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Approximation of functions of several variables by
multidimensional S-fractions with independent variables

Dmytryshyn R.I., Sharyn S.V.

The paper deals with the problem of approximation of functions of several variables by branched
continued fractions. We study the correspondence between formal multiple power series and the
so-called “multidimensional S-fraction with independent variables”. As a result, the necessary and
sufficient conditions for the expansion of the formal multiple power series into the corresponding
multidimensional S-fraction with independent variables have been established. Several numerical
experiments show the efficiency, power and feasibility of using the branched continued fractions in
order to numerically approximate certain functions of several variables from their formal multiple
power series.
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Introduction

Representation of functions of several variables by means of branched continued fractions
has been an interesting matter of study during the 70 years and has given rise to other impor-
tant related topics like multivariate Padé approximants, systems of linear algebraic equations,
quadratic form, system of partial differential equations and so on (see, e.g., [1,13,14,25,30,39]).

Branched continued fractions, being a multidimensional generalization of continued frac-
tions, in comparison with multiple power series under certain conditions have wider conver-
gence domain and endowed with the property of numerical stability. This makes them an
effective tool for approximating the functions of several variables. In the works [1,4, 10,16, 19,
21-23,26,29,32-34, 38] the authors have considered different representations of the functions
of several variables by means of branched continued fractions.

Construction of the rational approximations of a function of several variables is based on
the concept of correspondence between the approximants of a branched continued fraction
and a formal multiple power series, which represents this function (see, e.g., [1,19]). In [11],
D.I. Bodnar introduced branched continued fractions, which are the analogues of multiple
power series by their structure. The correspondence properties of a branched continued frac-
tion with polynomial elements are closely connected to the degree and form of these polyno-
mials. Some of the most important types are given in [10,12,17,18,20].

Since the multidimensional S-fraction with independent variables is a special case of a
multidimensional regular C-fraction with independent variables, all theorems of [19,24] may
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be applied to multidimensional S-fractions with independent variables, but more we can say
in this paper. We study here the correspondence between formal multiple power series and
multidimensional S-fraction with independent variables. And we give some examples of rep-
resenting the functions of several variables and the mathematical constants by these branched
continued fractions.

1 Multidimensional S-fractions with independent variables
1.1 Definitions and preliminaries

Let N be a fixed natural number. The following notations will be used: Z>, denotes the
non-negative integers, C denotes the complex numbers, ZY; = Z->g X Z>g X ... X Zx de-
notes the Cartesian product of N copies of Z~g, CN = C x C x ... x C denotes the Cartesian
product of N copies of C, k = (ky,k, ..., ky) denotes an element of ZQIO, z = (z1,22,...,2N)
is an element of CN, and for k € Z >0 and zeCN N

k':kl'kz'kN', |k|:k1+k2++k1\], k_ZI—Il k2 ];\1]\]

Next, leteg = (0,0,...,0), ex = (1,02, - - -, k,n) be a multiindex, where 1 < k < N, J; ; is
the Kronecker delta. Let us introduce the following sets of multiindices for k > 1

Ik = {Z(k) : Z(k) = (il,iz,...,ik), 1 S ip S ip—lr 1 S p S k, io = N},
E = {eitk) * Cik) = Ciriny.iy = iy T + oo ey, i(k) € Iy}

A branched continued fraction of the form

N g, zi 0 q, 7z 2 q, . 7
i(1)“1 €i(2)~12 €i(3)~13
_— — —_— ..., 1

=1 =1 is=1

where a,, > 0 fore;;) € & and k > 1, is called a multidimensional S-fraction with indepen-
dent variables.
Let QE("k)) (z) denotes the “tails” of (1), that is Qf?n)) (z)=1,i(n) € Z,,n > 1,and

e+l g, 7z h-1qg, z
(n) . k+1) Zig €i(k+2)k+2 €i(n)~In
Qi) (2 1+2 N Y, — 11— +...+271 ,
i 1 ipy0o=1 in=1
k+1— k+2 n

where i(k) € Iy, 1 <k < n—1,n > 2.If f,(z) denotes the nth approximant of multidimen-
sional S-fraction with independent variables (1), then

N
fu(z) = Z :(,U
=1 Qi (2)

ag ZZl

for n>1.

