References
- Baek C., Davis R.A., Pipiras V. Periodic dynamic factor models:
estimation approaches and applications. Electron. J. Stat. 2018,
12 (2), 4377–4411. doi:10.1214/18-EJS1518
- Baillie R.T., Kongcharoen C., Kapetanios G. Prediction from
ARFIMA models: Comparisons between MLE and semiparametric estimation
procedures. Int. J. Forecast. 2012, 28 (1), 46–53.
doi:10.1016/j.ijforecast.2011.02.012
- Basawa I.V., Lund R., Shao Q. First-order seasonal autoregressive
processes with periodically varying parameters. Statist. Probab.
Lett. 2004, 67 (4), 299–306.
doi:10.1016/j.spl.2004.02.001
- Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung G.M. Time Series
Analysis: Forecasting and Control. John Wiley and Sons, Inc., Hoboken,
NJ, 2016.
- Dubovets’ka I.I., Masyutka O.Yu., Moklyachuk M.P. Interpolation
of periodically correlated stochastic sequences. Theory Probab.
Math. Statist. 2012, 84, 43–55.
doi:10.1090/S0094-9000-2012-00862-4 (translation of Teor. Imovir. ta
Matem. Statyst. 2011, 84, 43–56. (in Ukrainian))
- Dudek A.E., Hurd H., Wojtowicz W. Periodic autoregressive moving
average methods based on Fourier representationof periodic
coefficients. Wiley Interdiscip. Rev. Comput. Stat. 2016,
8 (3), 130–149. doi:10.1002/wics.1380
- Dudek G. Forecasting time series with multiple seasonal cycles using
neural networks with local learning. In: Rutkowski L., Korytkowski M.,
Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J.M. (Eds.) Proc. of the
12th Intern. Conf. “Artificial Intelligence and Soft Computing”,
Zakopane, Poland, June 9–13, 2013, Lecture Notes in Computer Science,
7894, Springer, Berlin, Heidelberg, 2013, 52–63.
- Franke J. Minimax-robust prediction of discrete time series.
Z. Wahrscheinlichkeitstheor. Verw. Geb. 1985, 68,
337–364. doi:10.1007/BF00532645
- Gikhman I.I., Skorokhod A.V. Introduction to the theory of random
processes. Fizmatlit, Moscow, 1965. (in Russian)
- Giraitis L., Leipus R. A generalized fractionally differencing
approach in long-memory modeling. Lith. Math. J. 1995,
35 (1), 53–65. doi:10.1007/BF02337754
- Gladyshev E.G. Periodically correlated random sequences.
Dokl. Akad. Nauk SSSR 1961, 137 (5), 1026–1029. (in
Russian)
- Gould P.G., Koehler A.B., Ord J.K., Snyder R.D., Hyndman R.J.,
Vahid-Araghi F. Forecasting time series with multiple seasonal
patterns. European J. Oper. Res. 2008, 191 (1),
207–222. doi:10.1016/j.ejor.2007.08.024
- Gray H.L., Zheng N.-F., Woodward W.A. On generalized fractional
processes. J. Time Series Anal. 1989, 10 (3),
233–257. doi:10.1111/j.1467-9892.1989.tb00026.x
- Grenander U. A prediction problem in game theory. Ark. Mat.
1957, 3 (4), 371–379. doi:10.1007/BF02589429
- Hannan E.J. Multiple Time Series. John Wiley and Sons. Inc., New
York, NY, 1970.
- Hassler U., Pohle M.O. Forecasting under long memory and
nonstationarity. arXiv:1910.08202, 2019. doi:10.48550/arXiv.1910.08202
- Hassler U. Time Series Snalysis with Long Memory in View. John Wiley
and Sons, Hoboken, NJ, 2019.
- Hosoya Y. Robust linear extrapolations of second-order stationary
processes. Ann. Probab. 1978, 6 (4), 574–584.
doi:10.1214/aop/1176995479
- Hurd H., Pipiras V. Modeling periodic autoregressive time series with
multiple periodic effects. In: Chaari F., Leskow J., Zimroz R.,
Wylomanska A., Dudek A. (Eds.) Contrib. to the 10th Workshop on
Cyclostationary Systems and Their Applications “Cyclostationarity:
Theory and Methods – IV”, Grodek, Poland, February 2017, Applied
Condition Monitoring, 16, Springer, Cham, 2020,
1–18.
- Johansen S., Nielsen M.O. The role of initial values in
conditional sum-of-squares estimation of nonstationary fractional time
series models. Econometric Theory 2016, 32 (5),
1095–1139. doi:10.1017/S0266466615000110
- Karhunen K. Über Lineare Methoden in Der Wahrscheinlichkeitsrechnung.
Suomalainen Tiedeakatemia, Helsinki, 1947.
- Kassam S.A., Poor H.V. Robust techniques for signal processing: A
survey. Proc. IEEE 1985, 73 (3), 433–481.
doi:10.1109/PROC.1985.13167
- Kassam S.A. Robust hypothesis testing and robust time series
interpolation and regression. J. Time Series Anal. 1982,
3 (3), 185–194.
doi:10.1111/j.1467-9892.1982.tb00341.x
- Kolmogorov A.N. Selected works of A.N. Kolmogorov. Volume II
Probability theory and mathematical statistics. In: Shiryayev A.N. (Ed.)
Mathematics and its Applications, 26. Kluwer, Dordrecht, 1992.
- Kozak P.S., Moklyachuk M.P. Estimates of functionals constructed
from random sequences with periodically stationary increments.
Theory Probab. Math. Statist. 2018, 97, 85–98.
doi:10.1090/tpms/1050 (translation of Teor. Imovir. ta Matem. Statyst.
