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Direct and inverse approximation theorems are proved in the Besicovitch-Stepanets spaces BS?
of almost periodic functions in terms of the best approximations of functions and their generalized
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Introduction

In the paper, in terms of the best approximations and generalized moduli of smoothness,
direct and inverse approximation theorems are established for Besicovitch almost periodic
functions, the sequences of Fourier exponents of which have a single boundary point in in-
finity, and the sums of the pth degrees of absolute values of the Fourier coefficients are finite.
Study of direct and inverse approximation theorems originates in the well-known papers of
D. Jackson [18] and S.N. Bernstein [8]. Such theorems establish connections between the
difference-differential properties of the function that is approximated and the value of the er-
ror of its approximation by various methods (see, e.g. the monographs [13,20,29,33]). In 1962,
N.P. Korneichuk [19] proved Jackson inequality in the uniform metric with the least (exact)
constant. In [14], N.I. Chernykh showed that for an arbitrary 27-periodic square-summable
non-constant function f (f € L),

En(f)2 <2 Y2w(f,7w/n), neN, (1)

where E,(f)2 is the best mean-square approximation of the function f by trigonometric poly-
nomials of order n — 1, and w(f, t); is the modulus of continuity (modulus of smoothness of
the first order) of f in the space L. In [15], the unimprovable Jackson-type inequalities with
averaged moduli of smoothness with some weight functions were established.

In spaces of almost periodic functions, direct approximation theorems were established in
the papers [6,11,23,24], etc. In particular, in [23], an analogue of the inequality (1) was obtained
for Besicovitch almost periodic functions of the order 2 (B2-a.p. functions). In [24] and [6],
Jackson type inequalities were obtained with moduli of smoothness of B2-a.p. functions of
arbitrary positive integer order and with generalized moduli of smoothness, respectively.
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In this paper, we consider the spaces BS” of all functions that are Besicovitch almost peri-
odic of order 1 (B-a.p. functions) for which the sums of the pth degrees of absolute values of
their Fourier coefficients are finite, 1 < p < oo. The norm of a function in the spaces BS? is
defined as the usual norm of a sequence of its Fourier coefficients in the space of numerical
sequences [,

In the case when the 27r-periodic Lebesgue summable functions were considered instead
of the B-a.p. functions, similar spaces were studied in the papers of A.I Stepanets and his
followers, and they were denoted by S7 [3,25-28,35,38], [29, Ch. 11], etc. In [28], direct and
inverse theorems for the approximation of functions from the spaces S¥ were proved in terms
of their best approximations by trigonometric polynomials and moduli of smoothness of ar-
bitrary positive orders. In [3], exact Jackson-type inequalities in the spaces S” were obtained
in terms of the best approximations of functions and the averaged values of their general-
ized moduli of smoothness as well as the exact values were found for widths of classes of
2m-periodic functions defined by certain conditions on the averaged values of their general-
ized moduli of smoothness.

The spaces BS? are a natural generalization of both the spaces S? (since S7 C BS?) and
spaces B2-a.p. functions (since the sets of B?-a.p. functions coincide with the sets BS?). There-
fore, it is of interest to obtain direct and inverse theorems on the approximation of functions
from the spaces BS? in terms of their best approximations and generalized moduli of smooth-
ness.

1 Preliminaries

Let B°, 1 < s < oo, be the space of all functions Lebesgue summable with the sth degrees
in each finite interval of the real axis, in which the distance is defined by the equality

s 1/s
Dgs(f,g) = hm ﬁ/ g(x)| dx) .

T~>oo

Further, let T be the set of all trigonometric sums of the form tn(x) = Zi\]:l ae’™, N € N,
where A, € R and gy € C are arbitrary real and complex numbers, respectively.

An arbitrary function f is called a Besicovitch almost periodic function of order s (or
B*-a.p. function) and is denoted by f € B°-a.p. [22, Ch. 5, §10], [9, Ch. 2, §7], if there exists
a sequence of trigonometric sums T, T, . . . from the set T such that limy_, Dps (f, Tv) = 0.

