References

  1. Baek C., Davis R.A., Pipiras V. Periodic dynamic factor models: estimation approaches and applications. Electron. J. Stat. 2018, 12 (2), 4377–4411. doi:10.1214/18-EJS1518
  2. Baillie R.T., Kongcharoen C., Kapetanios G. Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures. Int. J. Forecast. 2012, 28 (1), 46–53. doi:10.1016/j.ijforecast.2011.02.012
  3. Basawa I.V., Lund R., Shao Q. First-order seasonal autoregressive processes with periodically varying parameters. Statist. Probab. Lett. 2004, 67 (4), 299–306. doi:10.1016/j.spl.2004.02.001
  4. Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung G.M. Time Series Analysis: Forecasting and Control. John Wiley and Sons, Inc., Hoboken, NJ, 2016.
  5. Dubovets’ka I.I., Masyutka O.Yu., Moklyachuk M.P. Interpolation of periodically correlated stochastic sequences. Theory Probab. Math. Statist. 2012, 84, 43–55. doi:10.1090/S0094-9000-2012-00862-4 (translation of Teor. Imovir. ta Matem. Statyst. 2011, 84, 43–56. (in Ukrainian))
  6. Dudek A.E., Hurd H., Wojtowicz W. Periodic autoregressive moving average methods based on Fourier representationof periodic coefficients. Wiley Interdiscip. Rev. Comput. Stat. 2016, 8 (3), 130–149. doi:10.1002/wics.1380
  7. Dudek G. Forecasting time series with multiple seasonal cycles using neural networks with local learning. In: Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J.M. (Eds.) Proc. of the 12th Intern. Conf. “Artificial Intelligence and Soft Computing”, Zakopane, Poland, June 9–13, 2013, Lecture Notes in Computer Science, 7894, Springer, Berlin, Heidelberg, 2013, 52–63.
  8. Franke J. Minimax-robust prediction of discrete time series. Z. Wahrscheinlichkeitstheor. Verw. Geb. 1985, 68, 337–364. doi:10.1007/BF00532645
  9. Gikhman I.I., Skorokhod A.V. Introduction to the theory of random processes. Fizmatlit, Moscow, 1965. (in Russian)
  10. Giraitis L., Leipus R. A generalized fractionally differencing approach in long-memory modeling. Lith. Math. J. 1995, 35 (1), 53–65. doi:10.1007/BF02337754
  11. Gladyshev E.G. Periodically correlated random sequences. Dokl. Akad. Nauk SSSR 1961, 137 (5), 1026–1029. (in Russian)
  12. Gould P.G., Koehler A.B., Ord J.K., Snyder R.D., Hyndman R.J., Vahid-Araghi F. Forecasting time series with multiple seasonal patterns. European J. Oper. Res. 2008, 191 (1), 207–222. doi:10.1016/j.ejor.2007.08.024
  13. Gray H.L., Zheng N.-F., Woodward W.A. On generalized fractional processes. J. Time Series Anal. 1989, 10 (3), 233–257. doi:10.1111/j.1467-9892.1989.tb00026.x
  14. Grenander U. A prediction problem in game theory. Ark. Mat. 1957, 3 (4), 371–379. doi:10.1007/BF02589429
  15. Hannan E.J. Multiple Time Series. John Wiley and Sons. Inc., New York, NY, 1970.
  16. Hassler U., Pohle M.O. Forecasting under long memory and nonstationarity. arXiv:1910.08202, 2019. doi:10.48550/arXiv.1910.08202
  17. Hassler U. Time Series Snalysis with Long Memory in View. John Wiley and Sons, Hoboken, NJ, 2019.
  18. Hosoya Y. Robust linear extrapolations of second-order stationary processes. Ann. Probab. 1978, 6 (4), 574–584. doi:10.1214/aop/1176995479
  19. Hurd H., Pipiras V. Modeling periodic autoregressive time series with multiple periodic effects. In: Chaari F., Leskow J., Zimroz R., Wylomanska A., Dudek A. (Eds.) Contrib. to the 10th Workshop on Cyclostationary Systems and Their Applications “Cyclostationarity: Theory and Methods – IV”, Grodek, Poland, February 2017, Applied Condition Monitoring, 16, Springer, Cham, 2020, 1–18.
  20. Johansen S., Nielsen M.O. The role of initial values in conditional sum-of-squares estimation of nonstationary fractional time series models. Econometric Theory 2016, 32 (5), 1095–1139. doi:10.1017/S0266466615000110
  21. Karhunen K. Über Lineare Methoden in Der Wahrscheinlichkeitsrechnung. Suomalainen Tiedeakatemia, Helsinki, 1947.
  22. Kassam S.A., Poor H.V. Robust techniques for signal processing: A survey. Proc. IEEE 1985, 73 (3), 433–481. doi:10.1109/PROC.1985.13167
  23. Kassam S.A. Robust hypothesis testing and robust time series interpolation and regression. J. Time Series Anal. 1982, 3 (3), 185–194. doi:10.1111/j.1467-9892.1982.tb00341.x
  24. Kolmogorov A.N. Selected works of A.N. Kolmogorov. Volume II Probability theory and mathematical statistics. In: Shiryayev A.N. (Ed.) Mathematics and its Applications, 26. Kluwer, Dordrecht, 1992.
