References

  1. Aouf M.K., Hossen H.M., Srivastava H.M. Certain subclasses of prestarlike functions with negative coefficients. Kumamoto J. Math. 1998, 11, 1–17.
  2. Aouf M.K., Seoudy T. Certain class of bi-Bazilevic̃ functions with bounded boundary rotation involving Sălăgean operator. Constr. Math. Anal. 2020, 3 (4), 139–149. doi:10.33205/cma.781936
  3. Amsalu H., Suthar D.L. Generalized fractional integral operators involving Mittag-Leffler function. Abstr. Appl. Anal. 2018, 2018, 1–8. doi:10.1155/2018/7034124
  4. Anastassiou G.A. Sequential abstract generalized right side fractional Landau inequalities. Constr. Math. Anal. 2021, 4 (3), 274–290. doi:10.33205/cma.817692
  5. Galue L., Kalla S.L., Srivastava H.M. Further results on an H-function generalized fractional calculus. J. Fract. Calc. 1993, 4, 89–102.
  6. Lee S.K., Joshi S.B. On subclasses of prestarlike functions with negative coefficients. Kangweon-Kyungki Math. J. 2000, 8 (2), 127–134.
  7. Joshi S.B., Joshi S.S., Pawar H.H. Applications of generalized fractional integral operator to unified subclass of prestarlike functions with negative coefficients. Stud. Univ. Babeş-Bolyai Math. 2018, 63 (1), 59–69.
  8. Kiryakova V.S. Generalized fractional calculus and applications. Pitman Res. Notes Math., Longman Publishers, London, 1993.
  9. Kiryakova V.S. The role of special functions and generalized fractional calculus in studying classes of univalent functions. Adv. Math. Sci. Appl. 2015, 4 (2), 161–174.
  10. Kiryakova V.S., Srivastava H.M. Generalized multiple Riemann-Liouville fractional differintegrals and applications in univalent function theory. In: Analysis Geometry and Groups: A Riemann Legacy Volume, Hadronic Press, Palm Harbor, Florida, U.S.A., 1993, 191–226.
  11. Owa S., Uralegaddi B.A. A class of functions \(\alpha\) prestarlike of order \(\beta\). Bull. Korean Math. Soc. 1984, 21, 77–85.
  12. Raina R.K., Bolia M. On certain classes of distortion theorems involving generalized fractional integral operators. Bull. Inst. Math. Acad. Sin. (N.S.) 1998, 26 (4), 301–307.
  13. Raina R.K., Saigo M. A note on fractional calculus operators involving Fox’s H-function on space \(F_{p,\mu}\) and \(F'_{p,\mu}\). In: Kalia R.N. (Eds.) Recent Advances in Fractional Calculus, Global publishing Co., Sauk Rapids, 1993, 219–229.
  14. Raina R.K., Srivastava H.M. A unified presentation of certain subclasses of prestarlike functions with negative coefficients. Comput. Math. Appl. 1999, 38, 71–78. doi:10.1016/S0898-1221(99)00286-2
  15. Ruscheweyh S. Convolutions in geometric function theory. Sem. Math. Sup. 83, Les Presses de l’Universite de Montreal, 1982.
  16. Seoudy T., Aouf M.K. Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh operator. Constr. Math. Anal. 2020, 3 (1), 36–44. doi:10.33205/cma.648478
  17. Sharma S.K., Shekhawat A.S. A unified presentation of generalized fractional integral operators and H-Function. Glob. J. Pure Appl. Math. 2017, 13 (2), 393–403.
  18. Sheil-Small T., Silverman H., Silvia E.M. Convolutions multipliers and starlike functions. J. Anal. Math. 1982, 41, 181–192. doi:10.1007/BF02803399
  19. Sheil-Small T. Complex Polynomials. Cambridge Stud. Adv. Math., 75, Cambridge Univ. Press, Cambridge, 2002. doi:10.1017/CBO9780511543074
  20. Silverman H. Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 1975, 51, 109–116. doi:10.1090/S0002-9939-1975-0369678-0
  21. Silverman H., Silvia E. Subclasses of prestarlike functions. Math. Jpn. 1984, 29, 929–936.
  22. Srivastava H.M., Aouf M.K. Some applications of fractional calculus operators to certain subclasses of prestarlike functions with negative coefficients. Comput. Math. Appl. 1995, 30 (1), 53–61.
  23. Srivastava H.M., Owa S.(Eds) Univalent functions, Fractional calculus and their applications. Halsted Press, John Wiley and Sons, New York, 1989.
  24. Uma K., Murugusundaramoorthy G., Vijaya K. Analytic functions of complex order defined by fractional integrals involving Fox’s H-functions. Indian J. Sci. Tech. 2015, 8 (16), 1–7. doi:10.17485/ijst/2015/v8i16/52222