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Recovery of continuous functions of two variables from their
Fourier coefficients known with error

Pozharskyi A.A., Pozharska K.V.

In this paper, we continue to study the classical problem of optimal recovery for the classes

of continuous functions. The investigated classes W
ψ
2,p , 1 ≤ p < ∞, consist of functions that are

given in terms of generalized smoothness ψ. Namely, we consider the two-dimensional case which

complements the recent results from [Res. Math. 2020, 28 (2), 24–34] for the classes W
ψ
p of univariate

functions.

As to available information, we are given the noisy Fourier coefficients yδ
i,j = yi,j + δξi,j, δ ∈ (0, 1),

i, j = 1, 2, . . . , of functions with respect to certain orthonormal system {ϕi,j}
∞
i,j=1, where the noise

level is small in the sense of the norm of the space lp, 1 ≤ p < ∞, of double sequences ξ = (ξi,j)
∞
i,j=1

of real numbers. As a recovery method, we use the so-called Λ-method of summation given by

certain two-dimensional triangular numerical matrix Λ = {λn
i,j}

n
i,j=1, where n is a natural number

associated with the sequence ψ that define smoothness of the investigated functions. The recovery

error is estimated in the norm of the space C([0, 1]2) of continuous on [0, 1]2 functions.

We showed, that for 1 ≤ p < ∞, under the respective assumptions on the smoothness parameter

ψ and the elements of the matrix Λ, it holds

∆(W
ψ
2,p , Λ, lp) = sup

y∈W
ψ
2,p

sup
‖ξ‖lp≤1

∥

∥

∥
y −

n

∑
i=1

n

∑
j=1

λn
i,j(yi,j + δξi,j)ϕi,j

∥

∥

∥

C([0,1]2)
≪

nβ+1−1/p

ψ(n)
.
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Notation

Let Lp([0, 1]2), 1 ≤ p < ∞, be the space of real-valued summable with pth power on the

square [0, 1]2 functions of two variables f : [0, 1]2 → R equipped with the norm

‖ f‖L2([0,1]2) :=
(

∫ 1

0

∫ 1

0
| f (t, τ)|p dtdτ

)1/p
, 1 ≤ p < ∞;

C([0, 1]2) be the space of continuous on [0, 1]2 functions f : [0, 1]2 → R with the norm

‖ f‖C([0,1]2) := max
t,τ∈[0,1]2

| f (t, τ)|;
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lp, 1 ≤ p < ∞, be the set of double sequences ξ = (ξi,j)
∞
i,j=1 of real numbers, such that

‖ξ‖lp
:=

( ∞

∑
i=1

∞

∑
j=1

|ξi,j|
p

)1/p

< ∞;

l∞ be the space of bounded double sequences ξ = (ξi,j)
∞
i,j=1 of real numbers with the norm

‖ξ‖l∞
:= sup

i,j∈N

|ξi,j|.

For a function y ∈ C([0, 1]2) let us consider its Fourier series

∞

∑
i=1

∞

∑
j=1

yi,j ϕi,j(t, τ),

where

yi,j := 〈y, ϕi,j〉L2([0,1]2) =
∫ 1

0

∫ 1

0
y(t, τ)ϕi,j(t, τ) dtdτ

are the Fourier coefficients of the function y with respect to certain system {ϕi,j}
∞
i,j=1 of contin-

uous on [0, 1]2 functions, such that ϕi,j(t, τ) = ϕi(t)ϕj(τ), where Φ := {ϕk}
∞
k=1 is a complete

orthonormal system in the space L2([0, 1]) of square summable on [0, 1] functions.

Assume also, that functions from the system Φ satisfy the condition

‖ϕk‖C([0,1]) ≤ C1kβ, k = 1, 2, . . . , (1)

where C([0, 1]) is the space of continuous on [0, 1] functions with usual norm, C1 > 0, β ≥ 0

are some constants. The set of such systems we denote by Kβ.

