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Asymmetric circular graph with Hosoya index and negative
continued fractions

Komatsu T.

It has been known that the Hosoya index of caterpillar graph can be calculated as the numerator

of the simple continued fraction. Recently in [MATCH Commun. Math. Comput. Chem. 2020, 84

(2), 399–428], the author introduces a more general graph called caterpillar-bond graph and shows

that its Hosoya index can be calculated as the numerator of the general continued fraction.

In this paper, we show how the Hosoya index of the graph with non-uniform ring structure can

be calculated from the negative continued fraction. We also give the relation between some radial

graphs and multidimensional continued fractions in the sense of the Hosoya index.
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Introduction

Let p(G, k) denotes the number of ways for choosing k disjoin edges from a graph G. The

concept of the topological index was first introduced by H. Hosoya [4] in 1971 as the integer

Z := Z(G) being the sum of a set of the numbers p(G, k). By using the set of p(G, k), the

topological index Z is defined by

Z =
m

∑
k=0

p(G, k) .

As more different types of topological indices have been discovered in chemical graph theory

(see, e.g., [2]), the first topological index is also called Hosoya index or the Z index nowadays.

Topological indices are used for example in the development of quantitative structure-activity

relationships (QSARs), in which the biological activity or other properties of molecules are

correlated with their chemical structure.

The topological index is closely related to Fibonacci Fn [5] and related numbers [6]. For the

path graph Sn, we have Z(Sn) = Fn+1, where Fn = Fn−1 + Fn−2, n ≥ 2, with F0 = 0 and F1 = 1.

For the monocyclic graph Cn, we have Z(Cn) = Ln, where Ln is the Lucas number, defined by

Ln = Ln−1 + Ln−2, n ≥ 2, with L0 = 2 and L1 = 1.

In [7], manipulation of continued fraction, either finite and infinite, was shown to be greatly

simplified and systematized by introducing the topological index Z and caterpillar graph

Cn(x1, x2, . . . , xn). A caterpillar graph is a tree containing a path graph such that every edge
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has one or more endpoints in that path. In [7], it is shown that for n ≥ 1

Z
(
Cn(a0, a1, . . . , an−1)

)
= pn−1 , where

pn−1

qn−1
= a0 +

1

a1 + . . .
+

1

an−1

with gcd(pn−1, qn−1) = 1, ai ≥ 1, 0 ≤ i ≤ n − 1. In [9], it is shown that the Hosoya index of

the fractal graph can be given by the order and degrees of all the vertices of the graph.

In [8], we give graphs whose topological index are exactly equal to the number un, satisfy-

ing the three-term recurrence relation

un = aun−1 + bun−2, n ≥ 2, with u0 = 0 and u1 = u ,

where a, b and u are positive integers. This is illustrated by the so-called caterpillar-bond graph

Dn(x1, x2, . . . , xn; y1, . . . , yn−1). We show an interpretation from the continued fraction expan-

sion in a more general case, so that the topological index can be computed easily. We also

show how to calculate Hosoya index of the given tree graph or the graph including circle type

graphs, by using the branched continued fractions. The Hosoya index can be calculated easily

for the graph with uniform ring structure by transforming it into the normal caterpillar-bond

graph.

In this paper, we show how the Hosoya index of the graph with non-uniform ring structure

can be calculated from the negative continued fraction. We also give the relation between some

radial graphs and multidimensional continued fractions in the sense of the Hosoya index.

1 Preliminaries

Any real number can be expressed as a generalized continued fraction expansion of the

form

α = a0 +
b1

a1 +
b2

a2 + . . .

.

In this paper, we assume that all numbers a0, a1, a2, . . . and b1, b2, . . . are positive integers. The

nth convergent pn/qn is given by

pn

qn
= a0 +

b1

a1 +
b2

a2 + . . .
+

bn

an

:= a0 +
b1

a1 +

b2

a2 + · · ·+
bn

an
.