If s; > sp > 1, then (see, e.g. [11,12]) le-a.p. C B%2-a.p. C B-a.p., where B-a.p. := Bl-ap..
For any B-a.p. function f, there exists the average value

M{f} = lim T/ f(x

The value of the function M{f(-)e=**'}, A € R, can be nonzero at most on a countable set. As a
result of numbering the values of this set in an arbitrary order, we obtain a set S(f) = {Ax }ren
of Fourier exponents, which is called the spectrum of the function f. The numbers A, =
A (f) = M{f(-)e""'} are called the Fourier coefficients of the function f. To each function
f € B-a.p. with spectrum 8(f) there corresponds a Fourier series of the form Yy A, e”*.If, in
addition, f € Bz-a.p., then the Parseval equality holds (see, e.g. [9, Ch. 2, §9])

M{If?} = ) 1Ay

keN
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Developing the ideas of A.IL. Stepanets [27], for a fixed 1 < p < oo we consider the spaces of
all functions f € B-a.p., for which the following quantity is finite

1/p
£l = 17lsr = 1{An D heenlha = ( X 40P @

keN
We denote these spaces by BS? and call them Besicovitch-Stepanets spaces. By definition,
B-a.p. functions are considered identical in BS? if they have the same Fourier series.
Further, we will consider only those almost periodic functions from the spaces BS¥, the
sequences of Fourier exponents of which have a single limit point at infinity. For such functions
f, the Fourier series are written in the symmetric form

B k% Axe™, - Ap = A(f) = M{f(-)e™}, 3)

where Ay :=0, A_ = —Ay, |Ax| + |A_x| > 0,and A g > A > 0fork > 0.
By G,, we denote the set of all B-a.p. functions, whose Fourier exponents belong to the
interval (—A,, A,), and define the value of the best approximation by the equality

Ex,(f)p = Ex,(f)Bsr = ggéfA 1f —gllp-

Let ® be the set of all continuous bounded nonnegative pair functions ¢(t) such that
¢(0) = 0 and the Lebesgue measure of the set {t € R : ¢(t) = 0} is equal to zero. For
an arbitrary fixed ¢ € ®, consider the generalized modulus of smoothness of the function
f € BSP

1/p
ol f,8)p = wylf,6) sy :sup(zqopmkmmk(f)w) , 530, @
|h|<é \kez

Let M = {y; }}”:0 be a nonzero collection of complex numbers such that } ;" yx = 0. We
associate the collection M with the difference operator A f(t) = j—o Mjf (t — jh) and the
modulus of smoothness w(f, 8)p := supy, <, |AM £ || Note that the collection

M(m) = {y]- - (—1)!’(’7), j:0,1,...,m}, m e N,

corresponds to the classical modulus of smoothness of order m: w () (f,6)p = wWm(f,0)p.
For any k € Z, the Fourier coefficients of the function AMf satlsfy the equality

|A(AY )| = | Ax(f —ihgh,

Therefore, for g (t) = [ 1L, pje~ | we have wy,, (f, J)p = wpm(f,9)p. In particular, for
@m(t) = 2™|sin(t/2)|"™ = 2"/2(1 — cost)™/?, m € N, we have wy, (f,5)p = wm(f, ).
In the general case, such modules were studied in [1, 3,5, 6, 10,21, 36,37], etc.

2 Main results

2.1 Jackson type inequalities

In this subsection, direct approximation theorems are established in the space BS” in terms
of best approximations and generalized moduli of smoothness. For functions f € BS? with
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the Fourier series of the form (3), we prove Jackson type inequalities of the kind

E)\n(f)p SI<(T)("‘)(P<f/)\ln)p/ T>O, 1§p<00, nGN,

and consider the problem of the least constant in these inequalities for fixed values of the
parameters n, ¢, T and p. In particular, we study the quantity

E
Kin,p,p(T) = sup {%

Here and below, we assume that 0/0 = 0.
Let V(1), T > 0, be a set of bounded nondecreasing functions v that differ from a constant
on [0, .

L fe BSP}.

