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The concern of this study is to continue the investigation of convergence properties of Urysohn

type generalized sampling operators, which are defined by the author in [Dolomites Res. Notes

Approx. 2021, 14 (2), 58–67]. In details, the paper centers around to investigation of the asymptotic

properties together with some Voronovskaya-type theorems for the linear and nonlinear counter-

part of Urysohn type generalized sampling operators.
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Introduction

The theory of the generalized sampling series, introduced and developed at RWTH Aachen

by Paul Leo Butzer, is a powerful tool for investigating and proving the approximation prob-

lem on R. Indeed, from mathematical point of view, generalized sampling operators of func-

tions f defined on the real axis, which are not necessarily band-limited, were extensively and

systematicaly studied by P.L. Butzer and his collaborators in RWTH Aachen since 1977 (see,

e.g., [11–15, 32]).

Let f be a bounded function defined on R, then the generalized sampling series (Sn f ) is

given by

(Sn f )(t) :=
∞

∑
k=−∞

f
( k

n

)

ϕ(nt − k), t ∈ R, n ∈ N, (1)

where ϕ : R → R is the kernel function satisfying

ϕ ∈ L1,
∞

∑
k=−∞

ϕ(u − k) = 1 for every u ∈ R, (2)

and

Aϕ := sup
u∈R

∞

∑
k=−∞

|ϕ(u − k)| < ∞, (3)

where the convergence of the series (3) is uniform on each compact subintervals of R.

These series allow us to reconstruct a given signal (function) f defined on R by its rational

sampling values, which are of the form f (k/n), k ∈ Z, n ∈ N.
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Especially in the last decade, these operators and some of their modifications have been of

great importance in the development of mathematical models for signal and image recovering,

as studied by research group (RITA Network) from Perugia led by Carlo Bardaro and Gianluca

Vinti (see, e.g., [1–10, 16–19, 31]).

In [28], the author introduced Urysohn type generalized sampling operators by replacing

the rational sampling values of the function f with its Urysohn type operator values. By these

new operators the convergence problems generalized and extended to the functionals and op-

erators. Once a detailed model of the aforementioned operators has been constructed in [28],

the next step is to investigate their approximation and asymptotic properties. As a continuation

of the study of the author [28], the present work highlights the importance of Urysohn type

generalized sampling operators and in modelling the asymptotic approximation properties of

functions f defined on the whole real line.

In particular, the goal of this study is to obtain asymptotic expansion and some Voronov-

skaya type problems for newly defined Urysohn type generalized sampling operators. We

also define and investigate some asymptotic properties of its nonlinear counterpart, called

nonlinear Urysohn type generalized sampling operators.

1 Preliminaries

In this section, we shall introduce some notation and background material used throughout

this work.

As in the papers [6, 18, 28], throughout this work, we assume that the first two central

moments of the generalized sampling operators (1) satisfy

m1(ϕ) :=
∞

∑
k=−∞

ϕ(u − k)(u − k) = 0, (4)

m2(ϕ) :=
∞

∑
k=−∞

ϕ(u − k)(u − k)2 = C

for every u ∈ R and for a given constant C ∈ R.

We also assume that the discrete absolute moment of order β are finite, i.e.

Mβ(ϕ) := sup
u∈R

∞

∑
k=−∞

|ϕ(u − k)||u − k|β < ∞ (5)

for every u ∈ R and for some β > 0. The formula for Mβ(ϕ) in case β = 0 is exactly Aϕ.

To define an Urysohn type operator and obtain some positive answers to the approximation

problems, H. Karsli [28] considered the following Urysohn integral operators discussed by

P. Urysohn in [33]:

F(t, x(·)) =
∫ 1

0
f (t, s, x(s)) ds, t ∈ [0, 1], 0 ≤ x(·) ≤ 1, (6)

with unknown kernel f , whose properties and values depend on the function x(·) (see, e.g.,

[20, 23–28, 30]).

For a constant function x(·) = a, we set Fa(t) = F(a).
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In view of the relations between Dirac and Heaviside unit step functions, we assume that

the following continuous interpolation condition holds

Fx(t) := F(t, xi(·, s)) =
∫ 1

0
f (t, z, xi(z, s)) dz, t ∈ [0, 1], (7)

where −∞ < xi(z, s) < ∞ defined as xi(z, s) = (i/n)H(z − s), s ∈ [0, 1], and i ∈ Z.

