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On spectral radius and Nordhaus-Gaddum type inequalities of
the generalized distance matrix of graphs

Merajuddin M.}, Bhatnagar S.!, Pirzada S.2

If Tr(G) and D(G) are respectively the diagonal matrix of vertex transmission degrees and
distance matrix of a connected graph G, the generalized distance matrix D,(G) is defined as
Dy(G) = a Tr(G) + (1 —a) D(G), where 0 < o < 1. If py > pp > --- > p, are the eigenval-
ues of D, (G), the largest eigenvalue p; (or p,(G)) is called the spectral radius of the generalized

20W(G)
Pi— =

where W(G) is the Wiener index of G. In this paper, we obtain the bounds for the spectral radius
02 (G) and the generalized distance energy of G involving Wiener index. We derive the Nordhaus-
Gaddum type inequalities for the spectral radius and the generalized distance energy of G.

distance matrix Dy (G). The generalized distance energy is defined as EP(G) = Y,

7
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1 Introduction

Let G(V(G), E(G)) be a simple connected graph with vertex set V(G) = {v1,v2,...,0n}
and order |V(G)| = n. The degree d(v;) or d; of a vertex v; is the number of edges incident
on v;. The set of vertices adjacent to v € V(G), denoted by N(v), refers to the neighborhood of
v. In G, the distance between two vertices u,v € V(G), denoted by d,,;, is defined as the length
of a shortest path between u and v. The distance matrix of G, denoted by D(G), is defined as
D(G) = (duv)upev(c)- The transmission tg(v) of a vertex v is defined as the sum of the distances
from v to all other vertices in G, thatis, fg(v) = Y. duo. A graph G issaid to be k-transmission

ucV(G
reqular if tg(v) = k for each v € V(G). For any V(er)tex v; € V(G), the transmission tg(v;) is
also called the transmission degree, shortly denoted by t; and the sequence {ti,ty,...,t,} is
called the transmission degree sequence of the graph G. The matrix Tr(G) = diag (t1,t2,...,tn)
is the diagonal matrix of vertex transmissions. The generalized distance matrix [7] is defined as
Dy(G) = aTr(G) + (1 —a)D(G) for 0 < w < 1. Let p; > pp > - -+ > py be the eigenvalues of
D, (G). We will denote the largest eigenvalue (generalized distance spectral radius) p1 by ps(G)
(or simply p,). As D4(G) is non-negative and irreducible, by the Perron-Frobenius theorem,
Pq is unique and there is a unique positive unit eigenvector X corresponding to p,, which is
called the generalized distance Perron vector of G. The generalized distance energy is defined as

EP«(G) = Y1, |oi — %(G) |, where W(G) is the Wiener index of G. For some recent results,
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2010 Mathematics Subject Classification: 05C50, 05C12, 15A18.

© Merajuddin M., Bhatnagar S., Pirzada S., 2022



186 Merajuddin M., Bhatnagar S., Pirzada S.

we refer to [1,3,5,7-10,15-18] and the references therein. For standard definitions, we refer
to [6,14].

The chromatic number of a graph G is the minimum number of colors required to color
the vertices of G so that no two adjacent vertices share the same color. E.A. Nordhaus and
J.W. Gaddum studied the chromatic number of a graph G together with its complement G, see
[13]. They obtained the lower and upper bounds for the sum and the product of the chromatic
numbers of G and G, in terms of the number of vertices of G. Since then, any relation for
the sum and/or the product of an invariant in a graph G and the same variant in G is called
a Nordhaus-Gaddum type inequality. Nordhaus-Gaddum type theorems establish bounds for
f(G) + f(G) for some graph invariant f. A survey of Nordhaus-Gaddum type inequalities for
graph invariants can be seen in [4].

The rest of the paper is organized as follows. In Section 2, we obtain the bounds for the
spectral radius of the generalized distance matrix. Further, as an application of these re-
sults, we obtain the lower bounds for the generalized distance energy. In Section 3, we obtain
Nordhaus-Gaddum type inequalities for both the spectral radius and energy of generalized
distance matrix of graph G.

2 Bounds for generalized distance spectral radius of graphs

Our first result is a lower bound for the spectral radius p, of Dy (G) in terms of the trans-
missions and Wiener index. As usual K, denotes the complete graph with n vertices and K,
denotes an empty graph.

Theorem 1. Let G be a connected graph of order n and size m with Wiener index W(G). If
0 <a <1, then

2w lyn, T — 4
2\/0422 CTr2+ (1— a)2(2W)2

and equality holds if G is a transmission regular graph.