Theorem 1. Assume that the function f € BS”,1 < p < oo, has the Fourier series of the form
(3). Then forany T > 0,n € N and ¢ € P the following inequality holds

T
En(flp < Cupp(Dwo(f.5-) o )

h
R Cpop(T) 1= < inf o(7) —U(O)>1/P ©

nep o UGIAI}I(T) In/@/p(T,U) !
and
. T Axt

hgp(to) = in [ g (F) dotr). 7)

Futhermore, there exists a function v, € V(T) that realizes the greatest lower bound in (6).
Inequality (5) is unimprovable on the set of all functions f € BS? with the Fourier series of
the form (3) in the sense that for any ¢ € ® and n € N the following equality is true

Ch,p,p (1) = Ko, p,p (7).

In the spaces L, of 27t-periodic square-summable functions, for moduli of continuity, this
result was obtained by A.G. Babenko [4]. In the spaces S7 of functions of one and several
variables, this result for classical moduli of smoothness was obtained in [28] and [2], respec-
tively, and for generalized moduli of smoothness, in [1] (for functions of one variable). In the
proof of Theorem 1, we mainly use the ideas outlined in [4, 14, 15, 28], taking into account the
peculiarities of the spaces BS*.

Proof. From relations (2) and (8), it follows that for any f € BS? with the Fourier series of the
form (3), we have

EX.(Dp = lf =SuDlly = L [A()IF, 8)

k|=n
where S, (f) := Y <n Ac(f)e ™.
Forany f € BS?, ¢ € ® and h € R, consider the sequence of numbers {¢(Ath) Ax(f) }rez-
If there exists a function AZJ f € B-a.p. such that forallk € Z

A(AL ) = o(Me) A (f), )

then denote by HAZP fllp the usual norm (2) of the function A;lp f. If such a B-a.p function A;lp f
does not exist, then to simplify notation we will also use the notation HAZP fllp, meaning by it
the I,-norm of the sequence {¢(Axh) Ay (f) }kez-
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Taking into account (7), (8) and the parity of the function ¢, we obtain
185 £ = 3 oP ()| A (AP > Y oF (M) | Ak ()P

keZ |k|>n
_ lugp(t,o ) Lngp(T,0)
= 200) —o0) D UE‘A" AP (07O = 25755

where the quantity I,,¢,,(T, v) is defined by (7). Hence, for any ¢ € [0, T] we find

— Inop(T,0)
p <U(T) 0(0) ol p(Mt\  lngp(T,

B <7, i) 8= 2 14 (v (55) ) ) O
Since the both sides of inequality (10) are nonnegative and the series on its right-hand side
is majorized on the entire real axis by the absolutely convergent series C(¢) ¥ jx>, [Ar(f)[?,
where C(¢) = maxser ¢(t), then integrating this inequality with respect to dv(t) from 0 to 7,
we get

EL (y(0(0) ~00)) < S (Mg, sl ot

~ ngp
- () P (5) o) = ngs(,0)) ).

By virtue of (7), we have

T At
| e (55) do(t) = Dgp(r,0) 2 0

Therefore, for any function v € V(7), we have
B () < s [T1an, s o) < s [T () dol.
Ingp(T,0) t/An Lngp(T,0) Jo 7P\ A,
Hence we immediately get (5) and the estimate
KD o) < inf 2020
veV(t) Ingp(T,0)
It remains to show that in relation (12) there is in fact equality.
By virtue of (4) and (8), we have

= Chpp(7). (12)

Yjkj=n A ()P

Kh . (13)
nep() = fEBgP SUP | <7 k| >n @P (Akh/ An) | A (f)IP
In (13), it is sufficient to consider the supremum over all functions f € BS?, such that
Y AP <1
[K[=n
Then, taking into account the parity of the function ¢, we obtain
A i
Kivg,p(T) < Jig,p(T) = well/r\},f , lwllcy,yr (14)
where
Wigp = {w) = L oie"(3-) - 20, o= 1}- (15)
j=n j=n

Further, we use the duality relation in the space C|,;, which we formulate as the following
statement (see, e.g. [20, Ch. 1.4]).
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Proposition 1 ([20, Ch. 1.4]). If F is a convex set in the space C|, ), then for any x € Cj,

b b
inf ||x — ””C[ﬂb] = sup </ x(t)dg(t) —sup [ u(t) dg(t)). (16)
ueF ’ b a ueF Ja
v(g)=1

a

For x € C, ) \ F, where F is the closure of a set F, there exists a function ¢ with variation equal
to 1 on [a, b] that realizes the least upper bound in (16).