In what follows, the notation A ≍ B for a positive number sequence A = (An)
∞
n=1 and

function B = B(δ), δ ∈ (0, 1), that may depend on some set of parameters, means that for all

admissible values of this parameters under certain connection between n ∈ N and δ ∈ (0, 1)

the relations c1B ≤ A ≤ c2B are true with certain positive quantities c1 and c2 that do not

depend on n ∈ N and δ ∈ (0, 1). We also use symbols ≪ and ≫, i.e. A ≪ B (A ≫ B), if

A ≤ cB (B ≤ cA) for some c > 0 that does not depend on n ∈ N and δ ∈ (0, 1). In the case

of two positive number sequences A = (An)
∞
n=1 and D = (Dn)

∞
n=1, under the indicated above

conditions we write A ≍ D, A ≪ D and A ≫ D (the constants ci in corresponding inequalities

do not depend on the parameter n ∈ N).

Note also, that quantities Ci, may depend on some parameters. This dependence is usually

not important in the investigated context.

1 Problem statement and history overview

Further, for y ∈ C([0, 1]2), let us know only approximate values yδ
i,j of their Fourier coeffi-

cients yi,j, such that

yδ
i,j = yi,j + δξi,j, i, j = 1, 2, . . . ,

where δ ∈ (0, 1) and ξ = (ξi,j)
∞
i,j=1 is a noise, for which

‖ξ‖lp
≤ 1. (2)
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Put yδ,p := (yδ
i,j)

∞
i,j=1 and for a function class F ⊂ C([0, 1]2) denote by Yδ,p(F) the set of all

accordingly given approximative Fourier coefficients yδ,p of functions y ∈ F.

A recovery problem for functions y ∈ F from their coefficients yδ,p consists in determination

or choosing a mapping A : Yδ,p(F) → C([0, 1]2) (method of the recovery) such that the quantity

ε(δ) = ∆(F, A, lp, C([0, 1]2)) := sup
y∈F

sup
‖ξ‖lp≤1

‖y − Ayδ,p‖C([0,1]2)

tends to zero as δ → 0.

Quite complete information on a general problem statement for the optimal recovery in

normed spaces, as well as corresponding results for the classes of smooth and analytic func-

tions defined on various compact manifolds can be found in [8]. In the paper by A.M. Tikho-

nov [17] a method of series summation was suggested based on the idea of regularization.

Note, that earlier [16] the scientist has formulated general ideas on regularization.

As to recovery problems for functions in the case where one knows exact values of the re-

spective Fourier coefficients instead of noisy one, they are well studied for different classes and

error norms. In the context of linear methods of summation of the Fourier series defined by

triangular matrices, we mention the well-known names of A.N. Kolmogorov, S.M. Nikol’skii,

S.B. Stechkin, N.P. Korneichuk, V.K. Dzyadyk, A.I. Stepanets and others. Among recent results

in this direction, we refer to the following papers: [9], where order estimates of the uniform

approximations by Zygmund sums on the classes of convolutions of periodic functions were

obtained, [1] for direct and inverse theorems of approximation by the methods of Zygmund,

Abel-Poisson, Taylor-Abel-Poisson in the Orlicz-type spaces, and [11] for the investigation of

saturation of several linear methods of summation of the Fourier series.

Another important direction of research deals with investigation of summation methods

defined by a set of functions of a natural argument, e.g., the approximation of functions from

different classes by the classical, biharmonic or three-harmonic Poisson integrals, Weierstrass

integrals, etc. (see the papers [2–4, 6, 7], were one can find further references).

As to “ill-posed” problems (for the perturbed Fourier coefficients of respective functions),

for a more detailed information concerning the univariate case we refer to the paper [5].

The two-dimensional case is much less investigated. In particular, initially here appears

the problem of choosing an algorithm for the construction of an effective apparatus of approx-

imation. A core point here is determining a structure of the finite sets of points (i, j) in Z
2

which form the base for building subsets in the set {ϕi,j}
∞
i,j=1, that generate finite dimensional

approximative subsets. Usually, such sets are squares, circles, so-called “hyperbolic crosses”,

etc. So, in solving the recovery problem on the classes of functions of Sobolev type of smooth-

ness and functions with dominating mixed partial derivatives in the paper [10] rectangles have

been used, in [12] hyperbolic crosses, and in [13] triangles and non-uniform hyperbolic crosses.