If QE("k))(z) # 0foralli(k) € Z,1 < k < n,n > 1,and all z in the certain set D, D C CV,
then for each n > 1 and m > n the following formula is valid (see [5])

in ]__L, 1 Ele
fn(2) = fa(z) = TS @)
1122112211 Zn§1nn+1Q ( )T Qf(r))(z)
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A series of the form

L(z) =), cxzX,

where ¢y € C for |k| > 0, is called a formal multiple power series at z = 0. A set of formal
multiple power series at z = 0 denoted by L.

Let R(z) be a function holomorphic in a neighbourhood of the origin (z = 0). Let the
mapping A : R(z) — A(R) associate with R(z) its Taylor expansion in a neighbourhood of
the origin. A sequence {R,(z)} of functions holomorphic at the origin is said to correspond at
z = 0 to a formal multiple power series L(z) if

’}grc}o)\(L - A(Rn)) = oo,
where A is the function defined as follows: A : L — Z>o U {oo}; if L(z) = 0 then A(L) = oo;
if L(z) # 0 then A(L) = m, where m is the smallest degree of homogeneous terms for which
cx # 0, thatis m = |k]|.

If {R,(z)} corresponds at z = 0 to a formal multiple power series L(z), then the order of
correspondence of R, (z) is defined to be

Vva = AL — A(Ry)).

By the definition of A, the series L(z) and A(R,) agree for all homogeneous terms up to and
including degree (v, —1).

A branched continued fraction of the form (1) is said to correspond at z = 0 to a formal
multiple power series L(z) if its sequence of approximants {f,(z)} corresponds to L(z) at
z=0.

1.2 Correspondence

Based on the idea of proving Theorem 1 from [23], we prove the following assertion.

Theorem 1. Every multidimensional S-fraction with independent variables (1) with sequences
of approximants { f,(z)} corresponds at the z = 0 to a uniquely determined formal multiple
power series

Liz) = Y (-D*a(—2)*= Y 1n(-2)%, (3)

K[>1 k[>1

where ¢ € R for |k| > 1. The order of correspondence of the nth approximant f,(z) is
vp = n + 1, so that the Taylor expansion of f,(z) agrees with L(z) up to and including the all
homogeneous terms of degree n, that is,

fn(z) = Z o zX + Z ocl((n)zk, n>1, 4)
k=1 K|>n+1

where rxl((") €ERfor|lk| >n+1andn > 1.

Proof. Since Qf?k))(o) =1foralli(k) € Zy,1 <k <n,n > 1, then foreachi(k) € Z;, 1 < k < n,

n > 1, the tails 1/ QE("k)) (z) has a formal expansion at z = 0 into formal multiple power series.
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Thus, for each n > 1 the nth approximant f, (z) of (1) is a holomorphic function at the origin.
So, let for each nn > 1 the multiple power series

Af) = Y alzk,

k|>1

(n)

where a; ’ € R, |k| > 1, n > 1, be a formal expansion of nth approximant f,(z) at z = 0.

Now, since QE("k))(O) # O0foralli(k) € Zy,1 <k <n,n >1,thenforeachn > land m > n
the formula (2) is valid at the origin. It follows from (2) that forany n > 1and m > natz =0
we have

Alfw) = Af) = 1 (@ —al™)zk,

|k|>n+1

Hence foreachn > land m > n

MA(fm) = A(fn)) =n+1

tends monotonically to +-co as n — co.
Thus, foreachn > 1, m > nand 1 < |k| < n the equality al((m) = al((n) is valid. Multidi-
mensional S-fraction with independent variables (1) corresponds at z = 0 to formal multiple

(J1e])

power series (3) with ¢; = &~ for all [k| > 1, since for n > 1

Lz) —Af) = Y (@) —a)zk
|k|>n+1
It follows that
v = ML(2) = A(f) = n+1,

that is, the order of correspondence of the nth approximant f,(z) is (n + 1), and the formal
multiple power series (4) is the Taylor expansion of f,(z) atz = 0.

It remains to prove that this L(z) is unique. Assume that the multidimensional S-fraction
with independent variables (1) also corresponds to

L*(z) = Z [Sﬁknzk.