It is easy to see that the set W, is a convex subset of the space Cjg ). Therefore, setting
a=0,b=1,x(t) =0,u(t) = w(t) € Wyap, F = Wi,p, from relation (16) we get

]"’(P’p(T) - wGin\};flﬁ/P o= WHC[O'T]

= sup (O— sup Tw(t)dg(t)) = sup inf Tw(t)dg(t). (17)

T 0 T wEWy,0,p J0
gt o e r<t

Furthermore, according to Proposition 1, there exists a function g.(t), that realizes the least

upper bound in (17) and such that \;( g+) = 1. Every function w € W;,,p is nonnegative.
0

Therefore, it sufficient to take the supremum on the right-hand side of (17) over the set of

nondecreasing functions v(t) for which v(7) — v(0) < 1. For such functions, by virtue of (7)

and (15), the following equality

T
inf t)do(t) = I ,0).
welﬁn,a,p 0 W() U() n,(P,p(T U)

is true. This implies that there exists a function v, € V(1) such that v.(7) — v4(0) = 1 and

In,¢,p(T, U*) — Sup In,(P,p(T, U) — ]n,¢,p(r>. (18)
veV(T), g(v)gl

From relations (14) and (18), we obtain the necessary estimate

1 1 0+ (7) —04(0)
K} op(T) > = -
nop(T) 2 Jngp(T)  Ingp(T,0s) Lgp(T,0)

= Cﬁ,q,,p(r).

Consider an important special case when
@(t) = @a(t) = 2%2(1 — cost)*/? = 2%|sin(t/2)|*, a > 0.

In this case, we set wy, (f,0)p =: wa(f,0)p and Ky, ¢,,p(T) =: Kipa,p(T). For the weight function
v1(t) = 1 — cos t, we get the following assertion.

Corollary 1. For any function f € BSP,1 < p < oo, with the Fourier series of the form (3), the
following inequalities

1 T t
P < 14 -~ :
E)m(f);? = 20617/21”(0(;?/2)/0 CLM((f/An)pSlntdt, T’ZEN, DC>O, (19)
hold, where
. T Akt s,
In(s) :== kEH{TI,liZn/O (1 — Cos A—n> sintdt, s>0, né&lN. (20)
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If, in addition ap/2 € IN, then
% B 21xp/2+1
I"(Z) Cap/2+1 @)
and inequality (19) cannot be improved for any n € IN.

Proof. Inequality (19) follows from relation (11) with T = 71, ¢(t) = @.(t) and v(t) = 1 — cost,
t € [0, 7t]. In [28, relation (52)], it was shown that for any 6 > 1 and s € IN the following
inequality

2s+1

s+1
holds, which turns into equality for 6 = 1. Therefore, setting s = ap/2 and 6 = A, /A,

Vs
/ (1 —cos0t)®sintdt >
0

v =mn,n+1,..., and the monotonicity of the sequence of Fourier exponents {A; },cz, we see
that for ap/2 € IN, indeed, the equality (21) holds.

To prove that inequality (19) is unimprovable for ap/2 € NN, it suffices to verify that the
function

FH(x) = 4 + e~ M* 4 s, (22)
where v, B and ¢ are arbitrary complex numbers, satisfies the equality

p oy ap/24+1 [, t )
E)\n(f )p = w1 CUp((f ,A—H)psmtdt, nelN, a>0. (23)
In this case, Eﬁn(f*)l’; = |B|P + 6|7, the function HA;P/"‘A"f*HZ = 20P/2(|B|P 4 |6|P) (1 — cos t)*P/2
does not decrease with respect to t on [0, 77]. Therefore, w (f*,t/An)p = HAZD/"‘/\” f*|lp, and
oap+1

& t
e rr * _ p « b .
ap/2+1EA,,(f )p /0 (Uoc(f ,An>psmtdt

Jap+1

T
= (IBIF + |5|p)<m —2“”/2/0 (1 —cost)"‘p?zsintdt) =0.

U
If v (t) = t, then we obtain the following assertion.