  25. Kozak P.S., Moklyachuk M.P. Estimates of functionals constructed from random sequences with periodically stationary increments. Theory Probab. Math. Statist. 2018, 97, 85–98. doi:10.1090/tpms/1050 (translation of Teor. Imovir. ta Matem. Statyst. 2017, 97, 83–96. (in Ukrainian))
  26. Liu Y., Xue Yu., Taniguchi M. Robust linear interpolation and extrapolation of stationary time series in \(L^p\). J. Time Series Anal. 2020, 41 (2), 229–248. doi:10.1111/jtsa.12502
  27. Lund R. Choosing seasonal autocovariance structures: PARMA or SARMA? In: Bell W.R., Holan S.H., McElroy T.S. (Eds.) Economic Time Series: Modelling and Seasonality, Chapman and Hall, London, 2012, 63–80.
  28. Luz M.M., Moklyachuk M.P. Interpolation of functionals of stochastic sequences with stationary increments. Theory Probab. Math. Statist. 2013, 87, 117–133. doi:10.1090/S0094-9000-2014-00908-4 (translation of Teor. Imovir. ta Matem. Statyst. 2012, 87, 105–119. (in Ukrainian))
  29. Luz M., Moklyachuk M. Estimation of Stochastic Processes with stationary increments and cointegrated sequences. John Wiley and Sons, New York, NY, 2019.
  30. Luz M., Moklyachuk M. Minimax interpolation of sequences with stationary increments and cointegrated sequences. Modern Stoch. Theory Appl. 2016, 3 (1), 59–78. doi:10.15559/16-VMSTA51
  31. Luz M., Moklyachuk M. Minimax-robust forecasting of sequences with periodically stationary long memory multiple seasonal increments. Stat. Optim. Inf. Comput. 2020, 8 (3), 684–721. doi:10.19139/soic-2310-5070-998
  32. Masyutka O.Yu., Moklyachuk M.P., Sidei M.I. Interpolation problem for multidimensional stationary processes with missing observations. Stat. Optim. Inf. Comput. 2019, 7 (1), 118–132. doi:10.19139/soic.v7i1.430
  33. Moklyachuk M.P., Masyutka O.Yu. Interpolation of multidimensional stationary sequences. Theory Probab. Math. Statist. 2006, 73, 125–133. (translation of Teor. Imovir. ta Matem. Statyst. 2005, 73, 112–119. (in Ukrainian))
  34. Moklyachuk M.P. Minimax-robust estimation problems for stationary stochastic sequences. Stat. Optim. Inf. Comput. 2015, 3 (4), 348–419. doi:10.19139/soic.v3i4.173
  35. Moklyachuk M.P., Sidei M.I. Interpolation of stationary sequences observed with a noise. Theory Probab. Math. Statist. 2016, 93, 153–167. doi:10.1090/tpms/1000 (translation of Teor. Imovir. ta Matem. Statyst. 2015, 93, 142–155. (in Ukrainian))
  36. Moklyachuk M.P., Sidei M.I., Masyutka O.Yu. Estimation of Stochastic Processes with Missing Observations. Nova Science Publishers, New York, NY, 2019.
  37. Moklyachuk M.P. Stochastic autoregressive sequences and minimax interpolation. Theory Probab. Math. Statist. 1994, 48, 95–104. (translation of Teor. Imovir. ta Matem. Statyst. 1994, 51, 135–146. (in Ukrainian))
  38. Napolitano A. Cyclostationarity: new trends and applications. Signal Process. 2016, 120, 385–408. doi:10.1016/j.sigpro.2015.09.011
  39. Osborn D. The implications of periodically varying coefficients for seasonal time-series processes. J. Econometrics 1991, 48 (3), 373–384. doi:10.1016/0304-4076(91)90069-P
  40. Palma W., Bondon P. On the eigenstructure of generalized fractional processes. Statist. Probab. Lett. 2003, 65 (2), 93–101. doi:10.1016/j.spl.2003.07.008
  41. Porter-Hudak S. An application of the seasonal fractionally differenced model to the monetary aggegrates. J. Amer. Statist. Assoc. 1990, 85 (410), 338–344. doi:10.1080/01621459.1990.10476206
  42. Reisen V.A., Monte E.Z., Franco G.C., Sgrancio A.M., Molinares F.A.F., Bondond P., Ziegelmann F.A., Abraham B. Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations. Math. Comput. Simulation 2018, 146, 27–43. doi:10.1016/j.matcom.2017.10.004
  43. Reisen V.A., Zamprogno B., Palma W., Arteche J. A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model. Math. Comput. Simulation 2014, 98, 1–17. doi:10.1016/j.matcom.2013.11.001
  44. Rockafellar R.T. Convex Analysis. Princeton University Press, Princeton, 1997.
  45. Solci C.C., Reisen V.A., Sarnaglia A.J.Q., Bondon P. Empirical study of robust estimation methods for PAR models with application to the air quality area. Comm. Statist. Theory Methods 2020, 49 (1), 152–168. doi:10.1080/03610926.2018.1533970
  46. Tsai H., Rachinger H., Lin E.M.H. Inference of seasonal long-memory time series with measurement error. Scand. J. Stat. 2015, 42 (1), 137–154. doi:10.1111/sjos.12099
  47. Vastola S.K., Poor H.V. Robust Wiener–Kolmogorov theory. IEEE Trans. Inform. Theory 1984, 30 (2), 316–327. doi:10.1109/TIT.1984.1056875
  48. Yaglom A.M. Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results, Volume II: Supplementary Notes and References. Springer-Verlag, New York, NY, 1987.
  49. Yaglom A.M. Correlation theory of stationary and related random processes with stationary \(n\)th increments. Amer. Math. Soc. Transl. Ser. 2 1958, 8, 87–141. (translation of Mat. Sb. 1955, 37(79) (1), 141–196. (in Russian))