Obviously

∂F(t, xi(·, s))

∂s
=

∂F(t, (i/n)H(· − s))

∂s
= f (t, s, 0)− f

(

t, s,
i

n

)

(8)

holds true, where xi(·, s) = (i/n)H(· − s), s ∈ [0, 1], and i ∈ Z.

In [28], H. Karsli constructed a new type of generalized sampling operator by means of the

Urysohn interpolation conditions given in (7) with unknown function f : [0, 1]2 × R → R,

which he plan to use for the solution of the convergence problem to the Urysohn operator.

Now we are able to recall the definition of the Urysohn type generalized sampling operators

constructed by the author.

Definition 1 ([28]). Let F be the Urysohn integral operator of f . Then the Urysohn type gener-

alized sampling operator is defined as

(USnF)x(t) := (USnF)(t; x(·, s)) =
∫ 1

0

[ ∞

∑
k=−∞

f
(

t, s,
k

n

)

ϕk,n(x(s))

]

ds, (9)

where ϕk,n(x(s)) = ϕ(nx(s)− k) is an arbitrary kernel function satisfying (2) and (3).

Here, Dom (USF) =
⋂

n∈N Dom (USnF), where Dom (USnF) is the set of all bounded

functions f : [0, 1]2 × R → R for which the operator is well defined.

Remark 1. By (6) and (8), (USnF) can be written as

(USnF)x(t) = F(0)−
∫ 1

0

[ ∞

∑
k=−∞

∂F(t, (k/n)H(t − s))

∂s
ϕk,n(x(s))

]

ds.

2 Asymptotic expansion and Voronovskaya-type theorems

This section deals with an asymptotic formula and some Voronovskaya type theorems for

the Urysohn type generalized sampling operators.

Theorem 1. Let F be the Urysohn integral operator of the bounded function f : [0, 1]2 ×R → R.

Moreover, for a certain r ∈ N, we also assume that ∂r f (t, s, x(s))/∂xr exists at a fixed point

x(s). Then the following asymptotic formula

(USnF)x(t) = Fx(t) +
r

∑
i=1

mi(ϕk,n(x(s)))

i!ni

∂i

∂xi
f (t, s, x(s)) + o(n−r) as n → ∞

holds, where mi is the ith order moment.
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Proof. Since ∂r f (t, s, x(s))/∂xr exists at a point x(s), then there exists a bounded function h

such that lim
y→0

h(t, s, y) = 0. By the local Taylor’s formula we have

f
(

t, s,
k

n

)

=
r

∑
i=0

(k/n − x(s))i

i!ni

∂i

∂xi
f (t, s, x(s)) + h

(

t, s,
k

n
− x(s)

)( k

n
− x(s)

)r
. (10)

In view of (9) and (10), we can write

(USnF)x(t) =
∫ 1

0

[ ∞

∑
k=−∞

f
(

t, s,
k

n

)

ϕk,n(x(s))

]

ds

=
∫ 1

0

[

∞

∑
k=−∞

( r

∑
i=0

(k/n − x(s))i

i!ni

∂i

∂xi
f (t, s, x(s))

+ h
(

t, s,
k

n
− x(s)

)( k

n
− x(s)

)r
)

ϕk,n(x(s))

]

ds

=
∫ 1

0

[ ∞

∑
k=−∞

( r

∑
i=0

(k/n − x(s))i

i!ni

∂i

∂xi
f (t, s, x(s))

)

ϕk,n(x(s))

]

ds

+
∫ 1

0

[ ∞

∑
k=−∞

(

h
(

t, s,
k

n
− x(s)

)( k

n
− x(s)

)r)

ϕk,n(x(s))

]

ds =: I1 + R.

Let us analyze the terms I1 and R, respectively. Let us consider the term I1.