Corollary 2. Assume that the function f € BS?,1 < p < oo, has the Fourier series of the form
(3) and the number « > 0 such that ap > 1. Then forany 0 < T < 3m/4andn € N,

T t T t
! < POF,— wp [ giner L
EAn(f)p_ (/0 wa<f'}\n>pdt)/<2 /0 sin 2dt>. (24)
Equality in (24) holds for the function f* of the form (22).

Proof. From inequality (11), it follows that

where

. T )th s
I(s) := keﬂg,lizn/o <1 — Cos )\—n) dt, s>0, nelN.
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Consider the function |
Fy(x) = / | sin ¢|P d.
0
In [38], it is shown that for any & € (0,377/4) and B > 1, the following relation

inf Fg(x) = Fg(h/2) (25)

is true. Since for any 0 € RR,

T T ot B 0T
_ B/2 g4 — 2B in — — 2B i
/0 (1 —cosbt)P’'“dt =2 /0 ’sm 2’ dt =2 TF;;( 5 ),
then setting @ = Ay /A, > 1 (k > n) and B = ap, from (25) (with T € (0,377/4]) we obtain

Tn(%) = keﬂi\TI,l£2n /OT <1 — cos %)Wﬁ dt

Ait |ap T t
sin 2Akn dt = 2“’7/0 sin“?P Edt'

T
=2%  inf
keIN,k>n JO

For the functions f* of the form (22), the equality

T t T t
P (), = P, — ap [ giner L
Ey, (f)p </0 w“<f')»n)pdt)/<2 /0 sin 2dt>.
is verified similarly to the proof of equality (23). O

In the following assertion, we give the upper estimates for the least constants K, 4 ,(7) in
Jackson type inequalities with the moduli of smoothness w, (f, ), and T = 7. These estimates
do not depend on n and are unimprovable in several important cases.

Corollary 3. For any n € IN and « > 0, the following inequalities
1 ap/2+1

K} < < , 26
nap(70) < 20P/2-1] (ap/2) — 24P 4 20P/2- 1 (ap /2 + 1) (ap/2) (26)
are true, where the quantities I,,(s), s > 0, are defined by (20), and
o s\ 1 /1—(=1)b <2(x> al (204) 2
o(s) :=— — )" ),
(s) a_[g]ﬂ <20c> 220-1 < 2 « ];:) j)2(a—j)?%— 1)

here [s] is the integer part of the numbers. If xp/2 € IN, then o(ap/2) = 0 and

Kﬁ,zx,p(n) < 70{17/2 T 1/ P €N, nelN. (27)

24p 2
Proof. The first inequality in (26) and inequality (27) follow from Corollary 1. The second
inequality in (26) follows from the relation

ap 2o<p/2+1 ap
Fy>s = -r

I”(Z ) - ap/2+1+a< 2)' neN, a>0,
which is a consequence of the inequality (see [28])

T 2S+1
/ (1 — cos6t)®sin tdt >
0 s+1

+o(s), 6>1, s>0.



Direct and inverse theorems on the approximation of almost periodic functions... 695

The following assertion establishes the uniform boundedness of the constants K 4, (7)
with respect to the parameters n € N and 1 < p < co.

Corollary 4. Assume that the function f € BS?,1 < p < oo, has the Fourier series of the form
(3) and ||f — Ao(f)l||p # 0. Then for anyn € N and « > 0,

4/3)1/p 4
By < U (1), < 505 )

Furthermore, in the case where &« = m € N, the following more accurate estimate

4-2y2
Ex,(f)p < %w(ﬂ%)p (29)

holds.

Proof. It was shown in [28] that I,,(s) > 2 when s > 1and I,(s) > 1+2°"! whens € (0,1).
Combining these two estimates and (26), we get (28).

Relation (29) follows from the estimate I,(mp/2) > 1+ 1/ v/2, which is a consequence
of the above estimates for the value of I,(s) in the case when m € Nand 1 < p < oo
(see [28]). O

As noted above, for p = 2 the sets BS? = BS? coincide with the sets of B?-a.p. functions.
Given the importance of this case, we give the formulation of the corresponding statements
for the classical modulus of smoothness w,,, which follow from the Corollary 1.

