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Asymptotic properties of Urysohn type generalized sampling
operators
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The concern of this study is to continue the investigation of convergence properties of Urysohn
type generalized sampling operators, which are defined by the author in [Dolomites Res. Notes
Approx. 2021, 14 (2), 58-67]. In details, the paper centers around to investigation of the asymptotic
properties together with some Voronovskaya-type theorems for the linear and nonlinear counter-
part of Urysohn type generalized sampling operators.

Key words and phrases: generalized sampling operator, linear and nonlinear Urysohn type gener-
alized sampling operator, asymptotic expansion, Voronovskaya-type theorem.

Bolu Abant Izzet Baysal University, Bolu, Turkey
E-mail: karsli_h@ibu.edu.tr

Introduction

The theory of the generalized sampling series, introduced and developed at RWTH Aachen
by Paul Leo Butzer, is a powerful tool for investigating and proving the approximation prob-
lem on R. Indeed, from mathematical point of view, generalized sampling operators of func-
tions f defined on the real axis, which are not necessarily band-limited, were extensively and
systematicaly studied by P.L. Butzer and his collaborators in RWTH Aachen since 1977 (see,
e.g., [11-15,32]).

Let f be a bounded function defined on R, then the generalized sampling series (S, f) is
given by

(Snf)(t Z f( ) nt—k), teR, neN, (1)

where ¢ : R — R is the kernel function satisfying

gLl Y ¢u—k)=1 forevery ueR, (2)
k=—o00
and
= sup Z k)| < oo, (3)
ME]Rk_—oo

where the convergence of the series (3) is uniform on each compact subintervals of IR.
These series allow us to reconstruct a given signal (function) f defined on R by its rational
sampling values, which are of the form f(k/n), k € Z,n € IN.
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Especially in the last decade, these operators and some of their modifications have been of
great importance in the development of mathematical models for signal and image recovering,
as studied by research group (RITA Network) from Perugia led by Carlo Bardaro and Gianluca
Vinti (see, e.g., [1-10,16-19, 31]).

In [28], the author introduced Urysohn type generalized sampling operators by replacing
the rational sampling values of the function f with its Urysohn type operator values. By these
new operators the convergence problems generalized and extended to the functionals and op-
erators. Once a detailed model of the aforementioned operators has been constructed in [28],
the next step is to investigate their approximation and asymptotic properties. As a continuation
of the study of the author [28], the present work highlights the importance of Urysohn type
generalized sampling operators and in modelling the asymptotic approximation properties of
functions f defined on the whole real line.

In particular, the goal of this study is to obtain asymptotic expansion and some Voronov-
skaya type problems for newly defined Urysohn type generalized sampling operators. We
also define and investigate some asymptotic properties of its nonlinear counterpart, called
nonlinear Urysohn type generalized sampling operators.

1 Preliminaries

In this section, we shall introduce some notation and background material used throughout
this work.

As in the papers [6, 18, 28], throughout this work, we assume that the first two central
moments of the generalized sampling operators (1) satisfy

mig) = ¥ plu— Kk =0 @
ma(g) = ki ol — ) — k)2 = C

for every u € R and for a given constant C € RR.
We also assume that the discrete absolute moment of order B are finite, i.e.

Mg(g) :==sup Y [o(u—k)|ju—klP < oo (5)

uclR k=—o00

for every u € R and for some 8 > 0. The formula for Mg(¢) in case B = 0 is exactly A,.