I1 =
∫ 1

0

[

∞

∑
k=−∞

( r

∑
i=0

(k/n − x(s))i

i!ni

∂i

∂xi
f (t, s, x(s))

)

ϕk,n(x(s))

]

ds

=
∫ 1

0

[ ∞

∑
k=−∞

f (t, s, x(s))ϕk,n(x(s))

]

ds

+
∫ 1

0

[ ∞

∑
k=−∞

( r

∑
i=1

(k/n − x(s))i

i!ni

∂i

∂xi
f (t, s, x(s))

)

ϕk,n(x(s))

]

ds

= Fx(t) +
r

∑
i=1

1

i!ni

( ∂i

∂xi
f (t, s, x(s))

)

∫ 1

0

[ ∞

∑
k=−∞

( k

n
− x(s)

)i
ϕk,n(x(s))

]

ds

= Fx(t) +
r

∑
i=1

mi(ϕk,n(x(s)))

i!ni

∂i

∂xi
f (t, s, x(s)).

Now, we evaluate the remainder term R.

Let ε > 0 be fixed. Since h(t, s, y) is a bounded function such that lim
y→0

h(t, s, y) = 0, there

exists δ > 0 such that |h(y)| ≤ ε for every |y| ≤ δ. In view of the assumption (5), clearly we

have

R =
∫ 1

0

[(

∑
|k/n−x(s)|≥δ

+ ∑
|k/n−x(s)|<δ

)

h
(

t, s,
k

n
− x(s)

)( k

n
− x(s)

)r
ϕk,n(x(s))

]

ds = o(n−r).

As a consequence of Theorem 1 we can establish the following first and second order

Voronovskaya type theorems, respectively.
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Theorem 2. Let f be a bounded function such that ∂ f (t, s, x(s))/∂x exists at a point x(s) and

let F be its corresponding Urysohn integral operator. Then we have

lim
n→∞

n[(USnF)x(t)− Fx(t)] = m1(x(s))
∂

∂x
f (t, s, x(s)).

Proof. Applying the asymptotic formula of Theorem 1 with r = 1, using (10) and assumption

(4), we can write

(USnF)x(t) = Fx(t) +
m1(ϕk,n(x(s)))

n

∂

∂x
f (t, s, x(s)) + o(n−1) as n → ∞.

Then the proof follows by passing to the limit for n → ∞.

Theorem 3. Let f be a bounded function such that ∂2 f (t, s, x(s))/∂x2 exists at a point x(s) and

let F be its corresponding Urysohn integral operator. Then we have

lim
n→∞

n2[(USnF)x(t)− Fx(t)] = m1(x(s))
∂

∂x
f (t, s, x(s)) +

m2(x(s))

2

∂2

∂x2
f (t, s, x(s)).

Proof. As in the proof of Theorem 2, applying the asymptotic formula of Theorem 1 with r = 2,

using (10) and assumption (4), we can write

(USnF)x(t) = Fx(t) +
2

∑
i=1

mi(ϕk,n(x(s)))

i!ni

∂i

∂xi
f (t, s, x(s)) + o(n−2) as n → ∞.

Then the proof follows by passing to the limit for n → ∞.

The above theorems show that the order of pointwise approximation is at least of order

O(n−1) and O(n−2) as n → +∞, respectively.

3 Nonlinear counterpart and Voronovskaya-type theorems

We now introduce some notations and structural hypotheses for nonlinear approximation,

which will be fundamental in proving our theorems.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]3 → R
+
0 = [0, ∞).

Let Ψ be the set of all continuous, concave and non-decreasing functions ϕ : R
+
0 → R

+
0 with

ϕ(0) = 0, ϕ(u) > 0 for all u > 0 and lim
u→+∞

ϕ(u) = +∞ in the usual sense. Such a function is

called a ϕ-function (see [6–10]).

We now introduce a sequence of functions. Let {Pk,n}n∈N be a sequence of functions

Pk,n : [0, 1]× R→ R defined by

Pk,n(t, u) = ϕk,n(t)Hn(u) (11)

for every t ∈ [0, 1], u ∈ R, where Hn : R → R is such that Hn(0) = 0 and ϕk,n(t) again

ϕk,n(x(s)) = ϕ(nx(s)− k) is an arbitrary kernel function satisfies (2) and (3).

