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Robust interpolation of sequences with periodically stationary
multiplicative seasonal increments

Luz M.M.!, Moklyachuk M.P.>>

We consider stochastic sequences with periodically stationary generalized multiple increments
of fractional order which combines cyclostationary, multi-seasonal, integrated and fractionally in-
tegrated patterns. We solve the interpolation problem for linear functionals constructed from un-
observed values of a stochastic sequence of this type based on observations of the sequence with
a periodically stationary noise sequence. For sequences with known matrices of spectral densities,
we obtain formulas for calculating values of the mean square errors and the spectral characteristics
of the optimal interpolation of the functionals. Formulas that determine the least favorable spectral
densities and the minimax (robust) spectral characteristics of the optimal linear interpolation of the
functionals are proposed in the case where spectral densities of the sequences are not exactly known
while some sets of admissible spectral densities are given.

Key words and phrases: periodically stationary increment, SARFIMA, fractional integration, filter-
ing, optimal linear estimate, mean square error, least favourable spectral density matrix, minimax
spectral characteristic.
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Introduction

A big amount of data arising and being collected in the past decades motivates develop-
ing new techniques for their effective processing. Among others, we pay attention to time
series models which are appropriate for describing data coming from economics, finance,
climatology, air pollution, signal processing etc. The particular examples can be found in
the articles by A.E. Dudek and H. Hurd [6], S. Johansen and M.O. Nielsen [20], V.A. Reisen
et al. [43]. Usually researchers have to deal with non-stationary and fractional behavior of
data series, which in a simple case can be described by a general multiplicative model, or
SARIMA(p,d,q) x (P,D,Q)s; model with integrated and seasonal factors, introduced in the
book by G.E.P. Box et al. [4]:

¥(B*)y(B)(1 — B)*(1 — B°)"x: = ©(B*)6(B)et, 1)

where ¢, t € Z, is a sequence of zero mean i.i.d. random variables, ¢(z), 6(z) are polyno-
mials of p and g degrees, and where ¥(z) and ©(z) are polynomials of degrees of P and Q
respectively which have roots outside the unit circle. The parameters d and D are allowed
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to be fractional, and under conditions |d + D| < 1/2 and |D| < 1/2 the process (1) is sta-
tionary and invertible. For an illustration of an application of a seasonal ARFIMA model see
S. Porter-Hudak [41] who analyzed the monetary aggregates used by U.S. Federal Reserve. The
fractional integration is also described by GARMA processes (see H.I. Gray, N.-F. Zheng and
W.A. Woodward [13])

(1—2uB+B?)x; =¢;, |u| <1 2)

Some resent results dedicated to the statistical inference for seasonal long-memory se-
quences can be found in the following three papers. H. Tsai, H. Rachinger and E.M.H. Lin [46]
developed methods of estimation of parameters in case of measurement errors. R.T. Baillie,
C. Kongcharoen and G. Kapetanios [2] compared MLE and semiparametric estimation proce-
dures for prediction problems based on ARFIMA models by conducting a simulation study.
They concluded a better performance of MLE predictor than the one based on the two-step
local Whittle estimation. U. Hassler and M.O. Pohle [16] (see also U. Hassler [17]) assess a pre-
dictive performance of various methods of forecasting of inflation and return volatility time
series and show strong evidences for models with a fractional integration component.

Periodically correlated, or cyclostationary, processes introduced by E.G. Gladyshev [11],
allow to describe another type of non-stationarity — a time-dependent spectrum. They are
widely used in signal processing and communications, and also can be considered as an ex-
tension of seasonal models [1,3,27,39]. For a review of recent works on cyclostationarity and
its applications, we refer to A. Napolitano [38].

Dealing with real data problems, a range of issues, not being covered by the classical the-
ories, arises: the presence of outliers, measurement errors, incomplete information about the
spectral, or model, structure etc. So there is an increasing interest to robust methods of es-
timation that are reasonable in such cases [42,45]. Since the work by U. Grenander [14], the
minimax extrapolation, interpolation and filtering problems for stationary sequences and pro-
cesses have been studied by Y. Hosoya [18], S.A. Kassam [23], ]J. Franke [8], S.K. Vastola and
H.V. Poor [47], M.P. Moklyachuk [34,37], M.M. Luz and M.P. Moklyachuk [30], Y. Liu et al. [26]
and others.

This article is dedicated to the robust interpolation of stochastic sequences with period-
ically stationary long memory multiple seasonal increments, or sequences with periodically
stationary generalized multiplicative (GM) increments, introduced by M. Luz and M. Mokly-
achuk [31]. The definition of processes combining a periodic structure of the covariation func-
tion and the multiple seasonal factors is motivated by the interest to the models with multi-
ple seasonal and periodic patterns, see G. Dudek [7], P.G. Gould et al. [12] and V.A. Reisen
et al. [43], H. Hurd and V. Piparas [19]. The discussed problem is a natural continuation of
the researches on minimax interpolation and filtering of stationary vector-valued processes,
periodically correlated processes and processes with stationary increments have been per-
formed by M.P. Moklyachuk and O.Yu. Masyutka [33], L.I. Dubovets'ka, O.Yu. Masyutka and
M.P. Moklyachuk [5], M. Luz and M. Moklyachuk [28,29] respectively. We also should mention
the works by M.P. Moklyachuk, O.Yu. Masyutka and M.I. Sidei [32, 35, 36], who derive mini-
max estimates of stationary processes from observations with missed values, and the work by
P.S. Kozak and M.P. Moklyachuk [25], who have studied interpolation problem for stochastic
sequences with periodically stationary increments.

The article is organized as follows. In Section 1, we recall definitions of generalized mul-
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tiple (GM) increment sequence Xﬁs(g (m)) and stochastic sequences (m) with periodically
stationary (periodically correlated, cyclostationary) GM increments. The spectral theory of
vector-valued GM increment sequences and the case of non-stationary fractional integration
are discussed. Section 2 deals with the classical interpolation problem for the linear functional
ANG which is constructed from unobserved values of the sequence ¢(m) when the spectral
densities of the sequence ¢(m) and a noise sequence 7 (m) are known. The Hilbert space pro-
jection technique is applied to obtain the estimates of the vector-valued sequence &(m) + 7 (m)
with stationary GM increments under the stationary noise sequence 7 (m) uncorrelated with
& (m). Section 3 is dedicated to the minimax (robust) estimates in cases, where spectral den-
sities of sequences are not exactly known while some sets of admissible spectral densities are
specified. We illustrate the proposed technique on the particular types of the sets, which are
generalizations of the sets of admissible spectral densities described in a survey article by
S.A. Kassam and H.V. Poor [22] for stationary stochastic processes.