To define an Urysohn type operator and obtain some positive answers to the approximation
problems, H. Karsli [28] considered the following Urysohn integral operators discussed by
P. Urysohn in [33]:

F(t,x(-)) = /Olf(t,s,x(s))ds, tel0,1, 0<ux() <1, (6)

with unknown kernel f, whose properties and values depend on the function x(-) (see, e.g.,
[20,23-28,30]).
For a constant function x(-) = a, we set Fa(t) = F(a).
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In view of the relations between Dirac and Heaviside unit step functions, we assume that
the following continuous interpolation condition holds

Fx(t) := F(t,x;(-,s / f(t,z,xi(z,s) tel0,1], (7)

where —oco < x;(z,5) < oo defined as x;(z,s) = (i/n)H(z —s),s € [0,1], and i € Z.
Obviously

oL, §;<"S” _ O W’Qf“ =) _ £(t,5,0) - f (&, %) ®)

holds true, where x;(-,s) = (i/n)H(- —s),s € [0,1], and i € Z.

In [28], H. Karsli constructed a new type of generalized sampling operator by means of the
Urysohn interpolation conditions given in (7) with unknown function f : [0,1]> x R — R,
which he plan to use for the solution of the convergence problem to the Urysohn operator.

Now we are able to recall the definition of the Urysohn type generalized sampling operators
constructed by the author.

Definition 1 ([28]). Let F be the Urysohn integral operator of f. Then the Urysohn type gener-
alized sampling operator is defined as

WS, F)x(t) = Us,F)tr9) = [ | 8 5t ) oalete)|ds O

where @y ,(x(s)) = @(nx(s) — k) is an arbitrary kernel function satisfying (2) and (3).

Here, Dom (USF) = (\,en Dom (US,F), where Dom (US,F) is the set of all bounded
functions f : [0,1]2 x R — R for which the operator is well defined.

Remark 1. By (6) and (8), (US,F) can be written as

ws,pa) = F) - [ | § FEEIHEZD g o)) as

k=—c0

2 Asymptotic expansion and Voronovskaya-type theorems

This section deals with an asymptotic formula and some Voronovskaya type theorems for
the Urysohn type generalized sampling operators.

Theorem 1. Let F be the Urysohn integral operator of the bounded function f: [0,1]> x R — R.
Moreover, for a certain r € IN, we also assume that 0" f(t,s, x(s))/0x" exists at a fixed point
x(s). Then the following asymptotic formula

(US,F)x( +Zwaa;l (t,s,x(s)) +o(n"") as n— oo

i'nt

holds, where m; is the ith order moment.
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Proof. Since 9" f(t,s,x(s))/0x" exists at a point x(s), then there exists a bounded function h
such that lins h(t,s,y) = 0. By the local Taylor’s formula we have
y—

f(t, s,%) = Xr: M;: (t,s,x(s)) + h(t, S,S — x(s)) <E — x(s))r. (10)

[471
= in

In view of (9) and (10), we can write
siF) = [[| 5 (s ) ou(rlo) o
—/ y <Zk/”_—"(s)) 9 s x(s))

Il i
5 iln ox

LI
(s = 2(6)) (3 = x(9)) ) praels)) | s
B

n

<Z M;ll (t,s, x(s))) q)k,n(x(s))] ds

i'nt

+/ [ < :; — x(s)) (% — x(s))r> gok,n(x(s))] ds =:I; + R.

Let us analyze the terms I; and R, respectively. Let us consider the term I;.

=[] (2 x(o) ) atate)) s

k=—oco \i=0 ihn!
= [} | KAt x6gun(x) | s
e (W s 5090 ) gt
—Fx)+ Y g aa;lfu x) [ [ £ (550 gunteton)] s

= Fx(t +Zw o —f(t,5,x(s)).

iln? ox!

Now, we evaluate the remainder term R.
Let ¢ > 0 be fixed. Since h(t,s,y) is a bounded function such that lirr(l) h(t,s,y) = 0, there
y—

exists & > 0 such that |h(y)| < € for every |y| < J. In view of the assumption (5), clearly we
have

1 ! . ) .
o /0 K k/n§5)25+ |k/n—§('s)|<(s>h<t’ " x(s)) <E B x(s)) q”"”(x(s))] ds = o(n™).

