Math.
2017, 14 (4), 177. doi:10.1007/s00009-017-0981-z
- Gupta V., López-Moreno A.-J. Phillips operators preserving
arbitrary exponential functions, \(e^{ax},\) \(e^{bx}\). Filomat 2018,
32 (14), 5071–5082. doi:10.2298/FIL1814071G
- Karslı H. On convergence of Chlodovsky and Chlodovsky–Kantorovich
polynomials in the variation seminorm. Mediterr. J. Math. 2013,
10 (1), 41–56. doi:10.1007/s00009-012-0186-4
- Lorentz G.G. Bernstein Polynomials. University of Toronto Press,
Toronto, 1953.
- Lupaş A. The approximation by means of some linear positive
operators. In: Müller M.W., Felten M., Mache D.H. (Eds.) Approximation
Theory, 86. Akademie Verlag, Berlin, 1995, 201–227.
- Păltănea R. A note on Bernstein Kantorovich operators. Bull.
Transilv. Univ. Braşov Ser. III 2013, 6(55) (2),
27–32.