1 Stochastic sequences with periodically stationary generalized multiple
increments

1.1 Preliminary notations and definitions

Consider a stochastic sequence §(m), m € Z, defined on a probability space (Q, F,P).
Denote by B, a backward shift operator with the step u € Z, such that B,(m) = ¢{(m — u),
B = Bl. Then B; — B‘uBy s B‘u.

Define the incremental operator

n(7)
X0(B) = (1B )" (1—B2)"= ... (1-By)" = Y ey (k)B,
k=0
whered :=dy +dy+...+dy, d = (dy,d,...,d;) € (N*),5 = (s1,52,...,8,) € (N*)" and
io= (1, p2,-.. pr) € (N*) or € (Z\IN)", n(y) := Li_y pisid;. Here N* = N\ {0}. The
explicit formula for the coefficients e, (k) is given in [31].

Definition 1. For a stochastic sequence ¢(m), m € Z, the sequence
(& (m)) = X2 (B)a(m) = (1 Bia)™ (1 - Bg)® - (1 - By )" &(m)

hood )
B Z (_1)ll+...+lr (7;) e <7:> é(m — ]’llslll — .. ;l/lrsrlr)

L=0 1,=0

is called a stochastic generalized multiple (GM) increment sequence of differentiation order d
with a fixed seasonal vectors € (IN*)" and a varying step i € (N*)" or € (Z \IN)".

()

Definition 2. A stochastic GM increment sequence Xus

if the mathematical expectations

Ex\2(E(mo)) = el (7)), Exi(&(mo +m)xis(E(mo)) = DI (m; iy, o)
(d)

s

(¢(m)) is called a wide sense stationary

exist for all mg, m, 1, 1i;, 1, and do not depend on my. The function c
(d)

value and the function D; "’ (m; i,,7,) is called a structural function of the stationary GM in-
crement sequence (of a stochastic sequence with stationary GM increments).

(1) is called a mean
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The stochastic sequence (m), m € Z, determining the stationary GM increment sequence

ng) ((m)) by (3) is called a stochastic sequence with stationary GM increments (or GM incre-
ment sequence of order d).

Remark 1. For spectral properties of one-pattern increment sequence

X (@(m)) =& (m, ) = (1 — By)"&(m)

see, e.g., [29, pp. 1-8], [9, pp. 46-60, 261-268], [48, pp. 390-430]. The corresponding results for
continuous time increment process &) (t,7) = (1 — By)"E(t) are described in [48,49].

1.2 Definition and spectral representation of stochastic sequences with periodically sta-
tionary GM increment

In this section, we present definition, justification and a brief review of the spectral theory
of stochastic sequences with periodically stationary multiple seasonal increments.

Definition 3. A stochastic sequence ¢(m), m € Z, is called a stochastic sequence with peri-
odically stationary (periodically correlated) GM increments with period T if the mathematical
expectations

EXUTS(E(m + T)) = Exips(E(m) = &2 (m, ),
EXL s (E0m + T ps(E(k + T)) = DY (m + T,k + T8y, ) = DY (m, k; 7y, )
exist for every m, k, i, ji, and T > 0 is the least integer for which these equalities hold.
Using Definition 3, one can directly check that the sequence
Cp(m):g"f(mT—i-p—l), p=1L.2...,T, meZ, (4)

forms a vector-valued sequence § = {ép ,m € Z, with stationary GM incre-

} p=12,.,T
ments by the relation X (ép( m)) = X%,)Tg(g'f(mT +p-1)),p=12,...,T, where X (ép( m))
is the GM increment of the pth component of the vector-valued sequence ¢ E(m).

The following theorem describes the spectral structure of the GM increment [21, 31].

Theorem 1.

1. The mean value and structural function of the vector-valued stochastic stationary GM
increment sequence X%) (&(m)) can be represented in the form

) =TTt D) = [ 2l )5 ar
i’ 17 2 _ah Hy ‘ﬁ(d)(l)\)‘z ’
where
) r ) r [s;/2]
e =TT — e ™m)d,  p(ir) = [T (A —2miki/s))%,
=1 j=1kj=—1s;/2]

c is a vector, F(A) is the matrix-valued spectral function of the stationary stochastic se-
quence X%) (&(m)). The vector ¢ and the matrix-valued function F(A) are determined

uniquely by the GM increment sequence 7(%) (E(m)).



Robust interpolation of sequences with periodically stationary multiplicative seasonal increments 109

2. The stationary GM increment sequence X%) (&(m)) admits the spectral representation
@ &y = [ @D iy 5
Al @m) = [ e s e

where dzg(d> (A) = {ZP()\)};:1 is a (vector-valued) stochastic process with uncorrelated
increments on [—7, 77) connected with the spectral function F(A) by the relation

E(Zp(AZ) - Zp(Al))(Zq()\Z) - Zq(}\l)) = qu(AZ) - qu(}\l)r
where —m < A\ <Ay <m;p,q=1,2,...,T.

Consider another vector-valued stochastic sequence with the stationary GM increments
C(m) = &(m) +ij(m), where #j(m) is a vector-valued stationary stochastic sequence, uncorre-
lated with ¢ (m), with a spectral representation

T,
i(m) = /_ ﬂezmazz,7 A, Zy(A) ={Zyp MYy, Ae[-m7),
is a stochastic process with uncorrelated increments, that corresponds to the spectral function
G(A) [15]. The stochastic stationary GM increment X%) (Z(m)) allows the spectral representa-
tion A

T IAmM
() ,—iry_€
while dZ,(A) = (ﬁ(d)(i)\))_leW)(A), A € [—m, ). Therefore, in the case where the spec-
tral functions F(A) and G(A) have the spectral densities f(A) and g(A), the spectral density
p(A) = {Pij()\>}iT,j:1 of the stochastic sequence (1) is determined by the formula

M2 Eom) = [

AZg W)+ [ M e az, (),

p(A) = F(A) + B (1) Pg(M).
1.3 Sequences with GM fractional increments

Now we extend the definition of GM increment sequence )(%) (&(m)) of the positive

integer orders (di,...,d,) to the fractional ones. Within the subsection, we put the step
#=(1,1,...,1). Represent the increment operator X(d) (B) in the form

5
"

ARD)(B) = (1 — BYRo+Do 11— Bo)RDs, (5)

S
=1
where (1 — B)RO+D0 is an integrating component, Rj, j = 0,1,...,r, are non-negative integer
numbers, 1 < s; < ... < s,. Below we describe a representations dj =Rj+D;j=01,...,1, of
the increment orders d; by stating conditions on the fractional parts D; such that the increment
sequence

7(m) = (1 B)Ro f{u —B)RE(m)
1

is a stationary fractionally integrated seasonal stochastic sequence. For example, in case of
single increment pattern (1 — B¥ )R +P”, this condition is |[D*| < 1/2.
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Definition 4. A sequence )(S (5 (m)) is called a fractional multiple (FM) increment se-
quence.