2017, 97, 83–96. (in Ukrainian))
- Liu Y., Xue Yu., Taniguchi M. Robust linear interpolation and
extrapolation of stationary time series in \(L^p\). J. Time Series Anal. 2020,
41 (2), 229–248. doi:10.1111/jtsa.12502
- Lund R. Choosing seasonal autocovariance structures: PARMA or SARMA?
In: Bell W.R., Holan S.H., McElroy T.S. (Eds.) Economic Time Series:
Modelling and Seasonality, Chapman and Hall, London, 2012, 63–80.
- Luz M.M., Moklyachuk M.P. Interpolation of functionals of
stochastic sequences with stationary increments. Theory Probab.
Math. Statist. 2013, 87, 117–133.
doi:10.1090/S0094-9000-2014-00908-4 (translation of Teor. Imovir. ta
Matem. Statyst. 2012, 87, 105–119. (in Ukrainian))
- Luz M., Moklyachuk M. Estimation of Stochastic Processes with
stationary increments and cointegrated sequences. John Wiley and Sons,
New York, NY, 2019.
- Luz M., Moklyachuk M. Minimax interpolation of sequences with
stationary increments and cointegrated sequences. Modern Stoch.
Theory Appl. 2016, 3 (1), 59–78.
doi:10.15559/16-VMSTA51
- Luz M., Moklyachuk M. Minimax-robust forecasting of sequences
with periodically stationary long memory multiple seasonal
increments. Stat. Optim. Inf. Comput. 2020, 8 (3),
684–721. doi:10.19139/soic-2310-5070-998
- Masyutka O.Yu., Moklyachuk M.P., Sidei M.I. Interpolation problem
for multidimensional stationary processes with missing
observations. Stat. Optim. Inf. Comput. 2019, 7
(1), 118–132. doi:10.19139/soic.v7i1.430
- Moklyachuk M.P., Masyutka O.Yu. Interpolation of multidimensional
stationary sequences. Theory Probab. Math. Statist. 2006,
73, 125–133. (translation of Teor. Imovir. ta Matem.
Statyst. 2005, 73, 112–119. (in Ukrainian))
- Moklyachuk M.P. Minimax-robust estimation problems for stationary
stochastic sequences. Stat. Optim. Inf. Comput. 2015,
3 (4), 348–419. doi:10.19139/soic.v3i4.173
- Moklyachuk M.P., Sidei M.I. Interpolation of stationary sequences
observed with a noise. Theory Probab. Math. Statist. 2016,
93, 153–167. doi:10.1090/tpms/1000 (translation of
Teor. Imovir. ta Matem. Statyst. 2015, 93, 142–155. (in
Ukrainian))
- Moklyachuk M.P., Sidei M.I., Masyutka O.Yu. Estimation of Stochastic
Processes with Missing Observations. Nova Science Publishers, New York,
NY, 2019.
- Moklyachuk M.P. Stochastic autoregressive sequences and minimax
interpolation. Theory Probab. Math. Statist. 1994,
48, 95–104. (translation of Teor. Imovir. ta Matem.
Statyst. 1994, 51, 135–146. (in Ukrainian))
- Napolitano A. Cyclostationarity: new trends and
applications. Signal Process. 2016, 120,
385–408.
doi:10.1016/j.sigpro.2015.09.011
- Osborn D. The implications of periodically varying coefficients
for seasonal time-series processes. J. Econometrics 1991,
48 (3), 373–384. doi:10.1016/0304-4076(91)90069-P
- Palma W., Bondon P. On the eigenstructure of generalized
fractional processes. Statist. Probab. Lett. 2003,
65 (2), 93–101. doi:10.1016/j.spl.2003.07.008
- Porter-Hudak S. An application of the seasonal fractionally
differenced model to the monetary aggegrates. J. Amer. Statist.
Assoc. 1990, 85 (410), 338–344.
doi:10.1080/01621459.1990.10476206
- Reisen V.A., Monte E.Z., Franco G.C., Sgrancio A.M., Molinares
F.A.F., Bondond P., Ziegelmann F.A., Abraham B. Robust estimation of
fractional seasonal processes: Modeling and forecasting daily average
SO2 concentrations. Math. Comput. Simulation 2018,
146, 27–43. doi:10.1016/j.matcom.2017.10.004
- Reisen V.A., Zamprogno B., Palma W., Arteche J. A semiparametric
approach to estimate two seasonal fractional parameters in the SARFIMA
model. Math. Comput. Simulation 2014, 98, 1–17.
doi:10.1016/j.matcom.2013.11.001
- Rockafellar R.T. Convex Analysis. Princeton University Press,
Princeton, 1997.
- Solci C.C., Reisen V.A., Sarnaglia A.J.Q., Bondon P. Empirical
study of robust estimation methods for PAR models with application to
the air quality area. Comm. Statist. Theory Methods 2020,
49 (1), 152–168. doi:10.1080/03610926.2018.1533970
- Tsai H., Rachinger H., Lin E.M.H. Inference of seasonal
long-memory time series with measurement error. Scand. J. Stat.
2015, 42 (1), 137–154. doi:10.1111/sjos.12099
- Vastola S.K., Poor H.V. Robust Wiener–Kolmogorov theory.
IEEE Trans. Inform. Theory 1984, 30 (2), 316–327.
doi:10.1109/TIT.1984.1056875
- Yaglom A.M. Correlation Theory of Stationary and Related Random
Functions. Volume I: Basic Results, Volume II: Supplementary Notes and
References. Springer-Verlag, New York, NY, 1987.
- Yaglom A.M. Correlation theory of stationary and related random
processes with stationary \(n\)th
increments. Amer. Math. Soc. Transl. Ser. 2 1958,
8, 87–141. (translation of Mat. Sb. 1955,
37(79) (1), 141–196. (in Russian))