In the present paper we use a method of series summation of the following form

TΛ
n (yδ)(t, τ) =

n

∑
i=1

n

∑
j=1

λn
i,jy

δ
i,j ϕi,j(t, τ) (3)

as a recovery method, where n is a natural number associated with δ, Λ = {λn
i,j}

n
i,j=1 is certain

two-dimensional triangular numerical matrix, the elements of which satisfy the condition

|1 − λn
i,j| ≤ C2

( ij

n2

)θ
, i, j = 1, n, n ∈ N, (4)
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for some number θ > 0 and positive constant C2. One says, that the method TΛ
n (yδ) is a

summation method on the squares

�n := {(i, j) ∈ Z
2 : 1 ≤ i ≤ n, 1 ≤ j ≤ n},

and, if the condition (4) holds, it is of the order θ.

The aim of the present paper is to estimate the quantity

∆(W
ψ
2,p, Λ, lp) := sup

y∈W
ψ
2,p

sup
‖ξ‖lp≤1

∥

∥

∥
y −

n

∑
i=1

n

∑
j=1

λn
i,j(yi,j + δξi,j)ϕi,j

∥

∥

∥

C([0,1]2)
,

1 ≤ p < ∞, δ ∈ (0, 1), when:

1) Φ ∈ Kβ;

2) for elements of the matrix Λ the condition (4) is satisfied;

3) W
ψ
2,p =

{

y ∈ L2([0, 1]2) : ‖y‖
p

W
ψ
2,p

=
∞

∑
i=1

∞

∑
j=1

(ψ(i)ψ(j))p |yi,j|
p ≤ 1

}

, where the sequence

{ψ(k), k ∈ N} belongs to the further defined set Ψγ1,γ2 , 0 < γ1 < γ2.

Therefore, in this problem statement, firstly, the case is covered when the noise ξ is stronger

than in the space l2 (in view of ‖ξ‖l2 ≤ ‖ξ‖lp
if 1 ≤ p ≤ 2), but still not stochastic. Secondly, a

quite wide spectrum of the classes W
ψ
2,p, 1 ≤ p < ∞, is considered of functions to recover. As

to the classes W
ψ
2,p, we additionally note that for fixed system Φ and function ψ the following

embedding W
ψ
2,p ⊆ W

ψ
2,q, 1 ≤ p ≤ q < ∞, holds.

We should also mention, that in the paper [14] the classes (and spaces) Sp were introduced

with non-symmetric metric that in partial case coincide with corresponding classes W
ψ
1,p of

one-variable functions

W
ψ
1,p =

{

y ∈ L2([0, 1]) : ‖y‖
p

W
ψ
1,p

=
∞

∑
k=1

ψp(k)|yk |
p ≤ 1

}

,

where yk = 〈y, ϕk〉L2([0,1]) =
∫ 1

0
y(t)ϕk(t) dt, k = 1, 2, . . . , are the Fourier coefficients of y

with respect to certain complete orthonormal in the space L2([0, 1]) with the inner product

〈·, ·〉L2([0,1]) system {ϕk}
∞
k=1 of continuous on [0, 1] functions. There (see also [15]) the estimates

are obtained for the best approximations and Kolmogorov widths of q-ellipsoids in this spaces.

2 Estimates of the recovery error

By Ψγ1 ,γ2 , 0 < γ1 < γ2, we denote the set of continuous, positive and strictly increasing on

[1, ∞) real-valued functions ψ that satisfy the conditions:

1) ψ(1) = 1;

2) for some γ, γ1 < γ < γ2, the function φ−(τ) := τγ/ψ(τ) does not increase for τ ≥ 1,

and φ−(τ) → 0 as τ → ∞;

3) the function φ+(τ) := τγ2 /ψ(τ) does not decrease for τ ≥ 1.
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In particular, power functions ψ(τ) = τα1 with γ1 < α1 ≤ γ2, and also functions of the form

ψ(τ) = τα1(log+(τ))α2 , γ1 < α1 < γ2, α2 ∈ R or ψ(τ) = τγ2(log+(τ))α, α < 0, belong to

the set Ψγ1,γ2 , where log+(τ) = max{1, log(τ)}, and the symbol log denotes a logarithm with

arbitrary base a > 0, a 6= 1.