Consider the generating function of the Gegenbauer polynomial:

[n/2] k n—2k
(d) B (—1)*(2u) I'(d—k+n)
(1—2uB+B*)~ Z i (wB", G (u) = k_g K (n — 20T (d)

The following lemma and theorem hold true [31].

Lemma 1. Define the sets M; = {vk]. = 2mtk;/sj : kj =0,1,...,[s;/2]},j = 0,1,...,r, and
M = U]r‘:() M. Then the multiple seasonal increment operator admits the following represen-

tation:
;

XéD)(B) = (1 - B)DO H(l BSi ) — H (1 —2cosvB + BZ)ﬁv

j=1 veM
= (1—B)P*PrttDr(1 4 B)Px ] (1—2cosvB+ B*)P
ve M\{0,}
o] -1 (e
= ( Y G,j;(m)Bm> =) Gg
m=0 m=0

where

G (m) = ) I Cnv (cosv),
0<ny, ...z <m, veM
4. +1px=m

- -D
Gp.(m) = ) [] C,(% ”)(Cosv),
0<ny,...nx<m, ve M
nm+...+ngx=m

where k* = | M|, D, = ]’-:O D]-]I{v € M]-}, D, = D, forv e M \ {0, t}, D, = D,/2 forv =20
andv = .

Theorem 2. Assume that for a stochastic vector-valued sequence &(m) and fractional differenc-
ingordersd; = Rj+ D;,j =0,1,...,r, the FM increment sequence 7(£ D)((f (m)) generated by
increment operator (®)isa stat1onary sequence with a bounded from zero and infinity spectral
density fl( ). Then for the non-negative integer numbers R;,j=0,1,...,1, the GM increment

sequence QE) (’f m)) is stationary if —1/2 < D, < 1/2 for allv € M, where D, are defined
q XT3 Y

by real numbers D;j=01,...,r,in Lemma I, and it is long memory if 0 < D, < 1/2 for at

least onev € M, and invertible if —1/2 < D, < 0. The spectral density f(A) of the stationary
(R)

15

FA) =BRGP ™M) 2t (™) 2 (4) =2 [P (e )72 (),

GM increment sequence x- - (Z(m)) admits the representation

where )
—zAm

e o]

|X%D)(e—i)\)|—2: Z G,;ﬁ(m —zAm

m=0

k*

For further conditions on the spectral density f(A) and the structural function DE(R) (m,1,1)
of a stationary GM increment sequence X( )((f (m)) as well as for examples of Theorem 2 ap-
plication, we refer to W. Palma and P. Bondon [40], L. Giraitis and R. Leipus [10], M. Luz and
M. Moklyachuk [31].
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2 Hilbert space projection method of interpolation

2.1 Interpolation of vector-valued stochastic sequences with stationary GM increments

Consider a vector-valued stochastic sequence with stationary GM increments &(m) con-
structed from transformation (4) and a vector-valued stationary stochastic sequence 7j(m) un-

correlated with the sequence 7#j(m). Let the stationary GM increment sequence 7(%) (E(m)) =

{ X%Lfg(ép(m))};:1 and the stationary stochastic sequence 7j(m) have the absolutely continu-
ous spectral functions F(A) and G(A) with the spectral densities f(A) = {f;(A) }Z-T,]-:1 and
g(A) = {gij(A)}iT,jzl respectively.

Without loss of generality we will assume that the mean values of the increment sequences
are Ex%) (&(m)) =0, Ef(m) =0and 7 > 0.

Interpolation problem. Consider the problem of mean square optimal linear estimation of the
functional AN = YN ,(@(k)) T (k) which depends on the unobserved values of the stochastic
sequence &(k) = {¢y(k) };:1 with stationary GM increments. Estimates are based on observa-
tions of the sequence { (k) = &(k) + 7j(k) at points of the set Z \ {0,1,2,...,N}.

Assume that spectral densities f(A) and g(A) satisfy the minimality condition

T (d)(ir)2
[ e [ B () + 1600 o) ah < o0 ©
T L e )P
The latter condition is the necessary and sufficient one under which the mean square errors
of estimates of functional AZ is not equal to 0.
We apply the Hilbert space estimation technique proposed by A.N. Kolmogorov [24] which
can be described as a 3-stage procedure:

(i) define a target element (to be estimated) of the space H = L,(Q), F,P) of random vari-
ables v which have zero mean values and finite variances, Ey = 0, E|y|> < o, endowed
with the inner product (1, 72) = Ey172;

(ii) define a subspace of H generated by observations;
(iii) find an estimate of the target element as an orthogonal projection on the defined sub-
space.

Stage (i). The functional An¢ does not belong to the space H. With the help of the following
lemma we describe representations of the functional as a sum of a functional with finite second
moments belonging to H and a functional depending on observed values of the sequence (k)
(“initial values”) (for more details see [28,29,31]).

Lemma 2. The functional AN admits the representation
ANE = AN — Anif = HnE = W, 7)
where Hy¢ == Byx{ — ANT,
N
ANG =) (@(k) ' C(k),  Anif = ) (@(k)) 'i(k),

k=0 k=0

N
Baxl = Y (bn(K) X2 @), W= Y (@n(k) LK),

k=0 k=—n(y)
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the coefficients
bn(k) = {bnp(K)}_;, k=0,1,...,N,
and
an(k) = {onp(k)} o, k=—1,-2,...,—n(y),

are calculated by the formulas

NAk+n(7y)

an (k) = IZ disgr(e, (1 —K))Bn (1), k=—1,-2,...,~n(7),
=0

ZdlagT L(m —k))a(m) = (Dkan), k=0,1,...,N,

where D}, is the linear transformation determined by a matrix with the entries (D) (k,j) =
diagy(dz(j —k)) if 0 < k < j < N, and (Dy;)(k,j) = 0if 0 < j < k < N, diagy(x) de-
notes a T x T diagonal matrix with x on its diagonal, ay = ((@(0))",(@(1))",...,(@N))")T,
coefficients {dy(k) : k > 0} are determined by the relationship

Eawe -T1(£w)"

i=1

The functional H NE from representation (7) has finite variance and the functional VNE
depends on the known observations of the stochastic sequence (k) at points k = —n(y),

—n(y) +1,...,—1. Therefore, estimates ANE and HNE of the functionals ANg' and HNg' and
the mean-square errors A(f ¢ AnE) = E|ANE — AnE|? and A(f, g; HnE) = E|HNE — HNEJ? of
the estimates An¢ and Hy satisfy the following relations

AnE = HnE— W, (8)
A(f, g AnG) = E|ANE — ANE|* = E|HnG — HnE* = A(f, & HNE).