Throughout the paper we assume that µ : N → R
+ is an increasing and continuous func-

tion such that lim
n→∞

µ(n) = ∞.

Assume that the function Hn satisfies following conditions:

a) Hn : R → R is such that |Hn(u)− Hn(v)| ≤ ψ(|u − v|) holds for every u, v ∈ R, for every

n ∈ N, that is, Hn satisfies a (Ψ) Lipschitz condition;
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b) denoting by rn(u) := Hn(u)− u, u ∈ R and n ∈ N, such that

sup
u

|rn(u)| = sup
u

|Hn(u)− u| ≤
1

µ(n)

uniformly with respect to u or n sufficiently large.

Owing to the above definitions, we introduce nonlinear counterpart of the Urysohn type

generalized sampling operators as follows.

Definition 2. Let F be the Urysohn integral operator of f . In view of (7) and (11), we define

the following Urysohn type nonlinear generalized sampling operators as

(NUSnF)x(t) =
∫ 1

0

[

∞

∑
k=−∞

Pk,n

(

x(s), f
(

t, s,
k

n

))

]

ds, (12)

where n is a non-negative integer, Pk,n satisfy some suitable assumptions.

Definition 3. We will say that the sequence (Pn)n∈N is (ψ − α)-singular if the following as-

sumptions are satisfied:

(P.1) for every x ∈ I and δ > 0 there holds

ψ

(

∑
|k/n−x|≥δ

∣

∣

∣

k

n
− x

∣

∣

∣
ϕk,n(x)

)

= o(n−α) as n → ∞;

(P.2) for every u ∈ R and for every x ∈ I we have

lim
n→∞

nα

[ n

∑
k=0

Pn,k(x, u)− u

]

= 0.

Note that since the theory of approximation via nonlinear operators is quite different from

its linear counterpart, in same cases we can obtain only some estimates related with the con-

vergence problems (see [10, 21, 22]). Actually, in some cases, it is not possible to obtain ex-

act estimates for nonlinear operators, because of the nonlinearity of their kernel functions

(see [6, 7, 29]).

The first approximation result on the nonlinear counterpart of the Urysohn operators is the

following assertion.

Theorem 4. Let f be a bounded function such that ∂ f (t, s, x(s))/∂x exists at a point x(s) and

let F be its corresponding Urysohn integral operator. Let us also assume that the sequence

(Pn,k)n∈N is (ψ − 1)-singular with

lim sup
n→∞

nψ(M1(ϕk,n(x(s)))) = l1(x(s)) ∈ R, (13)

where M1(ϕ) is the first order absolute moment of generalized sampling operators. Then,

lim sup
n→∞

n|(NUSnF)x(t)− Fx(t)| ≤ Cl1(x(s))

holds true, where C > 0 is a sufficiently large constant.
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Proof. Since f is differentiable at the point x(s) then there exists a bounded function h such

that lim
y→0

h(t, s, y) = 0. By Taylor’s formula we have

f
(

t, s,
k

n

)

= f (t, s, x(s)) +
( k

n
− x(s)

) ∂

∂x
f (t, s, x(s)) +

( k

n
− x(s)

)

h
(

t, s,
k

n
− x(s)

)

.

In view of (11), (12) and conditions a)–b), we can write

(NUSnF)x(t) =
∫ 1

0

[ ∞

∑
k=−∞

Pk,n

(

x(s), f
(

t, s,
k

n

))

]

ds =
∫ 1

0

∞

∑
k=−∞

ϕk,n(x(s))Hn

(

f
(

t, s,
k

n

))

ds

and hence

n|(NUSnF)x(t)− Fx(t)| = n

∣

∣

∣

∣

∫ 1

0

[ ∞

∑
k=−∞

Pk,n

(

x(s), f
(

t, s,
k

n

))

]

ds − Fx(t)

∣

∣

∣

∣

= n

∣

∣

∣

∣

∫ 1

0

[ ∞

∑
k=−∞

Pk,n

(

x(s), f
(

t, s,
k

n

))

]

ds −
∫ 1

0

[ ∞

∑
k=−∞

Pk,n(x(s), f (t, s, x(s)))