Corollary 5. For any B?-a.p. function f having the Fourier series of the form (3), the inequali-
ties 41 ;
m .
E/z\”(f)zgﬁm—“/o w%(f,)\—n)zsmtdt, m,n € IN. (30)
hold. These inequalities can not be improved for any m and n € IN.

Corollary 6. For any B?-a.p. function f with the Fourier series of the form (3) such that
If — Ao(f)|lp # 0, the following inequalities

E)\n (f)z < zlm_'— ! Wm (f/ A_n;)zr m,n € N (31)

hold.

Inequalities (30) and (31) complement the results obtained in [5, 23, 24], etc., for the
B2-a.p. functions. In the spaces S of functions of one and several variables, Theorem 1 and
Corollaries 1, 3 and 4 were proved in [28] and [2], respectively. In the spaces L, for classical
moduli of smoothness inequality (19) was proved by N.I. Chernykh [15]. The inequalities of
this type were also investigated in [3,5,6,17,25,31, 32,35-38], etc.

3 Inverse approximation theorems

Theorem 2. Assume that the function f € BS”,1 < p < oo, has the Fourier series of the form
(3), the function ¢ € ® does not decrease on [0,7], T > 0, and ¢(7) = max{¢(t) : t € R}.
Then for any n € IN, the following inequality

(1) < L (¢ () - o ()L 32)

v=1

holds.
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Proof. Let us use the scheme of the proof from [1,28], taking into account the peculiarities of
the spaces BS?. As above, for any f € BS?, ¢ € ® and h € R, we denote by ||Af f||, the usual
norm (2) of the function A,(f f satisfying relation (9) (if such a function A,(f f € B-a.p. exists) or
the [,-norm of the sequence {@(Axh)Ax(f)}kez if such a function A} f € B-a.p. does not exist.
We have

[y =kZ @" (M)A (F)IP = |Z qu(Akh)rAk(f)\H'Z o’ (M) | A (AP (33)
eZ kl<n k|>n

It is clear that the second term on the right-hand side (33) does not exceed the value

o"(1) 3 |AHI" = @' (DE, ().

[k|>n

and due to the parity and non-decreasing function ¢ on the interval [0, 7], for |h| < T/A,

n—1
L ¢ amlapl < T ¢/ (1) 14 (DP + 1P

|k|<n

Therefore, in view of the monotonicity of the sequence of Fourier exponents {Ay }rcz, we ob-
tain

n—1 )\V
1A FII < ¢ (T)E, (f +Z¢’7(T JHL(f), (34)

where H} (f) = (JA—_,(f)|P + |Au(f)|P). Further, we use the following assertion from [28].

Lemma 1 ([28]). Assume that the numerical series ), ¢, is convergent. Then for any se-
quence By, v € IN, the following equality

Ny e N e 00
Z Bvcy = Ba Z Cy + Z = Bv-1 Z — BN, Z Cy (35)
V=N, V=N V:N1+1 i—v V=N +1

holds for all positive integers Ny and N, N1 < Nj.

Setting Ny =1, Ny =n—1, B, = ¢P(tAy/Ay) and ¢y = Hf(f) in (35), taking into account
(8), we get

Lo () - ¢ (3 Lo+ £ (v (52) - (5) LG
- qv”(%) Y H) (36)

— Z <(Pﬁ<1’/\v> (/’p<T);\an))EKU(f)P _(PP<%)EK;1U>P'

By virtue of (34) and (36), we get

ag sl < i (0 (522) = o (5) ) EL 0y — 0 (S22) B () + @ (O ()

E ()

which yields (32). O




Direct and inverse theorems on the approximation of almost periodic functions... 697

Consider the case ¢(t) = @q(t) = 2%|sin(t/2)|%, « > 0. In this case, the function ¢ satisfies
the conditions of Theorem 2 with T = 7. If r = ap > 1, then using the inequality

X —y < Yx—y), x>0, y>0

(see, e.g. [16, Ch. 1]), and ordinary trigonometric transformations forv =1,2,...,n, we get

qvp(T;t/) - @P(T);Vn‘l) = 2+(| sin—’ ~|sin ”)‘v 1
< 2"470(;7’ sin Ay 4P~ 1‘ sin 7-;\)‘ _sin 7'[)}\\1/_1 ’
An n "

<ap(32)7AP = Aa)
If 0 < r < 1, then the similar estimate can be obtained using the inequality
Yy <y (x—y),
which holds for all x > 0 and y > 0 [16, Ch. 1].