Therefore, the estimation problem for the functional Ax¢ is equivalent to the one for the func-
tional Hy¢. This problem can be solved by applying the Hilbert space projection method
proposed by A.N. Kolmogorov [24].

The functional Hy¢ admits the spectral representation

(d )( 71A>

HNé / l/\ TXV

W oo () = / (An(e™))TdZ,(A),

—7T

where

‘ N _ , N ‘ o N
Bﬁ,N(e”\) =) bﬁ,N(k)eZ)‘k = Z(DﬁlaN)ke”\k, An(e?) = ) a(k)e,.
k=0 k=0 k=0
(

Stage (ii). Introduce the following notations. Denote by H%~ (C%dg) + 17%) ) the closed linear

subspace generated by values {X(ﬁdg) (E(k)) + X%dg)(ﬁ(k)) ck=—1,-2,-3,...}, i > 0 of the
observed GM increments in the Hilbert space H = L(Q), F, P) of random variables 7y with
zero mean value, Ey = 0, finite variance, E|y|> < o, and the inner product (v1;72) = E172.

Denote by HNT (& (f%g + 17(,25) the closed linear subspace generated by values { )((f%/g(g (k)) +
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X(_d%s(ﬁ (k)) : k > N}, of the observed GM increments in the Hilbert space H = L,(Q), F,P).
Denote by LY~ (f(A) + B (iA)[2g(A)) and LY T (F(A) + |8 (iA) [>g(7)) the closed linear sub-
spaces of the Hilbert space Ly(f(A) 4 |8 (iA)[2g(A)) of vector-valued functions with the in-
ner product

(grig2) = [ ()T (FO) + B (12) Pg(0) g2 (V) d

which is generated by the functions

ik, (@) (—id 3 T T —
XV ( )‘B(d)(l)\>’ 51 - {5lﬁ}p:11 l _1/--'7T/
fork < —1and k > N + 1, respectively, where ), is a Kronecker symbol.
Then the relation
~ T d . ei)\k
G0 = [ 260N gy ey )

~

O)Iv

A E W) + 2,

i

yields a one-to-one correspondence between elements e"** )(;(4 (e=")3; /B4 (i)) from the space

LY (f(A) + [BD(iA) Pg(A) @ LY (F(A) + B9 (i) Pg(A))
and elements ng) (E(k)) + 7(%) (77(k)) from the space

O)Iv

+750).

HO (@) + i) @ HNH @D 4y ) = O (64 + ) @ HONO)+ () 4yl

=

Relation (8) implies that every linear estimate A\f of the functional Ag’,? can be represented
in the form

ANE = [ (ian(0) dZga 00 = L @) G0 +7(K), ©)

where Eﬁ,N (A) = {hp ()\)};:1 is the spectral characteristic of the optimal estimate Hy¢.

Stage (iii). At this stage we find the mean square optimal estimate HyC as a projection of
the element Hy¢& on the subspace HO~ (C%dg) + 17%) )@ HWN +”(7))+(Cg§) + 17%) ). This projection
is determined by two conditions:

1) Ang € HO- (2 + i) @ HOVHnen+ @) 4 ),
2) (Hn§ — AnG) L HO (&0 + ) @ HNen+(ell) 4 yl0),

The second condition implies the following relation which holds true for all k < —1 and k >
N+n(y)+1

p- . ‘ 6 e—z‘A ~ T
/ {(BH,N(EM)Tw - th(M) (F(A) + 18D (1) (M)
]x(yd)(e‘“)

e~ Mdr = 0.
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This relation allows us to derive the spectral characteristic fzw\[ (A) of the estimate HyE which
can be represented in the form

(d) ( ,—iA .
. e oant X € L BA(iA)
(han(A)T = (Ban(e A))TW - (Cle(e)‘))Tﬁ
o (10)
< (F(A) + B9 (iA)Pg(A) ™! = (An(e™)) T g(A)B@ (iM)

X (f(A) + B@ (M) Pg(A) 7,

where éﬁ,N(eiA> = ZII:[:B”(’Y) E)ﬁ,N(k)eik)\, Eﬁ,N(k) = {Cﬁ/N/P(k)}Z;zl’k =01,..., N+ 1’1(’)/), are
unknown coefficients to be found.

It follows from condition 1) that the following equations should be satisfied for
0<j<N-+n(y)

TR ANWT (7 1B (iA) P () (1112 1
/n (Bun(e™) T = (An(e™)) (A >x(d)(e " (f(A) + B (1) [7g(7))
! (11)
iA) | ”
— (Cun(e™)" |)|f (()3|)|2(f()t)+Iﬁ(d)(i)»)|2g()\))_1]e‘”AdA:O.
z e

Define for 0 < k,j < N + n(y) the Fourier coefficients of the corresponding functions

i1 f IBOGR . T
G e 5 (50 + B9 a0 Ps) ]

_ T, (d) (1 2 -1 7
sz,j _ %/_nem]k) ’7’(/;7)(21_)3‘)‘2 [(f(;\) + \5(d)(iA),2g(A)) 1] dA;
W

L [ e { £ (F) + BD GNP ))

2w J—

.
Qkj= g()»)] .

Making use of the defined Fourier coefficients, relation (11) can be presented as a sys-
tem of N + n(y) + 1 linear equations determining the unknown coefficients ¢y n(k),
0<k<N-+n(y),

. N+n(y) _ N+4n(y) _
ban() = ). Tidgn(m)= ) Phéin(k), 0<j<N, (12)
m=0 k=0
Ntn(y) Ntn(y) _
_ Zo T} i N (m) = k Phiin(k), N+1<j<N+n(y), (13)
m= =0

where coefficients {@zn(m) : 0 < m < N 4 n(v)} are calculated by the formula

ﬁﬁlN(m) = E,ﬁ,N(m —n(y)), 0<m<N-+n(y),
min{m+n(y),N}

I=max{m,0}
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Denote by [D NaN] +n() @ vector of dimension (N +n(7) 4+ 1)T which is constructed by adding
n(y)T zeros to the vector DK,aN of dimension (N + 1)T. Making use of this definition the

system (12)—(13) can be represented in the matrix form [DﬁaN] +n(y) — TN =Pl ! NEn, Where

7)

ND) ' @n @) @ (N () )
N @GN @) En(N +n(r) )T

are vectors of dimension (N + n(y) + 1)T, PﬁN and T% are matrices of dimension
(N_+ n(y) j— T x (N + n(y) + 1)T with T x T matrix elements (Py);x = P]‘P,lk and
(Th)jk = Ty, 0 < jk < N +n().