]

ds

∣

∣

∣

∣

+ n

∣

∣

∣

∣

∫ 1

0

[ ∞

∑
k=−∞

Pk,n(x(s), f (t, s, x(s)))

]

ds − Fx(t)

∣

∣

∣

∣

= n

∣

∣

∣

∣

∫ 1

0

∞

∑
k=−∞

ϕk,n(x(s))
[

Hn

(

f
(

t, s,
k

n

))

− Hn( f (t, s, x(s)))
]

ds

∣

∣

∣

∣

+ n

∣

∣

∣

∣

∫ 1

0

[

∞

∑
k=−∞

Pk,n(x(s), f (t, s, x(s))) − f (t, s, x(s))

]

ds

∣

∣

∣

∣

=: I1 + I2.

By assumption (P.2), I2 tends to zero. We can estimate the first term in the following way. Let

C > 0 be a constant such that |∂ f (t, s, x(s))/∂x|+ |h(t, s, k
n − x(s))| ≤ C. Using sub-additivity

of the function ψ(x), x ≥ 0, we have

I1 = n
n

∑
k=0

ψ
(
∣

∣

∣

( k

n
− x(s)

) ∂

∂x
f (t, s, x(s)) +

( k

n
− x(s)

)

h
(

t, s,
k

n
− x(s)

)
∣

∣

∣

)

ϕk,n(x(s))

≤ n

{ n

∑
k=0

ψ
(

C
∣

∣

∣

( k

n
− x(s)

)∣

∣

∣

)

ϕk,n(x(s))

}

≤ nC

{ n

∑
k=0

ψ
(∣

∣

∣

( k

n
− x(s)

)∣

∣

∣

)

ϕk,n(x(s))

}

.

In virtue of Jensen’s inequality, we can write

I1(x) ≤ nCψ

( n

∑
k=0

∣

∣

∣

( k

n
− x(s)

)
∣

∣

∣
ϕk,n(x(s))

)

= nCψ(M1(ϕk,nx(s))).

In view of (13), one has

lim sup
n→∞

n|(NUSn F)(x)− f (x)| ≤ Cl1(x(s)).

This completes the proof.

Corollary 1. Let f be a bounded function such that ∂ f (t, s, x(s))/∂x exists at a point. Let us

assume that the sequence (Pn,k)n∈N is (ψ − 1)-singular satisfying (13) and let ψ(x(s)) = xγ(s),

where 0 < γ ≤ 1. Then

lim sup
n→∞

n|(NUSnF)x(t)− Fx(t)| ≤ l1(x(s))
∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

γ

holds true.
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Theorem 5. Let f be a bounded function such that ∂2 f (t, s, x(s))/∂x2 exists at a point x(s). Let

us assume that the sequence (Pn,k)n∈N is (ψ − α)-singular and

lim sup
n→∞

nαψ(Mi(ϕk,nx(s))) = li(x(s)) ∈ R for i = 1, 2, (14)

where M1 and M2 are the first and second order absolute moments of generalized sampling

operators, respectively. Then,

lim sup
n→∞

nα|(NUSnF)x(t)− Fx(t)| ≤ ψ
(
∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

l1(x(s))

+ ψ
(1

2

∣

∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

l2(x(s))

holds true.

Proof. Since f is differentiable at the point x(s), using a local Taylor’s formula for the function

f , we obtain that there exists a bounded function h such that lim
y→0

h(t, s, y) = 0 and

f
(

t, s,
k

n

)

= f (t, s, x(s)) +
( k

n
− x(s)

) ∂

∂x
f (t, s, x(s))

+
1

2

( k

n
− x(s)

)2 ∂2

∂x2
f (t, s, x(s)) +

( k

n
− x(s)

)2
h
(

t, s,
k

n
− x(s)

)

.

Thus, we can write

nα|(NUSnF)(x)− F(x)| = nα

∣

∣

∣

∣

∫ 1

0

n

∑
k=0

{

Hn

(

f
(

t, s,
k

n

)

ds
)

− f (t, s, x(s))ds
}

ϕk,n(x(s))ds

∣

∣

∣

∣

≤ nα
n

∑
k=0

ψ
(
∣

∣

∣

∫ 1

0
f
(

t, s,
k

n

)

ds −
∫ 1

0
f (t, s, x(s))ds

∣

∣

∣

)

ϕk,n(x(s))

+ nα

∣

∣

∣

∣

n

∑
k=0

{

Hn

(

∫ 1

0
f (t, s, x(s))ds

)

−
∫ 1

0
f (t, s, x(s))ds

}

ϕk,n(x(s))

∣

∣

∣

∣

=: I1(x) + I2(x).