[k|>1

Sinceforanyn > latz =0

L(z) ~A(fa) = Y (B —al)zX,

|k|>n+1

then ﬁﬂkn = al((‘k‘) for all k such that1 < |k| < nand n > 1. That is, the L(z) is unique. O

The following theorem deals with the convergence of the corresponding multidimensional
S-fraction with independent variables to a formal multiple power series.

Theorem 2. Let the multidimensional S-fraction with independent variables (1) converges uni-
formly on every compact subset of the domain D (which contains the origin) to the function
f(z), which is holomorphic in this domain. Then the sum of the formal multiple power series
(3), which corresponds to the multidimensional S-fraction with independent variables (1), has
the same value as this fraction in the domain D.
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Proof. We prove this by the scheme proposed in [23, Theorem 2] (see also [38, Theorem 4.1]).
Let {fu(z)} be a sequence of approximants of (1). Since { f,(z) } converges uniformly on every
compact subset of the domain D (which contains the origin) to the function f(z), which is
holomorphic in this domain, according to Weierstrass theorem (see [37, p. 288]) for arbitrary
|k| > 0, we have
o fu(z) oM f(z)
dzk ~ ozk

on each compact subset of the domain D.

And now, according to Theorem 1, the expansion of each approximant f,(z), n > 1, into
formal multiple power series and series (3) agree for all homogeneous terms up to and includ-
ing degree n. Then for arbitrary k such that |k| > 1 we obtain

lim (a|k|fﬂ (0)> = 8|k|f(0) = kl!cy.

as n — o

n—oo \ 9zk -~ ozZk
Hence,
> 1 (olklf K v K
f(z)—z—,<azk(0 Ichz
[k|>1 [k|>1
forallz € D. O

Remark. If in Theorem 2 the convergence domain of (1) is wider than of the multiple power
series (3), then the multidimensional S-fraction with independent variables (1) is an analytic
continuation of f(z) in the domain D.

1.3 Algorithm

Let N > 2. We shall construct the algorithm for the expansion of the given formal mul-
tiple power series (3) into the corresponding multidimensional S-fraction with independent
variables (1) in much the same way as the algorithm in [19].

The following theorem is proved in [7, pp. 197-199].

Theorem 3. An S-fraction
az Az a3z
T +1+ 1+
corresponds at z = 0 to the given formal power series

Lz) = Y m(—2),
k=1

where v, € R fork > 1, if and only if the Hankel determinants associated with L(z) satisfy

(—1)"HY >0, (-1)"HP >0 forall n>1.
For more details on theory of correspondence between the formal power series and the
continued fraction see [35, pp. 148-160].
The process of constructing of multidimensional S-fraction with independent variables (1)
will be shown step by step.
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Step 1. Let Ve, # 0 for 2 < i; < N. Then L(z) can be written

L(z) = Pe, (z1) Z Vei, Ziy el1

where
,)/k+€l'
1,k
Pa(et) = £ (-)", Lo (@) = Tk
K[>0 Teiy
kj=0, i1 +1<j<N

Step 2. Let (—1)"H,,(n) > 0 and (—1)"Hp, (1) > 0 for n > 1, where

Tley Yi+1)ey -+ V(+n—1)e
th (1’1) — ,Y(H-l)el ,Y(l+2)81 cee ,Y(Z-H’Z)El , [ = 1, 2’ (5)
Y(l+n—1)e; VY(+n)ey -+ V(I+2n—2)e;

Here H,,(n) and Hy, (1) are the Hankel determinants (of dimension ) associated with the
formal power series P,(z1). Then according to Theorem 3 we have

> (e 21 020,21  A3¢,21
B R

with a,,, > 0 for all n > 1. Here the symbol ~ means the correspondence between P, (z1)
and F,,(z1) (at the origin). The coefficients a,., > 0 for n > 1 can be defined by the appropriate
formulae [19, formulae (2.9a) and (2.9b)]. Thus we can write