Here, pn and qn satisfy the recurrence relations:

pn = an pn−1 + bn pn−2, n ≥ 2, with p0 = a0 and p1 = a0a1 + b1, (1)

qn = anqn−1 + bnqn−2, n ≥ 2, with q0 = 1 and q1 = a1 . (2)

Notice that the expression of the generalized continued fraction expansion is not unique,

and pn and qn are not necessarily coprime.
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In [8], we introduced a combined graph of the caterpillar graph and the bond graph as

their generalization. That is, caterpillar-bond graph Dn(x1, x2, . . . , xn; y1, y2, . . . , yn−1) is a graph

of following type.

x1−1
︷ ︸︸ ︷

x2−1
︷ ︸︸ ︷

xn−1
︷ ︸︸ ︷

• • • • • • • • •
•

❀❀❀❀❀❀

✄✄✄✄✄✄

y1

•

❀❀❀❀❀❀

✄✄✄✄✄✄

y2

•♣ ❤ ❴ ❱ ◆❢ ❝ ❴ ❭ ❳❳ ❭ ❴ ❝ ❢◆
❱ ❴ ❤ ♣• •

❀❀❀❀❀❀

✄✄✄✄✄✄

yn−1

The Hosoya index of the caterpillar-bond graph can be calculated easily by using the con-

tinued fraction expansion [8].

Lemma 1. For n ≥ 1,

Z
(

Dn(a0, a1, . . . , an−1; b1, . . . , bn−1)
)
= pn−1 ,

where pn−1 is the numerator of the convergent of the continued fraction expansion

pn−1

qn−1
= a0 +

b1

a1 +
b2

a2 + . . .
+

bn−1

an−1

(3)

and pj’s and qj’s satisfy the recurrence relations in (1) and (2), respectively.

The other graphs, including monocycle graph, cannot be calculated by this formula directly.

But, by the equivalent transformation, it is possible to calculate the Hosoya index for some

circular graphs with perfect point symmetry structure [8]. For example, the cycle graph Cn

can be transformed into the caterpillar-bond graph

Dn−1(1, . . . , 1
︸ ︷︷ ︸

n−2

, 2; 2, 1, . . . , 1
︸ ︷︷ ︸

n−3

) .

It is so understandable that Z(Cn) = Ln (see [6]), where Ln are Lucas numbers. For example,

we can see it by cycloraraffin CnH2n.

•
⑧⑧
⑧⑧ ❄❄
❄❄

• •
•

❄❄
❄❄ •
⑧⑧
⑧⑧•

⇐⇒
•

⑧⑧
⑧⑧ ❄❄
❄❄

• •• ◦ ••
⇐⇒

•
• • • • •

C6 cyclohexane D5(1, 1, 1, 1, 2; 2, 1, 1, 1)

In addition, comb related graphs, including monocycle graphs Cn and cyclic comb graphs

CUn (see [6]), can be converted into the caterpillar-bond graphs.

Indeed, CVn can be converted into Dn(3, . . . , 3
︸ ︷︷ ︸

n

; 2, 1, . . . , 1
︸ ︷︷ ︸

n−2

) by cutting one edge to another

edge into bond edges by turning around.

•
✴✴
✴✴
✴ •

✎✎
✎✎
✎• ❖❖❖

❖❖ •
♦♦♦

♦♦• •
◦ ••
♦♦♦♦♦ •

❖❖❖❖❖

•
✎✎✎✎✎ •

✴✴✴✴✴

=⇒
•

✴✴
✴✴
✴✴ •

✎✎
✎✎
✎✎

•
✴✴
✴✴
✴✴ •

✎✎
✎✎
✎✎

•
✴✴
✴✴
✴✴ •

✎✎
✎✎
✎✎

•
✴✴
✴✴
✴✴ •

✎✎
✎✎
✎✎

◦ • • •



Asymmetric circular graph with Hosoya index and negative continued fractions 611

In general, let Cn,a,b be the graph with a additional branches at each vertex and a b-tuple

on each edge of monocycle Cn. Then, Cn,a,b can be transformed into the caterpillar-bond graph

Dn(a + 1, . . . , a + 1
︸ ︷︷ ︸

n

; 2b, b, . . . , b
︸ ︷︷ ︸

n−2

) without changing of the numbers of vertices and edges. That

is, we have Z(Cn,a,b) = Z
(
Dn(a + 1, . . . , a + 1

︸ ︷︷ ︸

n

; 2b, b, . . . , b
︸ ︷︷ ︸

n−2

)
)

(see [8]).