4 (1)

Proof. Let py = pa(G) be the spectral radius of D, (G) and x be the unique eigenvector of D (G)
corresponding to p,. For 1 < i < n, assume that r; is the ith row of D, (G). For1 <i < n, we

have
n

HxH =1 and HrZH = (szr +(1—a) Zdjz.
j=1
j#i
Since (pn)x; = 7ix, therefore

n
2 201112 2 2
pa2x = ||(ra)x|* < [l P[P = [Iril P 1 = 2T + (1 — )2 ) d

=1
J#i
So
2 . 2,2 . 2,2 2 2
Pu = Zptxxz < Z(“ Trz + (1 “) Z dz])
i=1 i=1 j#i=1
n n
=a® ) Tr7+( ZZZdZ <a?) Tri+ (1—a)*(2W)%,
i=1 i=1j=1 i=1

j#i
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where W is the Wiener index of the graph G. This implies that

p,xg\/ocZZTr (1—a)2(2W)2.

Therefore,
zw 2W 4W?
2(pu — - aZZ;Tr + (1 —a)2(2W)2 > 202 — 200~ > 02 — T
Since p2 > % Y Tr?, therefore
Lo, i
n 2 2
2\/ 2Y" T2 (1 — a)2(2W)

Equality holds in (1), when G is a transmission regular graph, proving the theorem. O

Let S;(B) be the ith row sum of any matrix B. For a real symmetric matrix, M. Ellingham
and X. Zha [11] proved the following result.

Lemma 1. For the real symmetric n X n matrix B, let A be an eigenvalue of B with an eigen-
vector x all of whose entries are non-negative. Then

min S;(B) < A < max S;(B).

1<i<n 1<i<n
Moreover, if the row sums of B are not all equal and if all the entries of x are positive, then
both inequalities above are strict.

For a connected graph G, let x be an eigenvector of D,(G), corresponding to the spectral
radius p,(G). If 0 < a < 1, then x is positive. For any polynomial p(.), it is obvious that p(px)
is an eigenvalue of p(D,(G)) and x is also an eigenvector corresponding to p(p.). Thus, from
Lemma 1, we have the following observation.

Lemma 2. Let G be a connected graph of order n and let p(.) be any polynomial. If0 < a < 1,
then

min S;(p(Da(G))) < p(Dx(G)) < max Si(p(Da(G))).

1<i<n 1<i<n

Moreover, if the row sums of p(D,(G)) are not all equal, then both inequalities above are strict.

Now, we obtain a lower bound for the spectral radius in terms of the maximum and mini-
mum transmission degrees and the Wiener index of the graph G.

Theorem 2. Let G be a connected graph with order n, size m, Wiener index W and having
maximum and minimum transmission degree Try,x and Tr,,;,, respectively. If 0 < a < 1, then

—(1=a)(3 = 1)(n = 1) + /11— 0)2(§ = 1201 — 1)+ 4(aTrp, + (1 — 0)2W)]

Pu < (2)

Equality holds when G is isomorphic to K,,.
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Proof. Assume that D, = D,(G), Tr = Tr(G) and D = D(G). From D, = aTr + (1 — a)D, we
have D2 = (aTr + (1 — «)D)? = a?Tr? + (1 — &)?D? + a(1 — &) TrD + a(1 — «) DTr. Note that
Si(D)? =T, S;T(rD) = Tr?and S;(DTr) = T;. Fori € V(G), the row sum of D? corresponding
to the vertex i is
Si(D7) = &’Tr + (1 — )Ty + a(1 — &) Tr} + (1 — )T
— (@4 el - )T+ (1 - @)% +a(l— )T,
= aT? + (1—a)T; < aTr? + (1 — a)(2W — (% —1)(1n — 1) Tr:Tryin),
which implies that
’ n
S; <Dlx +(1-a) <§ - 1) (1 — 1) Trin Da ) < aTr?,, + (1 — a)2W.

Using Lemma 2, we have pi(G) +(1—a)(5— 1)(n — D) Trpinpa < «Tr2, + (1 —a)2W, that is,

—(1=a)(3 = D)= 1) + /(1= 02§ = 121 = 12+ 4(@aTr + (1 — 2) 2W))]
2 .
If equality holds in (2), then all the inequalities become equalities. This implies that
T; = 2W — (52%4)(n — 1)Tr;T,pin, which further implies that all the distances must be equal
to 1. Thus the graph is complete. O

Pag

Now, as a consequence of Theorem 1, we obtain a lower bound for the generalized distance
energy EP+(G) in terms of the Wiener index of G.