By assumption (P.2), I2(x) tends to zero. We can estimate the first term in the following way.

Using sub-additivity of the function ψ(x), x ≥ 0, we have

I1(x) = nα
n

∑
k=0

ψ
(
∣

∣

∣

( k

n
− x(s)

) ∂

∂x
f (t, s, x(s)) +

1

2

( k

n
− x(s)

)2 ∂2

∂x2
f (t, s, x(s))

+
( k

n
− x(s)

)2
h
(

t, s,
k

n
− x(s)

)∣

∣

∣

)

ϕk,n(x(s))

≤ nα
n

∑
k=0

ψ
(
∣

∣

∣

k

n
− x(s)

∣

∣

∣

∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

ϕk,n(x(s))

+ nα
n

∑
k=0

ψ
(1

2

( k

n
− x(s)

)2∣
∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

ϕk,n(x(s))

+ nα
n

∑
k=0

ψ
(( k

n
− x(s)

)2∣
∣

∣
h
(

t, s,
k

n
− x(s)

)
∣

∣

∣

)

ϕk,n(x(s))
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≤ ψ
(
∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

nα
n

∑
k=0

ψ
(
∣

∣

∣

k

n
− x(s)

∣

∣

∣

)

ϕk,n(x(s))

+ ψ
(1

2

∣

∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

nα
n

∑
k=0

ψ
(( k

n
− x(s)

)2)

ϕk,n(x(s))

+ nα
n

∑
k=0

ψ
(( k

n
− x(s)

)2∣
∣

∣
h
(

t, s,
k

n
− x(s)

)
∣

∣

∣

)

ϕk,n(x(s))

≤ ψ
(
∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

nαψ

( n

∑
k=0

∣

∣

∣

( k

n
− x(s)

)
∣

∣

∣
ϕk,n(x(s))

)

+ ψ
(∣

∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

nαψ

( n

∑
k=0

( k

n
− x(s)

)2
ϕk,n(x(s))

)

+ nα ∑
|k/n−x(s)|<δ

ψ
(( k

n
− x(s)

)2∣
∣

∣
h
(

t, s,
k

n
− x(s)

)∣

∣

∣

)

ϕk,n(x(s))

+ nα ∑
|k/n−x(s)|≥δ

ψ
(( k

n
− x(s)

)2∣
∣

∣
h
(

t, s,
k

n
− x(s)

)
∣

∣

∣

)

ϕk,n(x(s))

=: I1,1(x) + I1,2(x) + I1,3(x) + I1,4(x).

In virtue of Jensen’s Inequality, we immediately have

I1,1(x) = ψ
(∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

nαψ

( n

∑
k=0

∣

∣

∣

( k

n
− x(s)

)∣

∣

∣
ϕk,n(x(s))

)

= ψ
(
∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

nαψ(M1(ϕk,nx(s))),

and

I1,2(x) = ψ
(1

2

∣

∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

nαψ

( n

∑
k=0

( k

n
− x(s)

)2
ϕk,n(x(s))

)

= ψ
(1

2

∣

∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

nαψ(M2(ϕk,nx(s))).

Now we estimate the terms I1,3(x) and I1,4(x), respectively. Let ε > 0 be fixed. There exists a

δ > 0 such that ψ(|h(t, s, y)|) ≤ ε for every |y| ≤ δ. Hence,

I1,3(x) = nα ∑
|k/n−x(s)|<δ

ψ
(( k

n
− x(s)

)2∣
∣

∣
h
(

t, s,
k

n
− x(s)

)
∣

∣

∣

)

ϕk,n(x(s)) ≤ εH(t)

for a sufficiently large n. Moreover, choosing a constant C > 0 such that ψ(|h(t, s, y)|) ≤ C for

every |y| ≥ δ, we have

I1,4(x) = nα ∑
|k/n−x(s)|≥δ

ψ
(( k

n
− x(s)

)2∣
∣

∣
h
(

t, s,
k

n
− x(s)

)
∣

∣

∣

)

ϕk,n(x(s))

≤ nαCψ(M2(ϕk,nx(s))) = o(1).