• •
✴✴
✴✴
✴ •

✎✎
✎✎
✎ •• ❖❖❖

❖❖ •
♦♦♦

♦♦•
❄❄❄❄❄❄ •

⑧⑧⑧⑧⑧⑧

•
⑧⑧
⑧⑧
⑧⑧ •

❄❄
❄❄

❄❄•
♦♦♦♦♦ •

❖❖❖❖❖

• •
✎✎✎✎✎ •

✴✴✴✴✴ •

=⇒
•

✶✶
✶✶
✶ • •

✌✌
✌✌
✌ •

✶✶
✶✶
✶ • •

✌✌
✌✌
✌ •

✶✶
✶✶
✶ • •

✌✌
✌✌
✌ •

✶✶
✶✶
✶ • •

✌✌
✌✌
✌

• • • •

C4,3,3 D4(4, 4, 4, 4; 6, 3, 3)

However, there was no way to transform a circle type graph without uniform pattern into

a caterpillar-bond graph directly. For example, consider the very famous benzene C6H6.

H

H
❅❅

❅ C
⑦⑦
⑦ H

⑦⑦
⑦

C C

C
⑦⑦
⑦ ❅❅

❅ C
❅❅

❅

H C H

H

In other words, there has been no convenient method to calculate Hosoya index of a circle type

graph without uniform pattern directly by using continued fractions. In the next section, we

show a relation between such graphs and negative continued fractions.

2 Graph with non-uniform ring structure and negative continued fractions

In order to prove our main result, we need the known relations, which were first suggested

by H. Hosoya [4, 5] and were elaborated by I. Gutman and O.E. Polansky [3]. Though we need

only the first one in these papers, we also list related relations for convenience.

Lemma 2. 1. If e = uv is an edge of a graph G, then Z(G) = Z(G − e) + Z(G − {u, v}).
2. If v is a vertex of a graph G, then Z(G) = Z(G − v) + ∑uv Z(G − uv), where the summa-

tion extends over all vertices adjacent to v.

3. If G1, G2, . . . , Gk are connected components of G, then Z(G) = ∏
k
i=1 Z(Gi).

First, we consider a graph in which the annular part has a staggered structure of r single

and s double lines, with m branches at each vertex. We denote it by U
(r,s)
n,m , where n, r, s ≥ 1

and m ≥ 0 are integers. For simplicity, its Hosoya index is denoted by un := Z(U
(r,s)
n,m ). Hosoya

index of U
(r,s)
n,m is given by the numerator of the convergent of a negative (or backward) continued

fraction.
• •

✴✴
✴✴
✴ •

✎✎
✎✎
✎ •

•
❖❖❖

❖❖ •
♦♦♦

♦♦•
❄❄❄❄❄❄ •

⑧⑧⑧⑧⑧⑧

•
⑧⑧
⑧⑧
⑧⑧ •

❄❄
❄❄

❄❄

•
♦♦♦♦♦ •

❖❖❖❖❖

• •
✎✎✎✎✎ •

✴✴✴✴✴ •
U

(1,5)
2,3
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Theorem 1. For integers n, r, s ≥ 1 and m ≥ 0, we have

un

un−1
= M − rs

M −
rs

M − · · · −
rs

M
︸ ︷︷ ︸

n

−
M

2
,

where M = D2(m + 1, m + 1; r + s) = (m + 1)2 + r + s. Furthermore, for n ≥ 1 we have

un =

(

M +
√

M2 − 4rs

2

)n

+

(

M −
√

M2 − 4rs

2

)n

.