0<

Thus, the coefficients ¢ n(k), N + n(v), are determined by the formula

an(k) = <<P§3>—1[D%am+nm — (P T Ak )., 0<k< N+n(y),

where ((P%) [D%aN]M( ) — (P” I N aN)k, 0 < k < N+ n(vy), is the kth element of the
PY) ' [DRan] 1u(y) — (PR) ' Thal.
The existence of the inverse matrix (PVN) ~1 was shown in [29] under condition (6).

The spectral characteristic Eﬁ,N()\) of the estimate H ~n¢ of the functional Hx¢ is calculated
by formula (10), where

vector (P

. _ N+n(y)  _ -~ . B _
Cun(e™) = kZO ((PR) M [DNan] yn(y) — (PR) ' Thak ke . (14)

The value of the mean-square errors of the estimates ng and H Nf can be calculated by
the formula

A(f, 8 AnE) = A(f, & HNE) = E[HNE — HnEP

7 iR o . |
) %/ |7|C!Z (i ):))‘|)|2[X (e™)(An(e™) Tg(A) + (Can(e™)T]

X (F(A) + B9 (iA) Pg
x [0 (™) An (e ™)g

(
1 @) (An (@) TFA) - | DENP(Can(e™)T (1)
+El @

(A FA)(FA) + B9 (iA)Pg(A)) !
(A) + (Canle™™)

X (F(A) + [BD (A P()) ! (M (F(A) + B9 (i) Pg(A)) !
X [ (™) An (e ™) F(A) — B9 (iA) P(Can(e™™))]dA
= ([DRan] n(y) — Thak, (PR) ' [DRan] () — (PR) ' Thal)
+ (Qnany, an),

where Qy is a matrix of the dimension (N + 1)T x (N + 1)T with the T x T matrix elements

(QON)jx = Qjr 0<j,k<N.
The following theorem holds true.
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Theorem 3. Let {Z(m): m € Z} be a stochastic sequence which defines the stationary GM
increment sequence ng) (E(m)) = { ng) (ﬁp(m))}zzl with the absolutely continuous spectral
function F(A) which has spectral density f(A). Let {ij(m): m € Z} be an uncorrelated with
the sequence ¢ (m) stationary stochastic sequence with an absolutely continuous spectral func-
tion G(A) which has spectral density g(A). Let the minimality condition (6) be satisfied. The
optimal linear estimate An¢ of the functional AxE which depends on the unknown values of
elements &(k), k = 0,1,2,...,N, from observations of the sequence &(m) + 7j(m) at points of
the set Z\ {0,1,2,...,N} is calculated by formula (9). The spectral characteristic Eﬁ,N(A) of
the optimal estimate ANE is calculated by formulas (10), (14). The value of the mean-square
error A(f, g; ANC) is calculated by formula (15).

Corollary 1. The spectral characteristic EW\;()\) (10) admits the representation

where
. . , (d) (p—iA @) (; N+n(y) B T
()T = (B ()T S(M))—Xﬁ d(< (L R ke e
><<f<A>+\ﬁ (i) (1),
(20T = (An(e) BTN (F() + 89 0A) Pg(A))
ald)(ix) ) (i N+n(7y) _ o . T
- LR (8 (0l R ™) () + 6 )Pl
Xpp (€7) N\ k=0

Here E%N(A) and E%N(A) are the spectral characteristics of the optimal estimates Byx{ and

ANT] of the functionals By x{ and Ayij respectively based on observations &(k) + 7j (k) at points
of thesetZ\ {0,1,2,...,N}.

Remark 2. The interpolation problem for stochastic sequences with fractional multiple (FM)
increments can be solved with the help of results described in Theorem 3 under the conditions
of Theorem 2 on the increment orders d;.

2.2 Interpolation of stochastic sequences with periodically stationary GM increments

Consider the problem of mean square optimal linear estimation of the functional
Aptd = YN a® (k)9(k) which depend on unobserved values of the stochastic sequence
®(m) with periodically stationary GM increments. Estimates are based on observations of the
sequence ((m) = ®(m) + n(m) at points of the set Z \ {0,1,2,..., N}, where the periodically
stationary noise sequence #(m) is uncorrelated with ¢(m).

The functional A9 can be represented in the form

_ Mo _ N
Ayt =Y a (k)o(k) = )

k=0 m=0p=
N T

1
N
=Y Y a,(m)éy(m) =Y (@(m))" E(m) = AN,

m=0p=1 m=0

T
DN (mT +p—1)9(mT +p—1)
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where N = [M/T], the sequence ¢ (m) is determined by the formula

§(m) = (&1(m),Ga(m), ..., Er(m))", Gp(m) =8(mT+p—1), p=12...,T, (16)
(@(m)) " = (ar(m),az(m),...,ar(m))",

a®mT+p—1), 0<m<N, 1<p<T, mT+p-1<M, (17)

N)=0, M+1<NT+p-1<(N+1)T-1,1<p<T.

Making use of the introduced notations and statements of Theorem 3 we can claim that the
following theorem holds true.

Theorem 4. Let a stochastic sequence ¢ (k) with periodically stationary GM increments gen-
erate by formula (16) a vector-valued stochastic sequence ¢(m) which determine a station-

ary GM increment sequence X%) (E(m)) = { X%) (Cp(m)) ;:1 with the spectral density matrix

f) = {fii(M}1- Let {fi(m): m € Z3}, ij(m) = (q(m),y2(m), ... qr(m))", 1,(m) =
nmT+p—1),p =1,2,...,T, be uncorrelated with the sequence 5 (m) stationary stochas-
tic sequence with an absolutely continuous spectral function G(A) which has spectral density
g(A). Let the minimality condition (6) be satisfied. Let coefficients d(k),k > 0, be determined
by formula (17). The optimal linear estimate A M of the functional Ay = ANE based on
observations of the sequence {(m) = ®(m) + y(m) at points of the set Z \ {0,1,2,...,N} is
calculated by formula (9). The spectral characteristic EF,N (A) = {hzn,p(A) ;:1 and the value
of the mean square error A(f; A M) are calculated by formulas (10), (14), and (15), respectively.

