References
- Cobzaş S. Functional Analysis in Asymmetric Normed Spaces. Frontiers
in Mathematics, Birkhäuser, Springer Basel AG, Basel, 2013.
- Cross R.W. Multivalued Linear Operators. Marcel-Dekker, New York,
1998.
- Alegre C., Ferrando I. Quotient subspaces of asymmetric normed
linear spaces. Bol. Soc. Mat. Mex. 2007, 3 (2),
357–365.
- Alegre C., Romaguera S., Veeramani P. The Uniform Boundedness
Theorem in Asymmetric Normed Spaces. Abstr. Appl. Anal. 2012, 1–8.
doi:10.1155/2012/809626
- Ferrer J., Gregori V., Alegre C. Quasi-uniform structures in
linear lattices. Rocky Mountain J. Math. 1993, 23
(3), 877–884. doi:10.1216/rmjm/1181072529
- Garcı́a-Raffi L.M., Sánchez-Pérez R. The dual space of an
asymmetric normed linear space. Quaest. Math. 2003,
26 (1), 83–96. doi:10.2989/16073600309486046
- Latreche F., Dahia E. Multilinear operators between asymmetric
normed spaces. Colloq. Math. 2020, 161 (2),–171.
doi:10.4064/cm7814-6-2019
- Mabula M.D., Cobzaş S. Zabrejko’s lemma and the fundamental
principles of functional analysis in the asymmetric case. Topology
Appl. 2015, 184, 1–15.
doi:10.1016/j.topol.2015.01.010
- Romaguera S., Schellekens M. On the structure of the dual
complexity space: the general case. Extracta Math. 1998,
13 (2), 249–253.
- Romaguera S., Schellekens M. Quasi-metric properties of
complexity spaces. Topology Appl. 1999, 98
(1–3),–322. doi:10.1016/S0166-8641(98)00102-3
- Romaguera S., Schellekens M. Weightable quasi-metric semigroups
and semilattices. Electron. Notes Theor. Comput. Sci. 2001,
40, 347–358. doi:10.1016/S1571-0661(05)80061-1
- Romaguera S., Schellekens M. The quasi-metric of complexity
convergence. Quaest. Math. 2000, 23 (3), 359–374.
doi:10.2989/16073600009485983