Remark. (1) In order to keep the recurrence relations, cancelations are not done in the

calculation from the continued fraction to the convergent. Namely, one should calculate as
a
b +

c
d = ad+bc

bd even though gcd(b, d) 6= 1. For example, 2
3 +

3
3 = 15

9 and 3
4 +

5
6 = 38

24 instead of

5/3 and 19/12, respectively.

(2) If M > 2rs, the negative continued fraction in Theorem 1 can be converted (see, e.g., [10])

into

un

un−1
= M − 1 +

1

1 +

rs

M − rs − 1 +

1

1 +

rs

M − rs − 1 + · · ·+
rs

M − rs − 1 +

1

1
︸ ︷︷ ︸

2n−3

+

2rs

M − 2rs
,

which corresponds with the caterpillar-bond graph

D2n−1(M − 1, 1, M − rs − 1, 1, M − rs − 1, . . . , M − rs − 1, 1, M − 2rs; 1, rs, 1, rs, . . . , rs, 1, 2rs).

Example 1. The structure of benzene C6H6 is represented by U
(2,1)
3,1 . Hence, we have

u3

u2
= 7 −

2

7 −
2

7 −
7

2

=
301

45
.

Therefore, its Hosoya index is given by Z(U
(2,1)
3,1 ) = 301. In fact,

Z(U
(2,1)
3,1 ) =

(

7 +
√

41

2

)3

+

(

7 −
√

41

2

)3

= 301 .

When m = 0, r = 1 and s = 2, the sequence of the numbers un = Z(U
(1,2)
n,0 ) is given by

2, 4, 12, 40, 136, 464, 1584, 5408, 18464, 63040, 215232, . . .

(see [11, A056236]). Similarly, the corresponding sequences for U
(1,3)
n,0 , U

(1,4)
n,0 , U

(2,3)
n,0 and U

(3,4)
n,0

are found in [11, A228569, A228842, A094433, A074601], respectively.

Proof of Theorem 1. Let n, r, s ≥ 1 and m ≥ 0. Using Lemma 2, we divide the graph U
(r,s)
n,m into

two subgraphs. By repeating s times to remove one edge from the s-hold bond part, we have

un :=Z(U
(r,s)
n,m )

=Z
(
D2n(m + 1, . . . , m + 1; r, s, r, . . . , r)

)
+ s · Z

(
D2n−2(m + 1, . . . , m + 1; s, r, s, . . . , s)

)
.
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For the first subgraph, we set

f2n

f2n−1
:= m + 1 +

r

m + 1 +

s

m + 1 +

r

m + 1 + · · ·+
r

m + 1
︸ ︷︷ ︸

2n

,

so that f2n = Z
(

D2n(m + 1, . . . , m + 1; r, s, r, . . . , r)
)
. Then the sequence { fn}n satisfies the

recurrence relation

fn = (m + 1) fn−1 +

{

r fn−2, if n is even,

s fn−2, if n is odd

with f0 = 1 and f1 = m + 1. Thus, the sequence { f2n}n satisfies the recurrence relation

f2n = (m + 1) f2n−1 + r f2n−2 = (m + 1)
(
(m + 1) f 2n − 2 + s f2n−3

)
+ r f2n−2

=
(
(m + 1)2 + r

)
f2n−2 + s( f2n−2 − r f2n−4) =

(
(m + 1)2 + r + s

)
f2n−2 − rs f2n−4

with f0 = 1 and f2 = (m + 1)2 + r.