Theorem. Let 1 ≤ p ≤ 2, ψ ∈ Ψβ+ 1
2 ,θ , or 2 < p < ∞, ψ ∈ Ψβ+1,θ and TΛ

n (yδ) is a method of

recovery defined by the formula (3). Then for nβ+1−1/pψ(n) ≍ 1/δ we have the estimate

∆(W
ψ
2,p , Λ, lp) ≪

nβ+1−1/p

ψ(n)
.

Proof. First note that under the conditions of the theorem the set W
ψ
2,p consists of continuous

on [0, 1]2 functions, and for any y ∈ W
ψ
2,p its Fourier series ∑

∞
i=1 ∑

∞
j=1 yi,j ϕi,j(t, τ) with respect

to the system {ϕi,j}
∞
i,j=1 converges uniformly on [0, 1]2 to y, because

∥

∥

∥

∥

∑
(i,j)∈Z2\�n

yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

→ 0 as n → ∞

(see further estimates of the terms I2, I3 and I4 of the relation (5)).

Therefore, for any y ∈ W
ψ
2,p we can write

‖y − TΛ
n (yδ)‖C([0,1]2) ≤

∥

∥

∥

∥

n

∑
i=1

n

∑
j=1

(1 − λn
i,j)yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

+

∥

∥

∥

∥

n

∑
i=1

∞

∑
j=n+1

yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

+

∥

∥

∥

∥

∞

∑
i=n+1

n

∑
j=1

yi,jϕi,j

∥

∥

∥

∥

C([0,1]2)

+

∥

∥

∥

∥

∞

∑
i=n+1

∞

∑
j=n+1

yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

+ δ

∥

∥

∥

∥

n

∑
i=1

n

∑
j=1

λn
i,jξi,jϕi,j

∥

∥

∥

∥

C([0,1]2)

=: I1 + I2 + I3 + I4 + I5.

(5)

Let us estimate first the term I1 from (5). Taking into account the condition (4) and norm

properties, we obtain

I1 =

∥

∥

∥

∥

n

∑
i=1

n

∑
j=1

(1 − λn
i,j)yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

≤ C2

n

∑
i=1

n

∑
j=1

( ij

n2

)θ
|yi,j|‖ϕi,j‖C([0,1]2)

= C2

n

∑
i=1

n

∑
j=1

( ij

n2

)θ
ψ(i)ψ(j)|yi,j |

‖ϕi,j‖C([0,1]2)

ψ(i)ψ(j)
.

(6)

Now note the following. In further speculations, in particular, when using the Hölder’s

inequality for number sequences, an important thing in the form of writing is that p 6= 1.

Nevertheless, this speculations as well as their result remain true also for p = 1 after their

corresponding correction with respect to the definition of norm in the space l∞.

Therefore, applying the Hölder’s inequality to the right-hand side of (6) for 1/p+ 1/p′ = 1,

p 6= 1, we get

I1 ≤ C2

( n

∑
i=1

n

∑
j=1

(ψ(i)ψ(j))p |yi,j|
p

)1/p( n

∑
i=1

n

∑
j=1

(

( ij

n2

)θ ‖ϕi,j‖C([0,1]2)

ψ(i)ψ(j)

)p′)1/p′

≤ C2‖y‖
W

ψ
2,p

( n

∑
i=1

n

∑
j=1

(

(ij)θ

ψ(i)ψ(j)

‖ϕi,j‖C([0,1]2)

n2θ

)p′)1/p′

.

(7)
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Now, taking into account, that ‖y‖
W

ψ
2,p

≤ 1, the function ψ satisfies condition 3) in the

definition of the set Ψγ1,γ2 with γ2 = θ, and in view of (1) from (7) we have

I1 ≤ C2
n2θ

(ψ(n))2n2θ

( n

∑
i=1

n

∑
j=1

‖ϕi,j‖
p′

C([0,1]2)

)1/p′

≤
C2(C1)

2

(ψ(n))2

( n

∑
i=1

n

∑
j=1

(ij)βp′
)1/p′

=
C2(C1)

2

(ψ(n))2

( n

∑
i=1

iβp′
)1/p′( n

∑
j=1

jβp′
)1/p′

≤
C2(C1)

2

(ψ(n))2
(nβp′n)

2
p′ =

C2(C1)
2

(ψ(n))2
n2(β+1−1/p).