L(z) ~ Fey(z1) Z Vei, %y 311

Step 3. Let (—1)"H,, (n) > 0 and (—1)"H2@il(n) > 0for2 <i; < Nandn > 1, where
He, (n), Hye,, (n) defined by analogy to (5). Then according to Theorem 3 we have for each
2<i <N

beilzil bez:‘lzil b33i1211
D T A
< N

with bmi1 > 0 for all n > 1. The coefficients bnei1 for2 < iy can be defined by the
appropriate formulae [19, formulae (2.9a) and (2.9b)]. Since —Ye;, = bEilr 2 <i; < N, we put
ae, = bei1,2 <i; < N. Thus

|

N

i1=2
Step 4. For each 2 < i; < N, let
el
Refl (z) = Z TN (-2 )k (6)
k| >0
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be reciprocal to formal multiple power series L, (z). It is known that the coefficients 'y;(il,
k]- =0,i1+1<j<N, |k| >1,of (6) are uniquely determined by a recurrent formula

K|

e; ei,  Yr+e;
’)/kl = - ’)/klr 1/ (7)
Ie|=1 Teiy
where 'yol = 1, moreover, 'Yk = 0, if there exists an index j such that 1 < j < N and that
k < 0. Thus we can write
aellzl1

L(z) ~ Foy(z1) + Z
()
The next construction of the mult1d1mens1onal S-fraction with independent variables (1)
will be carried out using the ideas laid out in Steps 1-4.
We apply Step 1 to each formal multiple power series R, (z), where 2 < i; < N. By

condition ’)/2; #0for2 <ip <ijand2 <i; < N we write foreach2 <i; <N

ez

Rei]( ) — 1 +P311 Zl Z ’)/el leLE ( )

12 =2
where ,
e
. +€,2 k
Pe’l Zl Z 71’[61 7 LEi(2> (Z) - Z Ell (_Z> *
|k|20 ,Yelz
k=0, ir+1<j<N
Thus

agil le

N
L(z) ~ F, —_— L
(z) e(21) + ilZ_:Z 1+ Pffil (z1) — Z 'Ye Zzz e

Now apply Step 2 to each formal power series P, (z1), where 2 < i; < N. Let Hzl (n) >0
and H;;ll(n) >0for2 <i; < Nandn > 1, where

ell e,'l eil

elylel ,)/gl+1)€1 T ,Y(le{rnfl)el
, i i i
Hitn) = | Tea T0a o Tema | =12, )
..e.l ........... AR L
,Y(lJrn 1)ep ly(llJrn) ly(llJanfZ)el

Then according to Theorem 3 we have for each2 <i; <N

Z C Z 611+€121 a611+2€1Z1 a611+3€1Z1
A R T

= Feil (Zl)

with Ae;, +ney > 0 for all n > 1. The coefficients Ae; +ney for n > 1 can be defined by the appro-
priate formulae [19, formulae (2.10a) and (2.10b)]. Thus we can write

N

i
L ~
( Z 1+ Fell (Zl) Z ’)/612211 1(2)
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Next, we apply Step 3. Let (—1)”H221(n) > 0 and (—1)”H§2 (n) >0for2 <ip <ij—1,
b
2 <i; < Nandn > 1, where H;lzl (n), H;lel (n) defined by analogy to (8). Then according to
]
Theorem 3 we have foreach2 <i, <i;—land2<i{; <N
Z ,Y beil +€i2Zi2 b€jl+2€izzi2 b€i1+3€jzzi2 o
i (= 1+ 1+ 1 4+

with be,.1+nef2 > 0 for all n > 1. The coefficients b3i1+n3i2 for 2 < i; < N can be defined by
the appropriate formulae [19, formulae (2.10a) and (2.10b)]. Since for 2 < i, < i3 —1 and
2<ip <N

,),ell - ell - —p ,)/ell - ell . CZelvl .
e, — Ce;,, = — Yeinys e;, — Ce;, = — U2e¢;
i i Ceil i(2) i i Ceil i

then we put feyp) = be,.@), (ge; = bZEil forall2 <ip <i;y —1land2 <i; < N.Thus

N e, Zi
L( ad FEO Zl Z 1 +Fle (1 Z ag ZZZLE )

At last, applying Step 4 to each formal multiple power series L, (z), where 2 < ip < i3
and 2 < i; < N, we can write
i i Ge;p)Ziy
L(z) ~ Foy(z1) + ,
( ) e 1 21+F€ (Zl)+ Re(z)( )

where R,,, (z) is reciprocal to formal multiple power series L, , (z).