For the second subgraph, we set

g2n

g2n−1
:= m + 1 +

s

m + 1 +

r

m + 1 +

s

m + 1 + · · ·+
s

m + 1
︸ ︷︷ ︸

2n−2

,

so that g2n = Z
(
D2n−2(m + 1, . . . , m + 1; s, r, s, . . . , s)

)
. Then the sequence {gn}n satisfies the

recurrence relation

gn = (m + 1)gn−1 +

{

sgn−2, if n is even,

rgn−2, if n is odd

with g0 = 1/s, g1 = 0 and g2 = 1. Thus, similarly, the sequence {g2n}n satisfies the recurrence

relation

g2n =
(
(m + 1)2 + r + s

)
g2n−2 − rsg2n−4

with g0 = 1/s, g2 = 1 and g4 = (m + 1)2 + s.

Since both f2n and g2n satisfy the same recurrence relation, the sequence {un}n satisfy the

same recurrence relation un = Mun−1 − rsun−2 with u0 = f0 + sg0 = 2 and u1 = f2 + sg2 =

(m + 1)2 + r + s := M. Therefore,

un

un−1
= M − rs

un−1,m
un−2,m

= M −
rs

M −
rs

un−2,m
un−3,m

= · · ·

= M −
rs

M −
rs

M − . . .−
rs
u1
u0

= M −
rs

M −
rs

M − . . .−
rs

M − M

2

.

In addition, since the roots of x2 − Mx + rs = 0 are given by

α, β =
M ±

√
M2 − 4rs

2
,

together with the initial values, we have un = αn + βn.
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3 Radial graph and multidimensional continued fractions

Another typical graph is that of radial crystals represented by ice crystals. Here, we con-

sider the fact that each of the radial shapes is needle-shaped, and show the relationship with

multidimensional continued fractions.

We repeatedly use the convenient method (see [8]) by using the branched continued frac-

tions Dn(A0, a1, . . . , an−1; b1, . . . , bn−1)
)

with a positive rational number A0.

Lemma 3. For some i, i ≥ 1, let Ai be a positive rational number which continued fraction is

given by

Ai =
Pi

Qi
= 1 +

d1

c1 + . . .
+

di

ci

for positive integers cj and dj, j ≥ 1, according to the similar recurrence relations (1) and (2).

Then, for positive integers ah, h 6= i, and bh, the Hosoya index of above combined caterpillar-

bond graph is equal to

Z
(
Dn(a0, . . . , ai−1, Ai, ai+1, . . . , an−1; b1, . . . , bn−1)

)
= pn−1 ,

where a positive integer ai in (3) is replaced by Ai.

In order to illustrate the general theory, consider the following radial graph in which each

radial part is represented by the same caterpillar-bond graph D3(2, 3, 3; 3, 2).

• • • • •
• •

❄❄
❄❄

❄❄
❄ •

✴✴
✴✴
✴✴ • ❄❄

❄❄ •
⑧⑧
⑧⑧ •
✎✎
✎✎
✎✎

•
⑧⑧
⑧⑧
⑧⑧
⑧ •

•
❖❖❖

❖❖❖ •
✴✴
✴✴
✴✴ • •

✎✎
✎✎
✎✎

•
♦♦♦

♦♦♦• •
❄❄

❄❄ •
❖❖❖

❖❖❖ • • •
♦♦♦

♦♦♦ •
⑧⑧
⑧⑧ •

• • ◦ • •
• •

⑧⑧⑧⑧ •
♦♦♦♦♦♦ • • •
❖❖❖❖❖❖ •

❄❄❄❄ •
•

♦♦♦♦♦♦ •
✎✎✎✎✎✎ • •

✴✴✴✴✴✴ •
❖❖❖❖❖❖

• •
⑧⑧⑧⑧⑧⑧⑧ •
✎✎✎✎✎✎ •

⑧⑧⑧⑧ •
❄❄❄❄ •

✴✴✴✴✴✴ •

❄❄❄❄❄❄❄ •
• • • • •

If there is only one radial part, by

2 +
2

3 +
3

3

=
30

12
, • • • • •

◦
⑧⑧⑧⑧⑧⑧⑧ •

❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧ •

❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧

the topological index is given by 30.