3 Minimax (robust) method of interpolation

The values of the mean square errors and the spectral characteristics of the optimal esti-
mate of the functional Ax¢ depending on the unobserved values of a stochastic sequence & (m)

which determine a stationary GM increments sequence )(%) (&(m)) with the spectral density
matrix f(A) based on observations of the sequence &(m) + ij(m) at points Z \ {0,1,2,...,N}
can be calculated by formulas (10), (14), (15) respectively, in the case where the spectral density
matrices f(A) and g(A) of the target sequence and the noise are exactly known.

In practical cases, however, complete information about the spectral density matrices is not
available in most cases. If in such cases a set D = Dy x Dy of admissible spectral densities is
defined, the minimax-robust approach to estimation of linear functionals depending on unob-
served values of stochastic sequences with stationary increments may be applied.

This method consists in finding an estimate that minimizes the maximal values of the mean
square errors for all spectral densities from a given class D = Dy X Dy of admissible spectral
densities simultaneously. This method will be applied in the case of concrete classes of spectral
densities.

To formalize this approach we recall the following definitions [37].

Definition 5. For a given class of spectral densities D = Dy x Dy the spectral densities fo(A) €
Dy, 80(A) € Dy are called least favorable in the class D for the optimal linear estimation of the

functional AN if the following relation holds true:

A(fo,80) = A(h(fo,80); fo,S0) = (f,g;gg?ng(h(frg)?frg)-
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Definition 6. For a given class of spectral densities D = Dy X Dy the spectral characteristic

h0()) of the optimal linear estimate of the functional A ¢ is called minimax-robust if there are
satisfied the conditions

KA eHp= () LY (FN) + B9 (M) Pg(A) @ LN (£(4) + B (id) Pg(A)),
(f.8)€DsxDy
min max Al f,¢) = max  A(K% £, Q).
hEHD (f,g)eDfng ( f g) (f,g)eDfng ( f g)

Taking into account the introduced definitions and the relations derived in the previous
sections we can verify that the following lemma holds true.

Lemma 3. The spectral densities f° € Dy, §° € Dy which satisfy the minimality condition (6)
are least favorable in the class D = Dy x Dy for the optimal linear estimation of the functional

ANC based on observations of the sequence {(m) +1(m) at pointsm € Z\ {0,1,2,...,N} if
the matrices (T},)°, (P,)°, (Qn)° whose elements are defined by the Fourier coefficients of

the functions )
|'3 (ZA)F O\ @ (7)) [2e° -1

|)'f (“Aj'jz (rw+p9argw) | [P (rm s mrgm) e
i (e

determine a solution of the constrained optimisation problem

3 ol PNl _ (pHN—1pH T
(f,g)r?la);(xpg(<[DNaN]+”(7) Tyam, (Py) " [Dyan]in(y) — (Py)™ Tyay) + (Qnan, an))
= ([DRan]n(y) — (Th)%ak, (PR)%) 7 [DRan] s (18)

— ((PR)) (T} %ak) + (QYan, an).

The minimax spectral characteristic h° = Eﬁ,N( 19,¢%) is calculated by formula (10) if
I_/l)ﬁ,N(fO,gO) € Hp.

The more detailed analysis of properties of the least favorable spectral densities and the
minimax-robust spectral characteristics shows that the minimax spectral characteristic #° and
the least favourable spectral densities f* and g° form a saddle point of the function A(k; £, g)
on the set Hp x D. The saddle point inequalities

Al £2,8%) > A% £°,¢%) > A(KY; f,8) V(f,g) €D, Vhe Hp

hold true if h* = ﬁﬁ,N (12,49, ﬁﬁ( 19,¢%) € Hp and (f°,¢°) is a solution of the constrained
optimization problem

A(f,8) = —A(hr(f°,8°); f.g) —inf, (f.g) €D, (19)

where the functional A(ﬁw\] (f2,¢%); f, g) is calculated by the formula
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. s ia)|? , o ~ .
M8 f8) = 5 [ |'5 DR 6)6i8) A () 8(0) + (Clp )]

0 (e 2
X (FO(A) + 1BD (A) 8°(A) 7L FA) (O (A) + B (i) 2g0(A)) !
X [0 (™) An(e7™)g(A) + €y (e~ ™)]dA
1 DA (e ™) (An (M) TFO(A) — 1B (iA)2(CY (7)) T]
+El @) ,—iry2
2 ()]
X (FO(A) + B (V)P (M) "I (F(A) + 1B (iA) P (1)) !
X [x (e An (e ™) O (A) — [BD (iA) PCY (™ )]dA,

where
N+n(7y)

Can(e™) = L (((PR)") T IDRaNL o) — ((PF)°) (TR %@k, )e™.
=0
The constrained optimization problem (19) is equivalent to the unconstrained optimization
problem

Ap(f,8) = A(f,8) +4(f,8|D) — inf, (20)
where 6(f, ¢|D) is the indicator function of the set D, namely é(f,¢|D) = 0if (f,g) € D
and §(f,¢|D) = +ooif (f,g) ¢ D. The condition 0 € dAp(f°,¢°) characterizes a solution
(f°,¢°) of the stated unconstrained optimization problem. This condition is the necessary
and sufficient condition under which the point (f?, ¢°) belongs to the set of minimums of the
convex functional Ap(f,g) [34,44]. Thus, it allows us to find equations which determine the
least favourable spectral densities in some special classes of spectral densities D.

The form of the functional A(ﬁﬁ( 19,¢%); f,¢) is suitable for application of the Lagrange
method of indefinite multipliers to the constrained optimization problem (19). Thus, the com-
plexity of the problem is reduced to finding the subdifferential of the indicator function of the
set of admissible spectral densities. We illustrate the solving of the problem (20) for concrete
sets admissible spectral densities in the following subsections.