Further construction of the multidimensional S-fraction w1th independent variables (1) is
the sequential application of Steps 14 to all formal power series that are in the denominators
of the ending partial quotients of the finite branches of the branched continued fraction with
independent variables. As a result, computing the coefficients

T, k| >1,k=0i+1<j<N,2<i <N,
by the recurrent formula (7) and the coefficients
1B, K| >1, k=0, +1<j<N, k>2,2<i,<i, ;,1<p<Kk

by the recurrent formula

e.
K i(k—1)
Cifk) _ e Triey
kK — Tk—r €i(k—1)’
|1“:1 ,)/Ei

k

where 'ygi(k) = 1, moreover, 'yf(i(k) = 0, if there exists an index j such that 1 < j < N and that
k]- < 0, provided that for1 <i; < Nandn > 1

(~1)"He, (1) >0, (~1)"Hz, (1) >0, 9)
where
Ve, T+1)e;, - V(+n-T)e;
lell (n) _ ,)/(l+1)€j1 ,Y(Z-FZ)Eil cee ,)/(1—0-?1)6,‘1 , ] — 1’ 2,

')’(l—b—n—l)eil ')’(l—o—n)e,'l ')’(l+2n—2)e,'1
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andforlgikﬂgik—l,ZgiPgip_l,lgpgk,kzlandnzl

€ e;
(=1)"He, " (n) >0, (=1)"Hy, (n) >0, (10)
+1 Te+1
where
Ci(k) Ci(k) Ci(k)
lei, (I+1)e; ’Y(l—b—n—l)eikH
€i(k) Ci(k) €i(k)
H (n)=| 0D, T02e, (e, |, 1=1,2,
EZkJrl ---------------------------------------------
Ci(k) Ci(k) €i(k)
(l+n71)eik+1 ,)/(l+n)elvk+1 ,Y(l+2n 2)eik+1

for formal multiple power series (3) we obtain multidimensional S-fraction with independent
variables (1), where the a,,, for all ¢;4) € & and k > 1 can be defined by the appropriate
formulae [19, formulae (2.9a), (2.9b), (2.10a), and (2.10b)].

Finally, it follows immediately from [19, Theorem 2.1] that the above-mentioned multidi-
mensional S-fraction with independent variables (1) corresponds to the formal multiple power
series (3) atz = 0.

Hence, we have the following result.

Theorem 4. A multidimensional S-fraction with independent variables (1) corresponds at
z = 0 to the given formal multiple power series (3) if and only if the inequalities (9) for all
1 <i; < N, n > 1, and the inequalities (10) forall1 < i} < i —1,2 < iy < ip1,1<p< k,
k>1,n > 1, are satisfied.

1.4 Convergence

Convergence criteria have been given in [2, 3,5, 6,9, 12, 20] for the multidimensional
S-fractions with independent variables. However, the problem of the widest convergence do-
mains and estimates of convergence rate for the above-mentioned branched continued frac-
tions remains open.

2 Some branched continued fraction expansions
2.1 Functions of several variables

For some functions of several variables we give their multidimensional S-fractions with in-
dependent variables representations, each with their domain of convergence in the complex
space. The speed of convergence of some given multidimensional S-fractions with indepen-
dent variables are illustrated with some plots and typical evaluations.

Example 1. The function of two variables

Z2

f(z1,22) = \/zp arctan 172

(11)

has a formal double power series given by

) o 1\k—1 00 k
L(z1,22) (Z 1/2 )l> I{Z% (Zle:(—Zl)l> y (12)
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where (-)y is the Pochhammer symbol defined for any complex number « and non-negative
integers k by (a)g = 1 and (a)y = a(a+1)... (e + k —1). Applying the above-mentioned
algorithm to (12) yields the two-dimensional S-fraction with independent variables

Z3
z1/2 z2/3 ’ 13
1+ +
14 z1/4 - z1/2 222,/(3-5)
14 z1/4 14 z1/4 14 z1/2  3%2/(5-7)

1+ 1+ 1+ 1+

where |arg(z1 +1/2)| < 7, |arg(zz)| < 7.

