References

  1. Barbosa E., Ribeiro E. On conformal solutions of the Yamabe flow. Arch. Math.(Basel) 2013, 101 (1), 79–89. doi:10.1007/s00013-013-0533-0
  2. Blair D.E., Oubiña J.A. Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 1990, 34 (1), 199–207. doi:10.5565/PUBLMAT_34190_15
  3. Chen B.Y., Deshmukh S. Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediterr. J. Math. 2018, 15, article number 194. doi:10.1007/s00009-018-1237-2
  4. Dutta T., Basu N., Bhattacharyya A. Almost conformal Ricci solitons on 3-dimensional trans-Sasakian manifold. Hacet. J. Math. Stat. 2016, 45 (5), 1379–1392.
  5. Eisenhart L.P. Riemannian Geometry. Princeton University Press, Princeton, 1949.
  6. Gray A., Hervella L. The sixteen classes of almost Hermitian manifolds and their Linear invariants. Ann. Mat. Pura Appl. 1980, 123 (4), 35–58. doi:10.1007/BF01796539
  7. Hamilton R. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261.
  8. Ishii Y. On conharmonic transformations. Tensor (N.S.) 1957, 7, 73–80.
  9. Oubina J.A. New Class of almost Contact metric structures. Publ. Math. Debrecen 1985, 32 (4), 187–193.
  10. Özgür C. \(\phi\)-conformally flat Lorentzian para-Sasakian manifolds. Radovi Mathematički 2003, 12, 99–106.
  11. Pokhariyal G.P., Mishra R.S. Curvature tensors’ and their relativistic significance. Yokohama Math. J. 1970, 18, 105–108.
  12. Roy S., Bhattacharyya A. Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold. Jordan J. Math. Stat. 2020, 13 (1), 89–109.
  13. Roy S., Dey S., Bhattacharyya A. Yamabe Solitons on \((LCS)_{n}\)-manifolds. J. Dyn. Syst. Geom. Theor. 2020, 18 (2), 261–279. doi:10.1080/1726037X.2020.1868100
  14. Sharma R. A 3-dimensional Sasakian metric as a Yamabe Soliton. Int. J. Geom. Methods Mod. Phys. 2012, 9 (4), 1220003. doi:10.1142/S0219887812200034
  15. Yano K., Kon M. Structures on manifolds. In: Series in Pure Mathematics, 3. World Scientific Publ., Singapore, 1984. doi:10.1142/0067
  16. Yano K., Sawaki S. Riemannian manifolds admitting a conformal transformation group. J. Differential Geom. 1968, 2 (2), 161–184. doi:10.4310/jdg/1214428253