Corollary 7. Suppose that the function f € BSP,1 < p < oo, has the Fourier series of the form
(3). Then foranyn € N and « > 0,

p T 2\ N ap-1 p
wDC(f’)\_n) S“P(A—n) ;Av ()‘v_)\v—l)E,\v(f)-

If, in addition, the Fourier exponents A, v € IN, satisfy the condition
M1 —M<C, v=12,..., (37)

with an absolute constant C > 0, then

7T 2r o

wo’f(f,)\—n)<p()\7)c[:)ﬂ 'EY (). (38)

4 Constructive characteristics of the classes of functions defined by the
generalized moduli of smoothness

Let w be the function (majorant) given on [0, 1]. For a fixed a > 0, we set
BSPHY = {f € BS?: wu(f,0)p = O(w(d)), 6 = 0+}. (39)

Further, we consider the majorants w(4), 6 € [0, 1], which satisfy the following conditions:
1) w(4d) is continuous on [0, 1];
2)w(d) 15
3) w(9) #Oforé € (0,1];

4) w(6) — 0foré — 0;
as well as the condition

L 1 1
s—1 - s
Yae(s) =ohe(5)]) (0
where s > 0, and A, v € IN, is a increasing sequence of positive numbers. In the case where
Ay = v, the condition (40) is the known Bari condition (Bs) (see, e.g. [7]).
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Theorem 3. Assume that the function f € BS”,1 < p < oo, has the Fourier series of the form
(3), « > 0 and the majorant w, that satisfies the conditions 1)-4).
i) If f € BSPHY, then the following relation

Ev, () = Ofw(5)] (41)

is true.
ii) If the numbers Ay, v € IN, satisty condition (37) and the function w” satisfies condition
(40) with s = ap, then relation (41) yields the inclusion f € BSPHy' .

Proof. Let f € BSPHY . Then relation (41) follows from (39) and (28).
On the other hand, if f € BS?, the numbers A, v € IN, satisfy condition (37) and the
function w? satisfies condition (40) with s = ap and relation (41) holds, then by (38), we get

1 C1 & - L 1
Pl 2\ <« &L wlp ap=1 p( =) = P
“’”‘(f’)xn)p—)\ﬁpv;}\” Ex —A"‘P ZA «“ (A) O[“’ <Anﬂ’
where C; = ap(2m)*?C. Hence, the function f belongs to the set BSY H . O

The function #', 0 < r < a, satisfies condition (40). Hence, denoting by BS” H}, the class
BSPHY for w(t) = t" we establish the following statement.

Corollary 8. Let f € BSP,1 < p < o, has the Fourier series of the form (3),a > 0,0 <r < a/p
and condition (37) holds. The function f belongs to the set BS¥ H, iff the following relation

Er,(f)p = O(A,7)

is true.

In the spaces S?, for classical moduli of smoothness w;;, Theorems 2 and 3 were proved
in [28] and [2]. In the spaces &7, inequalities of the form (38) were also obtained in [30]. In
spaces L, of 27t-periodic functions, Lebesgue summable with the pth degree, inequalities of
the kind as (38) were obtained by ML.E. Timan (see, e.g. [33, Ch. 6], [34, Ch. 2]). In the Musielak-
Orlicz type spaces, inequalities of the kind (32) were proved in [1].
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AoBeaeHO TpsiMi Ta obepHeHi TeopeMy HabAVKeHHs y mpocTopax besnukosnua-Crenantist BSP
Malke TlepioAMIHMX (PyHKIIN B TepMiHax HalKpaIlMx HabAVDKeHb (OYHKIIN Ta IX y3araAbHEHMX
MOAYAIB TA8AKOCTI.

Kontouosi cnoea i ¢ppasu: TpsiMa aIpoKCHMAIliifHa TeopeMa, obepHeHa alTpOKCMMallilfHa TeopeMa,
HepiBHICTb TUITy AJKeKCOHa, y3araAbHEHMI MOAYADb TA8AKOCTI.



