References
- Besse A.L. Einstein Manifolds. Springer, Berlin, 1987.
doi:10.1007/978-3-540-74311-8
- Blaga A.M. \(\eta\)-Ricci
solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015
20 (1), 1-13.
- Blaga A.M. Remarks on almost Riemann solitons with gradient or
torse-forming vector field. Bull. Malays. Math. Sci. Soc. 2021,
44 (50), 3215–3227. doi:10.1007/s40840-021-01108-9
- Cappelletti-Montano B., Erken I.K., Murathan C. Nullity
conditions in paracontact geometry. Differential Geom. Appl. 2012,
30 (6), 665–693. doi:10.1016/j.difgeo.2012.09.006
- Calvaruso G. Homogeneous paracontact metric three-manifolds.
Illinois J. Math. 2011 55 (2), 697–718. doi:10.1215/ijm/1359762409
- De K., De U.C. A note on almost Riemann soliton and gradient
almost Riemann soliton. arXiv:2008.10190v1.
doi:10.48550/arXiv.2008.10190
- Devaraja M.N., Kumara H.A., Venkatesha V. Riemann soliton within
the framework of contact geometry. Quaest. Math. 2020,
44 (5), 637–651. doi:10.2989/16073606.2020.1732495
- Hamilton R.S. The Ricci flow on surfaces. Contemp. Math.
1988, 71, 237–261. doi:10.1090/conm/071/954419
- Erken I.K., Murathan C. A complete study of three-dimensional
paracontact (\(\kappa,\mu,\nu\))-spaces. Int. J.
Geom. Methods Mod. Phys. 2017, 14 (7), 1–26.
doi:10.1142/S0219887817501067
- Erken I.K. Yamabe solitons on three-dimensional normal almost
paracontact metric manifolds. Period. Math. Hungar. 2020,
80, 172–184. doi:10.1007/s10998-019-00303-3
- Hiricǎ I.E., Udriste C. Ricci and Riemann solitons. Balkan
J. Geom. Appl. 2016, 21 (2), 35–44.
- Kaneyuki S., Williams F.L. Almost paracontact and parahodge
structures on manifolds. Nagoya Math. J. 1985, 99,
173–187.
- Montano B.C., Carriazo A., Martı́n-Molina V. SasakiEinstein and
paraSasakiEinstein metrics from \((k,\mu)\)-structures. J. Geom. Phys.
2013, 73, 20–36. doi:10.1016/j.geomphys.2013.05.001
- Sato I. On a structure similar to the almost contact
structure. Tensor (N.S.) 1976, 30, 219–224.
- Sharma R. Almost Ricci solitons and K-contact geometry.
Monatsh Math. 2014, 174, 621–628.
- Sharma R. Some results on almost Ricci solitons and geodesic
vector fields. Beitr. Algebra Geom. 2018, 59 (2),
289–294.
- Stepanov S.E., Tsyganok I.I. The theory of infinitesimal harmonic
transformations and its applications to the global geometry of Riemann
solitons. Balkan J. Geom. Appl. 2019, 24 (1),
113–121.
- Udrişte C. Riemann flow and Riemann wave via bialternate product
Riemannian metric. arXiv:1112.4279v4.
doi:10.48550/arXiv.1112.4279
- Yano K. Integral Formulas in Riemannian Geometry. Marcel Dekker, New
York, 1970.