References

  1. Bodnar D.I., Kuchmins’ka Kh.Y. Development of the theory of branched continued fractions in 1996-2016. J. Math. Sci. (N.Y.) 2018 231, 481–494. doi:10.1007/s10958-018-3828-7
  2. Devillers J., Balaban A.T. Topological Indices and Related Descriptors in QSAR and QSPR. Boca Raton, CRC Press, 2000.
  3. Gutman I., Polansky O.E. Mathematical Concepts in Organic Chemistry. Springer, Berlin, 1986.
  4. Hosoya H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chemical Soc. Japan 1971, 44 (9), 2332–2339. doi:10.1246/bcsj.44.2332
  5. Hosoya H. Topological index and Fibonacci numbers with relation to Chemistry. Fibonacci Quart 1973, 11 (3), 255–266.
  6. Hosoya H. Mathematical meaning and importance of the topological index \(Z\). Croat. Chem. Acta (CCACAA) 2007, 80 (2), 239–249.
  7. Hosoya H. Continuant, caterpillar, and topological index \(Z\). Fastest algorithm for degrading a continued fraction. Natural Sci. Rep. Ochanomizu Univ. 2007, 58 (1), 15–28.
  8. Komatsu T. Branched continued fractions associated with Hosoya index of the tree graph. MATCH Commun. Math. Comput. Chem. 2020, 84 (2), 399–428.
  9. Liu J.-B., Zhao J., Min J., Cao J. The Hosoya index of graphs formed by a fractal graph. Fractals 2019, 27 (8), 1950135. doi:10.1142/S0218348X19501354
  10. van der Poorten A.J. Continued fraction expansions of values of the exponential function and related fun with continued fractions. Nieuw Arch. Wiskd. (4) 1996, 14 (2), 221–230.
  11. Sloane N.J.A. On-Line Encyclopedia of Integer Sequences, available at oeis.org, 2021.