•
•

❖❖❖
❖❖❖

❖❖❖
❖ • • •

⑧⑧
⑧⑧
⑧⑧
⑧

• •
❄❄

❄❄
❄❄

❄ • •
❄❄

❄❄
❄❄

❄ • •
❄❄

❄❄
❄❄

❄ •
◦ • •

︸ ︷︷ ︸

B(1)
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If there are two radial parts, by applying Lemma 3 to

B(1) +
2

3 +
3

3

, where B(1) = 3 +
2

3 +
3

3

,

we have

3 +
2

3 +
3

3

+
2

3 +
3

3

= 3 +
6

12
+

6

12
=

576

144
.

Hence, the topological index is given by 576.

B(2)

︷ ︸︸ ︷
B(3)

︷ ︸︸ ︷

•
•

❖❖❖
❖❖❖

❖❖❖
❖ • • •

⑧⑧
⑧⑧
⑧⑧
⑧

• •
❄❄

❄❄
❄❄

❄ • •
❄❄

❄❄
❄❄

❄ • •
❄❄

❄❄
❄❄

❄ •
◦ • •

• •
⑧⑧⑧⑧⑧⑧⑧

•
♦♦♦♦♦♦♦♦♦♦ • •

❄❄❄❄❄❄❄

• •

❄❄❄❄❄❄❄

•
•

❖❖❖
❖❖❖

❖❖❖
❖ • • •

⑧⑧
⑧⑧
⑧⑧
⑧

• •
❄❄

❄❄
❄❄

❄ • •
❄❄

❄❄
❄❄

❄ • •
❄❄

❄❄
❄❄

❄ •
• ◦ • •

If there are three radial parts, by applying Lemma 3 two times to

B(2) +
2

3 +
3

3

, where B(2) = B(3) +
2

3 +
3

3

and B(3) = 4 +
2

3 +
3

3

,

we have

4 +
2

3 +
3

3

+
2

3 +
3

3

+
2

3 +
3

3

= 3 +
6

12
+

6

12
+

6

12
=

9504

1728
.

Hence, the topological index is given by 9504. In general, if there are m radial parts, the corre-

sponding continued fraction becomes

m + 1 +
2

3 +
3

3

+ · · ·+
2

3 +
3

3
︸ ︷︷ ︸

m

=
(18m + 12) · 12m−1

12m
.

This type of continued fractions is called the multidimensional continued fraction. Then, the

topological index is given by (18m + 12) · 12m−1. In the case of the first figure the Hosoya
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index is given by (18 · 8 + 12) · 127 = 5589762048 because this radial graph corresponds with

the 8-dimensional continued fraction

9 +
2

3 +
3

3

+ · · ·+
2

3 +
3

3
︸ ︷︷ ︸

8

=
(18 · 8 + 12) · 127

128
.

In general, consider a m-dimensional radial graph in which each radial part R is expressed

as follows.

a0 +
b1

A1 +

b2

A2 + · · ·+
bn

An
• • •

◦a0−1

❀❀❀❀❀❀

✄✄✄✄✄✄

b1

•
A1

b2

•
A2

• •
An

bn

Here, a0, b1, . . . , bn are positive integers, A1, . . . , An are positive rational numbers. If Ai,

i = 1, 2, . . . , n, is a positive integer, the corresponding subgraph Ai denotes Ai − 1 branches.

If Ai is a positive fraction, the corresponding subgraph Ai denotes another caterpillar-bond

graph or caterpillar-bond graph including still more caterpillar-bond graphs. Then Ai can be

expressed as a continued fraction or a branched continued fraction.

By applying Lemma 3 repeatedly, we have the following assertion.

Theorem 2. The Hosoya index of the m-fold radial graph, in which each radial part R is con-

nected only by one vertex marked with white circle, is given by the numerator of the convergent

of the multidimensional continued fraction

m(a0 − 1) + 1 +
b1

A1 +

b2

A2 + · · ·+
bn

An
+ · · ·+ b1

A1 +

b2

A2 + · · ·+
bn

An
︸ ︷︷ ︸

m

.