Theorem 3. If G is a connected graph of order n and with Wiener index W, then
_ Lyn T2 _4w?
ED:(G) > 2 (1—a)2W N 5Lzt 17— 5 ‘ 3)
n 20/a2Tr2 + (1 — a)2(2W)?
Equality holds if G is a transmission regular graph.

Proof. The generalized distance energy of a graph G is defined as

! 2aW
EPY(G) = )" |pa — ,
i=1 n

where W is the Wiener index of G. Let s be the largest positive integer such that p; > 2”‘W and
Pst1 < 2"1‘1W. Then, we have

i _ 2aW > 21xW o 20W
ED“(G) = Z Z loi — Z ’ - pil

i=1 i=s+1

S 2asW S 20sW 20W
2(2@ ) 2@3@(?@ : )—Z[Pz ol

i=1
Using Theorem 1, we obtain

EP«(G) >2 W p2E M
n 2\/042 1 T3+ (1 —rx)

(- lyn o — 2

n 2\/0c2 (1—a)?
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Therefore,
_ e
ED"‘(G) Z 2 (1 “)ZW Z n
n 2\/0c22 T2 + (1 — a)2(2W)2
In (3), equality holds, if G is a transmission regular graph, completing the proof. O

3 Nordhaus-Gaddum type inequalities for spectral radius and generalized
distance energy

Now, we obtain Nordhaus-Gaddum type inequalities for the spectral radius of the general-
ized distance matrix of graphs.

Theorem 4. Let G be a simple connected graph with n vertices and diameter d > 3 and let G
be the complement of G. Then

12
n2(n — 1)\/04211(1 +d2) + (1 —)2(%)

wheret = Y.I' | |Tr; — 2Y|. Further, equality holds if G is a transmission regular graph.

pa+ﬁa2n—1+

Proof. Clearly,

n n n

u 4wz & 2W LT — 32X 8
ZTT’Z—T:Z(T”i_—) _( =T = %) =—
here t = Y |Tr; — 2¥|. Usi

where t = )i, |Tr; — £7*|. Using Theorem 1, we get

2W t2

P = — + .
" 2n2\/oc2 YL Tr? 4 (1 —a)*(2W)?

et o, = pa(G), W be the Wiener index of G and Tr; be the transmission degree of vertex i in
. Also, assume that d is the diameter of G. In [12], for d > 3 it has been proved that d<3.So
< d. Itis easy to see that t>(G) = t?(G). Therefore,

mmh

2W t2
" 2n2\/cx2 Y1 T2+ (1—a)? QW)

Thus, we have

2W +2W
o> (020

P L - .
2n? 251 T2 2 2 wn o 22|
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Now, we have 2W + 2W = n(n — 1). Using AM-GM inequality, we get

1 1
+
PLTR 4 (1-a)22W) Y, T + (1 — )2 (2W)°
1
> 2 -
J VT T2+ (1 0)2@W)2\ /a2 X, T + (1 - 0)2(2W)

2
- 2\/ (@2 X, T2 + (1 — a)2(2W)2) + (a2 Xy Tr2 + (1 — )2 (2W)°)
_ 22
VOR(TIL, T2+ X, Tr2) + (1 — )2(2W)2 + 2W)?)

Let N(v;) be the set of vertices adjacent to vertex v; in G and let d; = |N(v;)| be the degree of
vertex v;. The transmission degree Tr; of vertex v; is the sum of distances from v; to all other
vertices of V(G). So the transmission degree Tr; of vertex v; is the sum of its degree d; (since the
distances of the vertices adjacent to v; is 1) and the distances of v; from the rest of the vertices

that will be greater than or equal to 2 and less than or equal to the diameter d of the graph G.
The maximum distance in graph G is its diameter d. Therefore, Tr; < d; + (n —d; — 1)d,

< (@it (n—di = 1)d)? <2 (@ + (n - di —128),

n n
YT <2) (4 (n—d— 1)) =2 (Zd?+d22<n—df—1>2> -
i=1 i=1

i=1 i=1

Thus, we get

Similarly, we have

Since d < d [12], therefore

-
:“I
3
|
—_
|
=
—
=
c
&

Also, d; +d; = n — 1, so tha

Lo-mo)
id§+d2i )
L)

Therefore, we have

ZTr +ZT <1+d2)id+1+d2in—d—1 >
i=1 =1
-2 <<1+d2>( ) d?+i<n—dl‘_1)2)>

i=1 i=1

=2(1+4d%) (

n n

P2+ Zd%) <2(1+d?) (n(n - 1)2) :

1=

1

_
—_
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Thus, we get
n n
ZT +). T r? < 2( 1+d2)<n(n—1)2).
i=1 i=1
Also, (2W)2 + (2W)? < (n(n — 1))?. Therefore,