3.1 Least favorable spectral density in classes Dy X D,

Consider the minimax interpolation problem for the functional Ay& depending on the un-
observed values of the stochastic sequence ¢ () which determine a stationary GM increments

sequence 7(%) ((f (m)) for the following sets of admissible spectral densities Dk k=1,2,3,4,

2 1@ (p—iry)2
D} = {f(A): i/n%ﬂmmzp},

e~ M2
s 5 [ n%w( Nir =},

{
Dg:{f(f\)i /‘Xy))(#fkk()d}\ P k=1, T}
{

n [pL(iA)

d) e—iMY|2
s 5 [ H%Tﬂ)z‘wl,mw ~p}.
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where p, pi, k = 1, T are given numbers, P, B; are given positive-definite Hermitian matrices,
and sets of admissible spectral densities Dé‘, k = 1,2,3,4 for the stationary noise sequence

ij(m)
g(A): Tr[g(A)] = (1 —&)Tr[g1(A)] + eTr[W(A)],

D? = {3(0): gu(A) = (1 = £)gie(V) +ewnald), 5

DF = {g(1)s (Barg(1) = (1= )(Ba,ga(1) + (B, W), 5 [ (Bag(A)an =g},
D! = {3(0): g0) = (1-Jga(d) +eW (1), 5 [ gWar =@},

where ¢1(A) is a fixed spectral density, W(A) is an unknown spectral density, g, gx, k = 1, T, are
given numbers, Q is a given positive-definite Hermitian matrix.
In the following we will use the next notations:

C%,Ow(e’“) = X(yd)(eM)A'N(fM))Tgo(A)

N+n(7y) . B ~ o | -
_< ];O (((P}ltl)o)1[D1’<13N]+n(7)_((1)}1<1>0)1(TVN)OaVN)k)elk)‘> ,
(d) (,—iry|2 B ‘
G = o e

), i N+n(7) _ B - - o
+Xﬁ (e—Z)‘)< k;) (((PHN)O)_l[D%aNLLn('y) _ ((P%)O)_l(T%)Oaﬁl)k)eﬂ(A> )

e P

P%(A) = W(fO(A) + |l3(d)(i)\)|280()\))-

From the condition 0 € dAp(f?, ¢) we find the following equations which determine the least
favourable spectral densities for these given sets of admissible spectral densities.
For the first pair of the sets of admissible spectral densities D}O x D! we have equations

(CIN(E™M) (TN (™) = Py (Va7 pY (1),

80/ iA g0 iA 2 0 2 (21)
(Can (NG (™))" = (a” +71(A))(py (A))7,

where #?, @ are Lagrange multipliers, the function y1(A) < 0 and 71(A) = 0 if Tr[go(A)] >

(1—&)Tr[g1 ()]
For the second pair of the sets of admissible spectral densities D%O x D? we have equation

(CIN (™M) (ChN (@) = a2(ph (1), -
(CIN DSV E) = (PR (aF + 7 A)sa i (B (1)),
where a2, a? are Lagrange multipliers, functions 7} (1) < 0 and 7{(A) = 0if g (A) >

(1—e)gh(A).
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For the third pair of the sets of admissible spectral densities D?O x D2 we have equation

(CIN(EMN(ChN (M) = (P (M) {addu i (P V),

(CEN (@) (CEN (€M) = (@ + 41 (A)PY (V)B7 (PY(A)),
where aZ, o are Lagrange multipliers, function 7{(A) < 0 and 7{(A) = 0 if (B, go(A)) >
(1 —¢€)(Ba, g1(A)), O is the Kronecker symbol.

For the fourth pair of the sets of admissible spectral densities Dj%o x D} we have equation

(CIN(E™M)(ChN (™) = a?(p) (A)B] (13(1),

0 0 -

(Con(E™MN(CE (€M) = (py(A)(@ - & + T (1)) (py (1)),

where a?, & are Lagrange multipliers, function T(A) < 0and I'(A) = 0if go(A) > (1 —e&)g1(A).
The following theorem holds true.

(23)

2

(24)

Theorem 5. The least favorable spectral densities f°(A) and g°(A) in the classes D x D,
k =1,2,3,4, for the optimal linear estimation of the functional ANE are determined by pairs
of equations (21)—24), the minimality condition (6), the constrained optimization problem
(18) and restrictions on densities from the corresponding classes D’O‘ X Dé‘, k=1,2,3,4. The
minimax-robust spectral characteristic Eﬁ,N (f°,¢%) of the optimal estimate of the functional
A N(f is determined by the formula (10).

3.2 Least favorable spectral density in classes Dy; X DY

Consider the minimax interpolation problem for the functional Ay& depending on the un-
observed values of the stochastic sequence ¢ (m) which determine a stationary GM increments

sequence ng) (g’,? (m)) for the following sets of admissible spectral densities Dl s k=1,2,3,4,

x|\ (p—iAy|2
D}, = {fw: —/ HH!HU(A) ~ A(A)]dA < a},
et 2
D}; = {f(A)' / %’fkk( ) = fe(A) | dA < 5, k:LT},
s [ ) (e P
D = {10: g [ S B S0 — )14 < o1,

d) (p—iLy|2 _
Dty = {1 55 [ ‘ngf( )fz‘ f8) = Fy0ldr <3, 1, =TT},

where f1(A) is a fixed spectral density, By is a given positive-definite Hermitian matrix,

5,60,k =1,T, 5 i,j = 1,T, are given numbers, and sets of admissible spectral densities Du ,
k=1,2,3,4, for the stationary noise sequence 7j(m):

D! = {g(0): v(A) < g(0) < u(), 5= [ igw mn=ql,

gA): Te[V(A)] < Tr[g(A)] < Tr[U
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where the spectral densities V(A), U(A) are known and fixed, g, qi, k = 1,T, are given num-
bers, Q, By are given positive definite Hermitian matrices.
From the condition 0 € dAp(f°,¢") we find the following equations which determine the

least favourable spectral densities for these given sets of admissible spectral densities.

For the first pair of the sets of admissible spectral densities Di; x DY we have equations

(CIN(EM)(ChN (™) = Bra(A) (P (V)2

0 (it 0 (iA 0 = = 0 (25)
(CEN(EM)(CE (™) = (PR (M) (B - B* +T1(A) + T2 (M) (py(A),
and
7 (@ (p—iry 2
%/_n% Tr(fo(A) = fi(A))|dA =6, (26)

where 2, B are Lagrange multipliers, the function I';(A) < 0and T;(A) = 0if g°(A) > V(A),
the function T2(A) > 0and T»(A) = 0if ¢%(A) < U(A), the function |y2(A)| < 1and

12(A) =sign(Tr(fo(A) — f1(A))) : Tr(fo(A) — f1(A)) # 0.

For the second pair of the sets of admissible spectral densities D?; x DY ? we have equations

(ChN (@) (Ch (™))" = (PYADABIVE(N) S Hoa (PR (M),

80 (iAyy (80 (Lidyyx 2 0 /1112 (27)
(Con(eN(Con ™)™ = (B + 11(A) + 12(A) (py(1))?,
and o
% /_7; %’f&()‘) _fklk(A)’d)\ =&, k=1T, (28)

where B2, B2 are Lagrange multipliers, y; is the Kronecker symbol, the function 71(A) < 0
and 71 (A) = 0if Tr[g%(A)] > Tr[V(A)], the function 72(A) > 0and 72(A) = 0if Tr[g°(A)] <
Tr[U(A)], the functions |y2(A)| < 1 and

12 (A) = sign(fi(A) = (V) = frx(A) = fie(A) #0, &
For the third pair of the sets of admissible spectral densities D3; x DY * we have equations

(CINEMN(CLN (™)™ = BN (P (A)B] (15 (),

1,T.