O

As a consequence of Theorem 1 we can establish the following first and second order
Voronovskaya type theorems, respectively.
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Theorem 2. Let f be a bounded function such that df(t,s, x(s))/0x exists at a point x(s) and
let F be its corresponding Urysohn integral operator. Then we have

Tim n{(USF)x(t) — Fx(0)] = m (x(s)) £ 1,5, %(5))

Proof. Applying the asymptotic formula of Theorem 1 with » = 1, using (10) and assumption
(4), we can write

(US,F)x(t) = Fx(t) + ml(q)k’,;(x(s))) %f(t, 5,x(s)) +o(n™t) as n— oco.

Then the proof follows by passing to the limit for n — oo. O

Theorem 3. Let f be a bounded function such that 9*f(t,s, x(s)) /9x? exists at a point x(s) and
let F be its corresponding Urysohn integral operator. Then we have

my(x(s)) 92
lim n?[(US,F)x(t) — Fx(t)] = ml(x(s))%f(t, s,x(s)) + #%ﬂt, s,x(s)).

n—oo

Proof. As in the proof of Theorem 2, applying the asymptotic formula of Theorem 1 withr = 2,
using (10) and assumption (4), we can write

) ,
kn(X(s))) O -
(USHE)x( Z"’Z’]—nlaz (t,5,%(s)) +o(n"2) as n — co.
Then the proof follows by passing to the limit for n — co. O

The above theorems show that the order of pointwise approximation is at least of order
O(n~1') and O(n=2) as n — +oo, respectively.

3 Nonlinear counterpart and Voronovskaya-type theorems

We now introduce some notations and structural hypotheses for nonlinear approximation,
which will be fundamental in proving our theorems.

Let X be the set of all bounded Lebesgue measurable functions f : [0,1]® — R§ = [0,00).
Let ¥ be the set of all continuous, concave and non-decreasing functions ¢ : Rf — RJ with
¢(0) =0, ¢(u) > 0forallu > 0 and Mlirfm ¢(u) = +oo in the usual sense. Such a function is

called a ¢-function (see [6-10]).
We now introduce a sequence of functions. Let {P;,},en be a sequence of functions
Pr, - [0,1] x R— R defined by

Pk,n(tfu) = q)k,n(t)Hﬂ(u) (11)

for every t € [0,1],u € R, where H, : R — R is such that H,(0) = 0 and ¢y ,(t) again
@rn(x(s)) = @(nx(s) — k) is an arbitrary kernel function satisfies (2) and (3).

Throughout the paper we assume that y : N — R is an increasing and continuous func-
tion such that nlgr(}o u(n) = oo.

Assume that the function H,, satisfies following conditions:

a) Hy,: R — Rissuch that |H,(u) — Hn(v)| < ¢(Ju — v|) holds for every u, v € R, for every
n € N, that is, H,, satisfies a (¥) Lipschitz condition;
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b) denoting by r,(u) := Hy (1) — u, u € R and n € IN, such that

1
u(n)

sup |1, (11)| = sup [ Hy(u) — u] <
u u

uniformly with respect to u or n sufficiently large.

Owing to the above definitions, we introduce nonlinear counterpart of the Urysohn type
generalized sampling operators as follows.

Definition 2. Let F be the Urysohn integral operator of f. In view of (7) and (11), we define
the following Urysohn type nonlinear generalized sampling operators as

1 L:i Py, <x(s),f<t,s,§>>]ds, (12)

where n is a non-negative integer, Py , satisfy some suitable assumptions.

(NUS,F)x(t) = /

0

Definition 3. We will say that the sequence (P,)qeN is ( — a)-singular if the following as-
sumptions are satistied:

(P1) forevery x € I and 6 > 0 there holds

ll’( )3 ‘%—x’qok,n(x)):o(n_“) as 1 — oo;

|k/n—x|>6

(P.2) for every u € R and for every x € I we have

n
lim n* { Y Pug(x,u) — u] =0.
k=0

n—oo

Note that since the theory of approximation via nonlinear operators is quite different from
its linear counterpart, in same cases we can obtain only some estimates related with the con-
vergence problems (see [10, 21, 22]). Actually, in some cases, it is not possible to obtain ex-
act estimates for nonlinear operators, because of the nonlinearity of their kernel functions
(see [6,7,29]).

