References

  1. Besse A.L. Einstein Manifolds. Springer, Berlin, 1987. doi:10.1007/978-3-540-74311-8
  2. Blaga A.M. \(\eta\)-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015 20 (1), 1-13.
  3. Blaga A.M. Remarks on almost Riemann solitons with gradient or torse-forming vector field. Bull. Malays. Math. Sci. Soc. 2021, 44 (50), 3215–3227. doi:10.1007/s40840-021-01108-9
  4. Cappelletti-Montano B., Erken I.K., Murathan C. Nullity conditions in paracontact geometry. Differential Geom. Appl. 2012, 30 (6), 665–693. doi:10.1016/j.difgeo.2012.09.006
  5. Calvaruso G. Homogeneous paracontact metric three-manifolds. Illinois J. Math. 2011 55 (2), 697–718. doi:10.1215/ijm/1359762409
  6. De K., De U.C. A note on almost Riemann soliton and gradient almost Riemann soliton. arXiv:2008.10190v1. doi:10.48550/arXiv.2008.10190
  7. Devaraja M.N., Kumara H.A., Venkatesha V. Riemann soliton within the framework of contact geometry. Quaest. Math. 2020, 44 (5), 637–651. doi:10.2989/16073606.2020.1732495
  8. Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261. doi:10.1090/conm/071/954419
  9. Erken I.K., Murathan C. A complete study of three-dimensional paracontact (\(\kappa,\mu,\nu\))-spaces. Int. J. Geom. Methods Mod. Phys. 2017, 14 (7), 1–26. doi:10.1142/S0219887817501067
  10. Erken I.K. Yamabe solitons on three-dimensional normal almost paracontact metric manifolds. Period. Math. Hungar. 2020, 80, 172–184. doi:10.1007/s10998-019-00303-3
  11. Hiricǎ I.E., Udriste C. Ricci and Riemann solitons. Balkan J. Geom. Appl. 2016, 21 (2), 35–44.
  12. Kaneyuki S., Williams F.L. Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 1985, 99, 173–187.
  13. Montano B.C., Carriazo A., Martı́n-Molina V. Sasaki–Einstein and paraSasaki–Einstein metrics from \((k,\mu)\)-structures. J. Geom. Phys. 2013, 73, 20–36. doi:10.1016/j.geomphys.2013.05.001
  14. Sato I. On a structure similar to the almost contact structure. Tensor (N.S.) 1976, 30, 219–224.
  15. Sharma R. Almost Ricci solitons and K-contact geometry. Monatsh Math. 2014, 174, 621–628.
  16. Sharma R. Some results on almost Ricci solitons and geodesic vector fields. Beitr. Algebra Geom. 2018, 59 (2), 289–294.
  17. Stepanov S.E., Tsyganok I.I. The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons. Balkan J. Geom. Appl. 2019, 24 (1), 113–121.
  18. Udrişte C. Riemann flow and Riemann wave via bialternate product Riemannian metric. arXiv:1112.4279v4. doi:10.48550/arXiv.1112.4279
  19. Yano K. Integral Formulas in Riemannian Geometry. Marcel Dekker, New York, 1970.