Plots of the values of the nth approximants of the two-dimensional S-fraction with inde-
pendent variables (13) are shown in Figure 1. Here we can see the so-called “fork property”
for a branched continued fraction with positive elements (see [1, Remark 4] or [8, p. 29]). That
is, the plots of the values of even (odd) approximations of (13) approaches from below (above)
to the plot of the function of two variables (11). Plots of the absolute error of the nth approx-

0 1 R
—
0 10 o a0
30
Z2

(a) @ -2nd, W —(11), ™ -3rd (b) M — 4th, M — (11), @ - 5th

Figure 1. The plots of values of the nth approximants of (13)

imants of (13) are shown in Figure 2. In these plots, we can see that the rate of convergence
of the two-dimensional S-fraction with independent variables (13), despite its structure, in the
direction of growth of the variable z; is better than z;. This is explained by the fact that in (13)
branches with variable z; are periodic continued fractions, which are known to have a slow
rate of convergence compared to others (see [35, Chapter 8]).

Finally, the numerical illustration of (12) and (13) is given in the Table 1. Here we compare
the relative errors of the approximation of function of two variables (11) by the partial sums of
the formal double power series and the approximants of the corresponding two-dimensional
S-fraction with independent variables. As a results, the nth approximant of (13) is eventually
a better approximation to (11) than the nth partial sum of (12) is.
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\\] — 0.0040
1 025 1 - 0.0035
| B ~ 0.0030
1015 ] [ 0.0025
0.10 0.0020
- 8005 \] | 0.0015
. 0.0010
0.0005
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Z4 Z4
(a) 10th (b) 20th

Figure 2. The plots of absolute error of the nth approximants of (13)

(z1,22) (11) (12) (13)

(—0.9,0.9) 1.184948863 4.22581 x 1072 1.26921 x 102
(—0.1,0.8) 0.676159596 1.05461 x 1072 1.11297 x 10~*
( ) 0.545712469 4.26445 x 1072 6.72182 x 107>
( ) 0.58389532 52986 x 1071  4.16608 x 10~*
(0.9,0.1)  0.071313601 1.35009 x 10~! 2.23898 x 10~*
( )
(
(

0.088871039 3.3224 x 10~* 7.83672 x 107
—0.1,0.1) 0.101746459 2.38433 x 107 8.88188 x 107
—0.8,0.2) 0.351240737 6.24974 x 1072 7.80438 x 103

Table 1. Relative error of 5th partial sum and 5th approximant

Example 2. For

f(z1,22) \/1+zlln( 152 ) (14)

(o) (o) k—1 (o) k
L(z1,22) (Z 1/2 )l> ) % (Zz Z(_Zl)l> (15)
k=1 1=0

and find thatay; = 1/2,ay; = 1/4,a01 = 1,90 = 1/(4l —2), and a1 = 1/(41 +2) for
k > 2 andl > 1. The two-dimensional S-fraction with independent variables representation of
the function of two variables (14) is

we have

ap,122
‘ 16
1+ a1,121 ap,222 4 (16)
anr1Z a1 72 a0 322
14 2,121 1 1,241 0,3

1+ 1+ 1+

where |arg(zy + I /4)| < 7w, Iy > 0,1 + 1, <2 fork =1,2.

Plots of the values and absolute error of the nth approximants of the two-dimensional
S-fraction with independent variables (16) are shown in Figures 3 and 4, respectively. A nu-
merical illustration of (15) and (16) is given in the Table 2. Here we have results like to the
results in Example 1.

Note that the branched continued fraction expansion of the function of several variables
given in [19, Example 3.2] is also multidimensional S-fraction with independent variables.
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(a) M —3rd, W - (14), ¥ — 4th

(b) W — 5th, W — (14),

Figure 3. The plots of values of the nth approximants of (16)
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Figure 4. The plots of absolute error of the nth approximants of (16)

(z1,22) (14)

(15)

(16)

(-0.9,0.9) 0.72814134
(-01,1)  0.708869823
(0.,01)  0.091258302
(0.2,-0.9) -1.518609386
(11,-0.8) -0.694967418
(2,01)  0.056793639
(-015) 1783821412
(10,10)  2.144619685
(1,40)  4.305604922
(50,2) 0.274704191