The first approximation result on the nonlinear counterpart of the Urysohn operators is the
following assertion.

Theorem 4. Let f be a bounded function such that df(t,s, x(s)) /0x exists at a point x(s) and
let F be its corresponding Urysohn integral operator. Let us also assume that the sequence
(Ppx)nen is (¢ — 1)-singular with

lim sup np (M (@x ,(x(s)))) = l1(x(s)) € R, (13)

n—oo

where M (¢) is the first order absolute moment of generalized sampling operators. Then,

limsup n|(NUS,F)x(t) — Fx(t)| < Cly(x(s))

n—oo

holds true, where C > 0 is a sufficiently large constant.
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Proof. Since f is differentiable at the point x(s) then there exists a bounded function & such
that lirr(l) h(t,s,y) = 0. By Taylor’s formula we have
y—

f<t,s, %) = f(t,s,x(s)) + <§ - x(s)) %f(t,s,x(s)) + (E - x(s))h(t,s,% - x(s)).

In view of (11), (12) and conditions a)-b), we can write

i) = [ £ (s s(o 1)) o= [ £ ontxonmnr(vs))s

and hence

n|(NUS,F)x(t) — Fx(t)| =n

DL il s(osp)) st

(TARECE (f )]s =[] X Peatete) e s s
o [} | L Pele 5.5 s - P

/01 L oualx(9) {Hn <f<t,s,§>) — Hy(f(t5,2(5)))] s

= Il + 12.

/01 { Y Pen(x(s), f(t5,x(5))) f(t,s,x(s))]ds

By assumption (P.2), I tends to zero. We can estimate the first term in the following way. Let
C > 0 be a constant such that [0f(t,s,x(s)) /9x| + |h(t,s, % —x(s))| < C. Using sub-additivity
of the function ¢(x), x > 0, we have

Il:néw()(s—x(s))%f(t,s,x(s)) (——x )h t’s’fz )DG’)kn( (s))
< 20 (e] (5~ ) Yot | <] Lp(( (5= 56)) Joataton )

In virtue of Jensen’s inequality, we can write

(5 = %)) |1 (x(5)) ) = nCp(Ms(giax(5)

n

hix) <ncy( Y-

k=0

In view of (13), one has
limsupn|(NUS,F)(x) — f(x)| < Cli(x(s)).
n—oo

This completes the proof. O

Corollary 1. Let f be a bounded function such that df(t,s, x(s))/0x exists at a point. Let us
assume that the sequence (P, x)neN is ( — 1)-singular satisfying (13) and let (x(s)) = x7(s),
where 0 < v < 1. Then

limsup n|(NUS, F)x(t) — Fx(t)| < l1(x(s)) %f(t,s,x(s)) !

n—c0 )

holds true.
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Theorem 5. Let f be a bounded function such that 9% f(t,s, x(s)) /9x? exists at a point x(s). Let
us assume that the sequence (P, x)neN is ( — a)-singular and

lim sup n“¢p(M;(@r ,x(s))) = li(x(s)) e R fori=1,2, (14)

n—oo

where M; and M, are the first and second order absolute moments of generalized sampling
operators, respectively. Then,

lim sup n*|(NUS, F)x(t) — Fx(t)| < gb(‘%f(t,s,x(s))Dll(x(s))

+ 9 (3215, 2(6))| )2l
holds true.