1 1
+

VETL TR+ (1—a2@W)2 /a2 D, T+ (1 - a)2(2W)?
Zﬁ
- \/az( nTR2 T Tr2) + (1 — )2((2W)2 + (2W)2)
2v2

= V202(1+d)n(n —1)2+ (1 —a)2(n(n — 1))2
2

(n = 1)\ Ja2(1+ @)+ (1 - w)2(%)

Hence,
12

n2(n —1)/a2(1+ @) + (1 - 2(2)

Clearly, equality holds when G is a transmission regular graph. This completes the proof. [J

Ptx‘{’f_)“z(n_l)‘{‘

The following theorem gives the Nordhaus-Gaddum type inequalities for the energy of the
generalized distance matrix of graphs.

Theorem 5. Let G be a simple connected graph with n vertices, diameter d > 3 and G be its
complement. Then

EP+(G) 4+ EP+(G) >2((1(x)(n1))+< 2 )
n2(n — 1)\/oc2n(1 +d2)+ (1 —a)2()

where t = YI | |Tr; — 2 |. Moreover, equality holds if G is a transmission regular graph.

Proof. Using Theorem 3, we have

_ 42
1-— 2W
ED"‘(G) >2 ( “) Z nZ ‘
n 2\/a2Tr (1— a)2(2W)2
We know that
" W 2WN\? (X, [T — 22 7
L SE =y (o AY) 2 B
£ n - n n n
i=1 i=1
where t = Y, |Tr; — Y. So

ED:(G) > 2 (1—04)2W+ t2 _
N n 212, /2T + (1 — )2 (2W)?
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Let EP«(G) be the generalized distance energy of the complement graph G. Also, t?(G) =
t2(G). So

(1—a)2W N t2

n 202\ /2T + (1 — a)2(2W)?

EP«(G) >2

Now, we have

ED«(G) + EP*(T) > 2 ((1 —0c)(2W+2W))

N t2 1 N 1
2 = —
AR+ (1 a2@W) (2T 4 (1 - 0)2(2W)?

Using the same method as in Theorem 4, it follows that

22

EP(G) + EP(G) > 2((1—a)(n—1)) +
n2(n —1)y/a2(1+ d)n + (1 - a)2(2%)

Equality holds if G is a transmission regular graph, completing the proof. O

Several interesting and sharp bounds for the generalized distance energy of graphs can be
found in [2].
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Mepaxyaain M., bxatnarap C., ITipsaaa C. ITpo cnexmpanoruii padiyc i nepisrocmi muny Hopoxaysa-
Taddyma mampuyi y3aeanoHenux sidcmaneti epacpis // Kaprmarceki MaTeM. my6a. — 2022. — T.14, Nel.
— C. 185-193.

SIkio Tr(G) i D(G) € BiALIOBIAHO AlarOHAABPHOIO MaTPULEIO IIOPSIAKIB IlepeAadi BEPIIVH Ta Ma-
TpHMLIEIO BiACcTaHel 3B’ s13HOTO rpadpa G, MaTpuLsl y3araabHeHuX Biactaseit Dy (G) Bu3HaUeHa HaCTy-
mEnM unHOM Dy (G) = a Tr(G) + (1 —a) D(G), 26 0 < a < 1. SIKkmio py > pp > -+ > Pp € BAACHUMM
sHauyeHHsIMU Dy (G), TO Halibiabllle BAaCHe 3HaUeHHsI 01 (260 p,(G)) Ha3MBAIOTh CIIEKTPAABHUM pa-
Alycom Marpuii y3araabHeHnx Biacraseit D, (G). EHeprist y3araabHeHMX BiACTaHel BU3HAUeHa SIK
EP(G) = Ly foi — 2
Me>Xi AASI CIIEKTPaABHOTO paaiyca p,(G) i eHeprii y3araabHeHnx Biacraseii rpadpa G 3 iHAekcoM Bi-

Hepa. Mu BuBOAMMO HepiBHOCTI Tiny Hopaxaysa-TaaayMa AASI CIIEKTPaABHOTO paAiyca Ta eHeprii
y3araabHeHMX BiacTaHeii rpacpa G.

, ae W(G) e inaexcom Binepa rpadpa G. VY 1iit cTaTTi MM OTPUMyEMO

Korwouosi crosa i ppasu: MaTpuIIs BiACTaHel, MaTpULsl y3aTaAbHEHMX BiACTaHel, CieKTpaAbHMIA
paaiyc, eHepris y3araabHeHMX BiacTaHelt, HepiBHicTb Ty Hopaxaysa-Taaayma.



