References
- Bodnar D.I., Kuchmins’ka Kh.Y. Development of the theory of
branched continued fractions in 1996-2016. J. Math. Sci. (N.Y.)
2018 231, 481–494. doi:10.1007/s10958-018-3828-7
- Devillers J., Balaban A.T. Topological Indices and Related
Descriptors in QSAR and QSPR. Boca Raton, CRC Press, 2000.
- Gutman I., Polansky O.E. Mathematical Concepts in Organic Chemistry.
Springer, Berlin, 1986.
- Hosoya H. Topological index. A newly proposed quantity
characterizing the topological nature of structural isomers of saturated
hydrocarbons. Bull. Chemical Soc. Japan 1971, 44
(9), 2332–2339. doi:10.1246/bcsj.44.2332
- Hosoya H. Topological index and Fibonacci numbers with relation
to Chemistry. Fibonacci Quart 1973, 11 (3),
255–266.
- Hosoya H. Mathematical meaning and importance of the topological
index \(Z\). Croat. Chem. Acta
(CCACAA) 2007, 80 (2), 239–249.
- Hosoya H. Continuant, caterpillar, and topological index \(Z\). Fastest algorithm for degrading a
continued fraction. Natural Sci. Rep. Ochanomizu Univ. 2007,
58 (1), 15–28.
- Komatsu T. Branched continued fractions associated with Hosoya
index of the tree graph. MATCH Commun. Math. Comput. Chem. 2020,
84 (2), 399–428.
- Liu J.-B., Zhao J., Min J., Cao J. The Hosoya index of graphs
formed by a fractal graph. Fractals 2019, 27 (8),
1950135. doi:10.1142/S0218348X19501354
- van der Poorten A.J. Continued fraction expansions of values of
the exponential function and related fun with continued fractions.
Nieuw Arch. Wiskd. (4) 1996, 14 (2), 221–230.
- Sloane N.J.A. On-Line Encyclopedia of Integer Sequences, available at
oeis.org, 2021.