In view of the assumption (14), one has

lim sup
n→∞

nα|(NUSnF)x(t)− Fx(t)| ≤ ψ
(
∣

∣

∣

∂

∂x
f (t, s, x(s))

∣

∣

∣

)

l1(x(s))

+ ψ
(1

2

∣

∣

∣

∂2

∂x2
f (t, s, x(s))

∣

∣

∣

)

l2(x(s)).

This completes the proof of the theorem.



640 Karsli H.

References

[1] Acar T., Costarelli D., Vinti G. Linear prediction, simultaneous approximation by m-th order Kantorovich type

sampling series. Banach J. Math. Anal. 2020, 14 (4), 1481–1508. doi:10.1007/s43037-020-00071-0

[2] Angeloni L., Costarelli D., Vinti G. A characterization of the convergence in variation for the generalized sampling

series. Ann. Acad. Sci. Fenn. Math. 2018, 43, 755–767. doi:10.5186/aasfm.2018.4343

[3] Angeloni L., Costarelli D., Vinti G. A characterization of the absolute continuity in terms of convergence in variation

for the sampling Kantorovich operators. Mediterr. J. Math. 2019, 16 (2), 44. doi:10.1007/s00009-019-1315-0

[4] Angeloni L., Vinti G. Discrete operators of sampling type, approximation in ϕ-variation. Math. Nachr. 2018, 291

(4), 546–555. doi:10.1002/mana.201600508

[5] Bardaro C., Mantellini I. Asymptotic expansion of generalized Durrmeyer sampling type series. Jaen J. Approx.

2014, 6 (2), 143–165.

[6] Bardaro C., Mantellini I. A Voronovskaya-type theorem for a general class of discrete operators. Rocky Mountain J.

Math. 2009, 39 (5), 1411–1442. doi:10.1216/RMJ-2009-39-5-1411

[7] Bardaro C., Mantellini I. A note on the Voronovskaja theorem for Mellin-Fejer convolution operators. Appl. Math.

Lett. 2011, 24 (12), 2064–2067. doi:10.1016/j.aml.2011.05.043

[8] Bardaro C., Faina L., Mantellini I. Quantitative Voronovskaja formulae for generalized Durrmeyer sampling type

series. Math. Nachr. 2016, 289 (14–15), 1702–1720. doi:10.1002/mana.201500225

[9] Bardaro C., Karsli H., Vinti G. Nonlinear integral operators with homogeneous kernels: pointwise approximation

theorems. Appl. Anal. 2011, 90 (3–4), 463–474. doi:10.1080/00036811.2010.499506

[10] Bardaro C., Musielak J., Vinti G. Nonlinear Integral Operators and Applications. De Gruyter, Berlin, New

York, 2003.

[11] Bardaro C., Mantellini I., Stens R., Vautz J., Vinti G. Generalized sampling approximation for multivariate

discontinuous signals, application to image processing. In: Zayed A., Schmeisser G. (Eds.) New Perspectives

on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham,
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Карслi Х. Асимптотичнi властивостi узагальнених операторiв вибiрки типу Урисона // Карпат-

ськi матем. публ. — 2021. — Т.13, №3. — C. 631–641.

Ця стаття є продовженням дослiдження властивостей збiжностi узагальнених операторiв

вибiрки типу Урисона, означених автором у роботi [Dolomites Res. Notes Approx. 2021, 14 (2),

58–67]. Основна увага зосереджена на дослiдженнi асимптотичних властивостей разом iз де-

якими теоремами типу Вороновської для лiнiйних та нелiнiйних аналогiв узагальнених опера-

торiв вибiрки типу Урисона.

Ключовi слова i фрази: узагальнений оператор вибiрки, лiнiйний та нелiнiйний аналоги уза-

гальненого оператора вибiрки типу Урисона, асимптотичне розвинення, теорема типу Воро-

новської.


