References
- Barbosa E., Ribeiro E. On conformal solutions of the Yamabe
flow. Arch. Math.(Basel) 2013, 101 (1), 79–89.
doi:10.1007/s00013-013-0533-0
- Blair D.E., Oubiña J.A. Conformal and related changes of metric
on the product of two almost contact metric manifolds. Publ. Mat.
1990, 34 (1), 199–207. doi:10.5565/PUBLMAT_34190_15
- Chen B.Y., Deshmukh S. Yamabe and quasi-Yamabe solitons on
Euclidean submanifolds. Mediterr. J. Math. 2018,
15, article number 194.
doi:10.1007/s00009-018-1237-2
- Dutta T., Basu N., Bhattacharyya A. Almost conformal Ricci
solitons on 3-dimensional trans-Sasakian manifold. Hacet. J. Math.
Stat. 2016, 45 (5), 1379–1392.
- Eisenhart L.P. Riemannian Geometry. Princeton University Press,
Princeton, 1949.
- Gray A., Hervella L. The sixteen classes of almost Hermitian
manifolds and their Linear invariants. Ann. Mat. Pura Appl. 1980,
123 (4), 35–58. doi:10.1007/BF01796539
- Hamilton R. The Ricci flow on surfaces. Contemp. Math. 1988,
71, 237–261.
- Ishii Y. On conharmonic transformations. Tensor (N.S.) 1957,
7, 73–80.
- Oubina J.A. New Class of almost Contact metric structures.
Publ. Math. Debrecen 1985, 32 (4), 187–193.
- Özgür C. \(\phi\)-conformally
flat Lorentzian para-Sasakian manifolds. Radovi Mathematički 2003,
12, 99–106.
- Pokhariyal G.P., Mishra R.S. Curvature tensors’ and their
relativistic significance. Yokohama Math. J. 1970,
18, 105–108.
- Roy S., Bhattacharyya A. Conformal Ricci solitons on
3-dimensional trans-Sasakian manifold. Jordan J. Math. Stat. 2020,
13 (1), 89–109.
- Roy S., Dey S., Bhattacharyya A. Yamabe Solitons on \((LCS)_{n}\)-manifolds. J. Dyn. Syst.
Geom. Theor. 2020, 18 (2), 261–279.
doi:10.1080/1726037X.2020.1868100
- Sharma R. A 3-dimensional Sasakian metric as a Yamabe
Soliton. Int. J. Geom. Methods Mod. Phys. 2012, 9
(4), 1220003. doi:10.1142/S0219887812200034
- Yano K., Kon M. Structures on manifolds. In: Series in Pure
Mathematics, 3. World Scientific Publ., Singapore,
1984. doi:10.1142/0067
- Yano K., Sawaki S. Riemannian manifolds admitting a conformal
transformation group. J. Differential Geom. 1968,
2 (2), 161–184. doi:10.4310/jdg/1214428253