References

  1. Goldberg A.A., Ostrovskii I.V. Value distribution of meromorphic functions. In: Translations of Mathematical Monographs, 236. Amer. Math. Soc., Providence, RI, 2008.
  2. Linnik Yu.V., Ostrovskii I.V. Decomposition of random variables and vectors. In: Rosenblatt J. (Ed.) Translations of Mathematical Monographs, 48. Amer. Math. Soc., Providence, RI, 1977.
  3. Ostrovskii M.I. Distances between Banach spaces induced by the opening between subspaces. Donetsk, 1985. (in Russian)
  4. Ostrovskii M.I. Domains of sums of conditionally convergent series in Banach spaces. Teor. Funkts., Funkts. Anal. Prilozh. 1986, 46, 77–85. (in Russian)
  5. Ostrovskii M.I. Classification of total subspaces of dual Banach spaces and its applications. Kharkiv, 1997. (in Ukrainian)
  6. Ostrovskii M.I. On properties of the opening and related closeness characterizations of Banach spaces. Amer. Math. Soc. Transl. 1987, 136 (2), 109–119. doi:10.1090/trans2/136 (translation of Teor. Funkts., Funkts. Anal. Prilozh. 1984, 42, 97–107. (in Russian))
  7. Ostrovskii M.I. The three space problem for the weak Banach-Saks property. Math. Notes 1985, 38 (5-6), 905–907. doi:10.1007/BF01157537 (translation of Mat. Zametki 1985, 38 (5), 721–725. (in Russian))
  8. Ostrovskii M. I. Minimal-volume shadows of cubes. J. Funct. Anal. 2000, 176 (2), 317–330. doi:10.1006/jfan.2000.3641
  9. Ostrovskii M.I. Sufficient enlargements of minimal volume for finite dimensional normed linear spaces. J. Funct. Anal. 2008, 255 (3), 589–619. doi:10.1016/j.jfa.2008.04.012
  10. Ostrovskii M.I. Auerbach bases and minimal volume sufficient enlargements. Canad. Math. Bull. 2011, 54, 726–738. doi:10.4153/CMB-2011-043-3
  11. Ostrovskii M.I. Sufficient enlargements in the study of projections in normed linear spaces. Indian J. Math., Golden Jubilee Year Volume, 2008 (Supplement), Proceedings, Dr. George Bachman Memorial Conference, The Allahabad Mathematical Society, 105–122.
  12. Ostrovskii M.I., Shulman V.S. Weak operator topology, operator ranges and operator equations via Kolmogorov widths. Integral Equations Operator Theory 2009, 65, 551–572. doi:10.1007/s00020-009-1691-0
  13. Ostrovskii M.I., Shulman V.S., Turowska L. Unitarizable representations and fixed points of groups of biholomorphic transformations of operator balls. J. Funct. Anal. 2009, 257, 2476–2496. doi:10.1016/j.jfa.2009.06.021
  14. Ostrovskii M.I., Shulman V.S., Turowska L. Fixed points of holomorphic transformations of operator balls. Q. J. Math. 2011, 62 (1), 173–187. doi:10.1093/qmath/hap031
  15. Matoušek J. Lectures on discrete geometry. In: Graduate Texts in Mathematics, 212. Springer-Verlag, New York, 2002.
  16. Ostrovskii M.I., Randrianantoanina B., A new approach to low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. J. Funct. Anal. 2017, 273 (2), 598–651. doi:10.1016/j.jfa.2017.03.017
  17. Ostrovskii M.I. Embeddability of locally finite metric spaces into Banach spaces is finitely determined. Proc. Amer. Math. Soc. 2012, 140, 2721–2730. doi:10.1090/S0002-9939-2011-11272-3
  18. Ostrovskii M.I. Radon-Nikodým property and thick families of geodesics. J. Math. Anal. Appl. 2014, 409 (2),–910. doi:10.1016/j.jmaa.2013.07.067
  19. Ostrovskii M.I. Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces. In: de Gruyter Studies in Mathematics, 49. Walter de Gruyter Co., Berlin, 2013. doi:10.1515/9783110264012
  20. Baudier F.P., Johnson W.B. Metric embeddings: bilipschitz and coarse embeddings into Banach spaces [book review]. Bull. Amer. Math. Soc. (N.S.) 2016, 53 (3), 495–506. doi:10.1090/bull/1523
  21. Dilworth S.J., Kutzarova D., Ostrovskii M.I. Lipschitz-free spaces on finite metric spaces. Canad. J. Math. 2020, 72, 774–804. doi:10.4153/S0008414X19000087
  22. Khan S.S., Mim M., Ostrovskii M.I. Isometric copies of \(\ell_\infty^n\) and \(\ell_1^n\) in transportation cost spaces on finite metric spaces. In: The Mathematical Legacy of Victor Lomonosov. Operator Theory, 189–203. De Gruyter, 2020. doi:10.1515/9783110656756
  23. Ostrovska S., Ostrovskii M.I. On relations between transportation cost spaces and \(\ell_1\). J. Math. Anal. Appl. 2020, 491 (2), 124338. doi:10.1016/j.jmaa.2020.124338
  24. Ostrovskii M.I., Rosenthal D. Metric dimensions of minor excluded graphs and minor exclusion in groups. Internat. J. Algebra Comput. 2015, 25 (4), 541–554.
  25. Catrina F., Ostrovskii M.I. Images of nowhere differentiable Lipschitz maps of \([0, 1]\) into \(L_1[0, 1]\). Fund. Math. 2018, 243, 75–83.
  26. Ostrovskii M.I. Weak\(^*\) sequential closures in Banach space theory and their applications. In: Banakh T., Plichko A. (Eds.) General Topology in Banach Spaces, 21–34. New York, Nova Sci. Publishers, 2001.
  27. Ostrovska S., Ostrovskii M.I. Generalized transportation cost spaces. Mediterr. J. Math. 2019, 16 (6), Paper No. 157. doi:10.1007/s00009-019-1433-8
  28. Ostrovskii M.I., Plichko A.M. On the Ukrainian translation of “Théorie des opérations linéaires” and Mazur’s updates of the “Remarks” section. Mat. Stud. 2009, 32 (1), 96–111.
  29. Ostrovskii M.I. \(w^*\)-derivatives of transfinite order of the subspaces of a conjugate Banach space. Dokl. Akad. Nauk Ukrain. SSR. Ser. A 1987, 10, 9–12. (in Russian)
  30. Ostrovskii M.I. Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace. Studia Math. 1993, 105 (1), 37–49. doi:10.4064/sm-105-1-37-49