Proof. Since f is differentiable at the point x(s), using a local Taylor’s formula for the function
f, we obtain that there exists a bounded function / such that lirr(l) h(t,s,y) = 0and
y—

Thus, we can write

n*|(NUS,F)(x) — F(x)| =

< ) ) f(t,s,x(s ))ds}(Pk,n(X(s))ds

Hi(f
(t - )ds — / £t,5,%(5))ds] ) gin(x(5)
/ (t,s,x(s ds / f(t,s,x(s))ds }gok,n(x(s))‘

Z
=1 ( )—i-lz(x).

By assumption (P.2), I(x) tends to zero. We can estimate the first term in the following way.
Using sub-additivity of the function ¢(x), x > 0, we have

=t 3 (| (5 =) e o) + 5 (5 - X)) o (t5, ()

n

v (§ —x(9)) (ts, 5 = x5)) ) )
<0 29|50 [ 510260 i x15)

e (5 (5~ 00) |z 5560 ) (o)

g ((5 @) (s k- 29) ) rantxts))

k=0

:|>\~
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)| ) Zw()——x )| ) n(x(5))
(3l ) )0t 3 (5 = 56))°) pn(ato)

w0 2 (5 x) (5. —x0) ) (5

Do ( (5~ x)[oeatxten)

9|52 nt (2 (5= 50) guntaten)

< (|2 ft,5,x(s

S"’(’a_ ft, s, x(s

k=0
o ks —2< ) ¢<<§ _x(s)>2’h<t's’§ = ¥(6))]) grn(x(s)
T (o) T AR

=: Ii(x) + Ia(x) + I s(x) + Ta(x).
In virtue of Jensen’s Inequality, we immediately have

o) = (| ger e o) )ty ( L]~ x6) foun(v(e))

= (|2 £t x(6)| ) 0 (M (g (s))),

and
n

o) = 9(3 5, 2060 a2 (5= 56)) guatatoD)

k=0

= 9 (L5, x50 | ) p (M)

Now we estimate the terms I; 3(x) and I; 4(x), respectively. Let ¢ > 0 be fixed. There exists a
0 > 0 such that (|h(t,s,y)|) < ¢ for every |y| < J. Hence,

na@ =n' ¥ p((E-x@) [n(bs 5 x)]) prnlxs)) < eH ()

k/n—x(s)|<s n

for a sufficiently large n. Moreover, choosing a constant C > 0 such that ¢(|h(t,s,y)|) < C for
every |y| > 6, we have

k 2 k
ha) =n* ¥ (5 —x6) |i(ts T = x(5)) |) prax(s)
|k/n—x(s)|>6
< n*Cyp(Ma(@x,nx(s))) = o(1).
In view of the assumption (14), one has

timsup | (NUS,E)x(r) — Fx(t)] < (| 25, (5)) ) (x(5)

n—oo

+lp<§’wf(t,s,x(s))‘)lz(x(s))-

This completes the proof of the theorem. O
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Lst cTaTTs € MPOAOBXEHHSIM AOCAIAKEHHST BAACTMBOCTeN 361KHOCTI y3araabHEHNX OIepaTopiB
BUbIpKM THITy YpucoHa, 0O3HaUeHMX aBTOpoM y poboTi [Dolomites Res. Notes Approx. 2021, 14 (2),
58-67]. OcHOBHa yBara 30cepea’keHa Ha AOCAIAXKEHHI aCMMIITOTMYHIIX BAACTMBOCTEN pa3oM i3 Ae-
SIKMMI TeopeMaMy TUITy BOpOHOBCHKOI AAST AIHIVHIIX Ta HeAIHIVHIMX aHAAOTIB y3araAbHEHMX OIepa-
TOpiB BUbiIpKM THITy YpMcoHa.

Kntouosi cnosa i ¢ppasu: y3ararbHeHWMIT oniepaTop BUbIpKM, AiHIHII Ta HeAiHIHIT aHaAOTH Y3a-
raABHEHOTO OllepaTopa BMOipKy TuIy YpMCcOHa, acMMITOTMYHE pO3BMHEHHSI, TeopeMa Tiry Bopo-
HOBCBKOI.