: : (29)
(Cg?N(EM»(C%,ON(eM))* = (Py AN (BE + 11k(A) + Y21 (M)} 1 (PR (A)),
e 1 ’X(j) (e=M)|2
]/l —_—
E/_HW“BMO(A) —A(ANdr =5, (30)

where p?, B2 are Lagrange multipliers, Jy; is the Kronecker symbol, the function y;,(A) < 0
and 71x(A) = 0if g (A) > vyk(A), the function ¥ (A) > 0 and 7o (A) = 0if Y (A) < ugk(A),
the function |y5(A)| < 1and

12(A) = sign(By, fo(A) — f1(A)) + (B, fo(A) = f(A)) #0.
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For the fourth pair of the sets of admissible spectral densities Dj; x Du we have equations

(CIN (M) (Ch (€M) = (B (AN B (D)1 (Mo (P (1),

‘ / (31)
(C M) (C M) = (B + 75 (A) + 75D (P ()BT (M),
end
1 T ‘X(Td)( fz)\)‘z . -
27 /_n Wvl]( ) — fz%‘()‘”d)\ =6, i,j=1T, (32)

where p?, B;; are Lagrange multipliers, the function 7 (A) < 0 and 7{(A) = 0if (B, §°(A)) >

(By, V(A)), the function y5(A) > 0 and 75(A) = 0 if (By,g%(A)) < (By, U(A)), functions

73j(A)] < 1and

oy B0 A0

i(A) = :
=T = A

The following theorem holds true.

§A) = fi(A) #0, i j=1T,

Theorem 6. The least favorable spectral densities f°(A) and g°(A) in the classes Df; x ng,
k =1,2,3,4, for the optimal linear estimation of the functional A NE are determined by pairs of
equations (25)—32), the minimality condition (6), the constrained optimization problem (18)

and restrictions on densities from the corresponding classes D’l‘ 5 X Dg ,k =1,2,3,4. The
minimax-robust spectral characteristic Eﬁ,N (f°,¢°) of the optimal estimate of the functional
A Ng’,? is determined by the formula (10).

4 Conclusions

In this article, we present methods of solution of the interpolation problem for stochastic se-
quences with periodically stationary long memory multiple seasonal increments, or sequences
with periodically stationary general multiplicative (GM) increments, introduced in the article
by M. Luz and M. Moklyachuk [31]. These non-stationary stochastic sequences combine pe-
riodic structure of covariation functions of sequences as well as multiple seasonal factors, in-
cluding the integrating one. A short review of the spectral theory of vector-valued generalized
multiple increment sequences is presented. We describe methods of solution of the interpola-
tion problem in the case where the spectral densities of the sequence ¢ () and a noise sequence
1(m) are exactly known. Estimates are obtained by applying the Hilbert space projection tech-
nique to the vector sequence q (m) +1j (m) with stationary GM increments under the stationary
noise sequence i (m) uncorrelated with & (m). The case of non-stationary fractional integration
is discussed as well. The minimax-robust approach to interpolation problem is applied in the
case of spectral uncertainty where the spectral densities of sequences are not exactly known
while, instead, sets of admissible spectral densities are specified. We propose a representation
of the mean square error in the form of a linear functional in L; space with respect to spectral
densities, which allows us to solve the corresponding constrained optimization problem and
describe the minimax (robust) estimates of the functionals. Relations are described which de-
termine the least favourable spectral densities and the minimax spectral characteristics of the
optimal estimates of linear functionals for a collection of specific classes of admissible spectral
densities. These sets are generalizations of the sets of admissible spectral densities described
in a survey article by S.A. Kassam and H.V. Poor [22] for stationary stochastic processes.
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Mu pO3rAsIAQ€EMO TIOCAIAOBHOCTI 3 IEPIOAMYHO CTAlliOHAPHMMM y3araAbHEHVMMI KPpaTHUMI IIPY-
pocTtaMm Apo6OBOTO HMOPSIAKY, SIKi IOEAHYIOTHh IMKAOCTAIliOHapHI, 6araroce3oHHi, iHTerpoBaHi Ta
Apob0OBO iHTerpoBaHi CTPYKTYPU. MM AOCAIAXKYEMO 3aAady ONTVMAABHOTO OIIHIOBAHHS (PYHKITIO-
HaAiB, IIIO 3aA€XaTh BiA HEBIAOMIX 3HaU€Hb CTOXaCTUYHOI MOCAIAOBHOCTI IIOTO TUITY Ha OCHOBI CITO-
CTepeXXeHb 3a TIOCAIAOBHICTIO 3 IePiOAMYHO CTalliOHAPHUM ITYMOM. AAS TOCAIAOBHOCTeN 3 BiaOMU-
M MAaTPUIISIMU CIIEKTPAABHMX IIIABHOCTEl MV BCTAHOBYAM (POPMYAM AASI OOUMCACHHS 3HaUeHb Ce-
PeAHBOKBaAPATHYHMX IIOXMOOK Ta CIEKTPAABHMX XapaKTepUCTMK ONTMMAABHMX OIIHOK (PYHKIIiO-
HaAiB. @OpMyAM, IO BM3HAYAIOTh HalVIMEHINI CIIPMSTAMBI CIIeKTPaAbHI IIIABHOCTI Ta MiHiMaxkcHy
(HaAIlHY) CTIEKTpaAbHY XapaKTepUCTUKM ONTUMaABHOL AiHiVHOI iHTeproAsIil dpyHKITIOHAAIB TIpO-
MIOHYIOTBCSI Y BMIIAAKY, KOAM CIIEKTPaAbHi IIIABHOCTI TOCAIAOBHOCTE TOYHO HEBIAOMI, TOAL SIK Ha-
BeAeHi Aesiki Habopy AOITY CTMMX CITeKTPaAbHIX ITIABHOCTEN.

Kntouosi cnoea i hpasu: TOCAIAOBHICTD i3 IEPiOAMYHO CTalliOHAPHMMU IPUPOCTaMM, MiHIMiKCHa
oliHKa, pobacTHa OIiHKa, cepeAHbOKBaApaTWUHA MOXMOKA, HalMEHII CIPMSATAMBA CIIEKTpaAbHa
IIiABHICTD, MiHIMaKCHa CIIeKTpaAbHA XapaKTepUCTHUKA.