455047 x 102
2.39618 x 102
1.15296 x 108
3.86895 x 1073
3.35801 x 102
1.00592 x 109
1.0 x 10°
1.0 x 10°
1.0 x 10°
1.0 x 10°

3.53063 x 1073
493611 x 10~8
3.04143 x 1016
1.8452 x 107°
5.33114 x 101
3.98912 x 107°
3.20199 x 10~4
5.26825 x 1073
1.9013 x 102
1.27757 x 101

Table 2. Relative error of 10th partial sum and 10th approximants
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2.2 Mathematical constants

The calculation of mathematical constants has been a topic of investigation for mathemati-
cians throughout the centuries [15, Chapter 10]. Some modern applied problems of approx-
imation of numbers by continued fraction expansions are considered in [27,28,31,36]. Here
we show how branched continued fractions can be relevant in connection with some of the
important mathematical constants.

Example 3. An important irrational number /2 is the diagonal of a unit square, sometimes
called Pythagoras’ constant. The numerical value of this algebraic number is

V2 = 1.414213562373 . ...
The constant \/2 can be obtained from [19, Example 3.4]

1/6 1/6
ﬁ—1+1+ 712 +1+ /6 1/12
NSYEY! PV RN VI N Vi
1+ 1+ 1+ 1+
) 1/6
L 1/6 176 L /12
/12 176 1/12 176 1/6 1/12
yp A2 Ve a2 16 16 1/

1+ 1+ 1+ 1+ 1+ 1+

The approximants f4 and f5 yield

1101279537351 NG 2566545667666280407

LAMIS098 < fu = Zrezerriozar = V2 < 1814812946556935598

= f5 < 1.414220497,

where
|fs — f5] < 8.95447 x 107°.

Example 4. The one of the most important mathematical constant 7t is defined as the area
enclosed by the unit circle. The numerical value of this algebraic number is

T = 3.141592653589793238 . . ..

The expression

8
T2 = - 1/2 N 2/3
14 1/4 1/2 22.2/(3-5)
Vs YTt T 2267
14+ —— 1+ — 1+ +

I+ 1+, 1+, 1+

follows immediately from the Example 1. The value 7tv/2 is enclosed by

199851135120 V2 750454176962984

HALLTBA2L < fo = 4009573573 < V2 = 168898725446623

= f7 < 4.44321989%4

with
|fo — fr| < 2.041473 x 1073,
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Thus, several numerical experiments show the efficiency, power and feasibility of using the

branched continued fractions in order to numerically approximate certain functions of several
variables from their formal multiple power series.
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VY CTaTTi pO3rAsIAAETHCS 3aAava HaOAVDKeHHS (PYHKIII 6araTboX 3MIiHHVX MAASICTYMI AQHIIIOTO-
BUMI ApObaMy, 30KpeMa, BMBUAETHCS BIATIOBIAHICTD MiX (POPMAABHMM KPaTHUM CTETIeHEBVM Psi-
AOM i Tax 3BaHMM “baraToBuMipHMM S-Apo6OM 3 HepiBHO3HaUHMMY 3MiHHMMI . BcTaHOBAEHO HEO6-
XiAHI Ta AOCTaTHi YMOBM AASI PO3BVMHEHHSI (POPMAaABHOTO KPaTHOTO CTEIIEHEBOTO PSIAY Y BiAIIOBiA-
HUIT 6araToBMMipHMI S-Apib 3 HepiBHO3HAUHMMM 3MIHHMMM i IPMKAaA QMU TTOKa3aHO epeKTUBHICTD
Ta AOLIABHICTh BUKOPUCTAHHS FAASICTVIX AQHITIOTOBMX APODGIB AASI UMCEABHOTO HaOAVDKEHHST A€SIKMX
dyHKIIi baraThoX 3MIHHMX Ha BiAMiHY Bia Ix pOpMaAbHVIX KPaTHIX CTETIEHEBIX PSIAIB.

Kontouosi cro6a i ppasu: TIAASICTVIE AQHIIOTOBMIA APi6, HellepepBHIMI Apib, KpaTHMI CTeITeHeBIif
P2, aATOPUTM, BiATIOBiAHICTB.