When m = 2, by setting b := b1 = b2 = . . . and

A1 = A2 = · · · = m′ +
b

m′ +
b

m′ +
b

. . .
+

b

. . .

+
b

m′ +
b

. . .
+

b

. . .

,

a periodic 2-dimensional continued fraction (see [1]) with period 1 can be yielded as

m′ +
b

m′ +
b

m′ +
b

m′ + . . .

+
b

m′ + . . .

+
b

m′ +
b

m′ + . . .

+
b

m′ + . . .

+
b

m′ +
b

m′ +
b

m′ + . . .

+
b

m′ + . . .

+
b

m′ +
b

m′ + . . .

+
b

m′ + . . .

,
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where m′ = 2(a0 − 1) + 1.

For example, for a0 = b = 2, the third convergent of the periodic 2-dimensional continued

fraction with period 1 is given by

3 +
2

3 +
2

3 +
2

3
+

2

3

+
2

3 +
2

3
+

2

3

+
2

3 +
2

3 +
2

3
+

2

3

+
2

3 +
2

3
+

2

3

(

=
143118495

35605089

)

,

and the corresponding graph is given by the following.

• • • • • •
• •

⑧⑧
⑧⑧
⑧⑧ •

❄❄
❄❄

❄❄ •
• •

❄❄
❄❄

❄❄
❄❄

❄❄
❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄ •

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧ •

• •
⑧⑧⑧⑧⑧⑧ • • • •

❄❄❄❄❄❄ •
•

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧ ◦ •

❄❄
❄❄

❄❄
❄❄

❄❄
❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄

• •
❄❄

❄❄
❄❄ • • • •

⑧⑧
⑧⑧
⑧⑧ •

• • • •
• •

❄❄❄❄❄❄ •
⑧⑧⑧⑧⑧⑧ •

• • • • • •

Therefore, the Hosoya index of this graph is given by 143118495.

4 Final comments

The graph U
(r,s)
n,m has a corresponding negative continued fraction. However, when this

graph attachs other graph or the number of branches of each vertex is different, we still have

no idea how to calculate its Hosoya index efficiently, in particular, by using continued fractions.

For example, no suitable continued fraction has been found for the following combined graph.

The right side is known as the molecular formula of naphthalene C10H8.

•

✎✎
✎✎
✎✎
✎✎
✎

• • •

✎✎
✎✎
✎✎
✎✎
✎

• • •

•
⑧⑧
⑧⑧
⑧⑧

⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄❄ •
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄❄

❄❄
❄❄

❄❄

• • •
•

❄❄
❄❄

❄❄

❄❄
❄❄

❄❄ •
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄❄ •
⑧⑧
⑧⑧
⑧⑧

⑧⑧
⑧⑧
⑧⑧

• •
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Коматцу Т. Асиметричний круговий граф з iндексом Хосойї та вiд’ємнi неперервнi дроби // Кар-

патськi матем. публ. — 2021. — Т.13, №3. — C. 608–618.

Вiдомо, що iндекс Хосойї гусеничного графу можна обчислити як чисельник звичайного

неперервного дробу. Недавно у статтi [MATCH Commun. Math. Comput. Chem. 2020, 84 (2),

399–428] автор увiв бiльш загальний граф — гусеничний бондграф, i показав, що його iндекс

Хосойї може бути обчислений як чисельник загального неперервного дробу.

У цiй роботi показано як iндекс Хосойї графа з нерiвномiрною кiльцевою структурою мо-

жна обчислити за допомогою вiд’ємного неперервного дробу. Крiм цього, наведено спiввiдно-

шення мiж деякими радiальними графами та багатовимiрними неперервними дробами через

iндекс Хосойї.

Ключовi слова i фрази: топологiчний iндекс, iндекс Хосойї, гусеничний бондграф, вiд’ємний

неперервний дрiб, неоднорiдна структура, циклiчний граф, багатовимiрний неперервний

дрiб, радiальний кристал.