(8)

The same estimate holds also for p = 1.

Further we move to estimation of the term I2 from the right-hand side of (5). First, applying

the Hölder’s inequality (for p 6= 1) and using (1), we can write

I2 =

∥

∥

∥

∥

n

∑
i=1

∞

∑
j=n+1

yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

=

∥

∥

∥

∥

n

∑
i=1

∞

∑
j=n+1

ψ(i)ψ(j)yi,j

ϕi,j

ψ(i)ψ(j)

∥

∥

∥

∥

C([0,1]2)

≤

( n

∑
i=1

∞

∑
j=n+1

(ψ(i)ψ(j))p |yi,j|
p

)1/p( n

∑
i=1

∞

∑
j=n+1

(

‖ϕi,j‖C([0,1]2)

ψ(i)ψ(j)

)p′)1/p′

≤ (C1)
2‖y‖

W
ψ
2,p

( n

∑
i=1

∞

∑
j=n+1

(

(ij)β

ψ(i)ψ(j)

)p′)1/p′

.

(9)

In what follows, we split estimation of the right-hand side of (9) into two cases: when

1 < p ≤ 2 and 2 < p < ∞.

Let 1 < p ≤ 2, then from (9) taking into account that ‖y‖
W

ψ
2,p

≤ 1, we obtain

I2 ≤ (C1)
2

( n

∑
i=1

(

iβ+1/2+ε

ψ(i)

1

i1/2+ε

)p′)1/p′( ∞

∑
j=n+1

(

jβ+1/2+ε

ψ(j)

1

j1/2+ε

)p′)1/p′

(10)

(here ε > 0 is arbitrary).

By the conditions of the theorem, the function ψ belongs to Ψβ+1/2,θ , therefore for suffi-

ciently small ε > 0 (10) yields

I2 ≤
(C1)

2

ψ(1)

( n

∑
i=1

i−(1/2+ε)p′
)1/p′

(n + 1)β+1/2+ε

ψ(n + 1)

( ∞

∑
j=n+1

j−(1/2+ε)p′
)1/p′

. (11)

Obviously, for any α > 1 the following relations hold

n

∑
k=1

k−α = 1 +
n

∑
k=2

k−α ≤ 1 +
∫ n

1
x−αdx = 1 +

1

1 − α
(n−α+1 − 1)

= 1 +
1

α − 1
−

1

(α − 1)nα−1
≤

α

α − 1

(12)

and
∞

∑
k=n+1

k−α ≤
∫ ∞

n
x−αdx =

1

1 − α
(0 − n−α+1) =

n−α+1

α − 1
. (13)
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In view of 1 < p ≤ 2 it holds (1/2 + ε) p′ > 1, besides ψ(1) = 1 (see condition 1) from the

definition of the set Ψγ1,γ2), and hence using (12) and (13), from (11) we derive

I2 ≤ (C1)
2

(

(1/2 + ε)p′

((1/2 + ε)p′ − 1)2

)1/p′
(n + 1)β+1/2+εn1/p′−(1/2+ε)

ψ(n + 1)

≤ (C1)
2

(

(1/2 + ε)p′

((1/2 + ε)p′ − 1)2

)1/p′
nβ+1−1/p

ψ(n)
.

(14)

It is easy to show, that for p = 1 it holds

I2 ≤ (C1)
2 nβ

ψ(n)
. (15)

Assume now, that 2 < p < ∞. Here, as in the previous case, we take into account the

condition ψ ∈ Ψβ+1,θ , and for sufficiently small ε > 0 from (9) we get

I2 ≤ (C1)
2

( n

∑
i=1

(

iβ+1+ε

ψ(i)

1

i1+ε

)p′)1/p′( ∞

∑
j=n+1

(

jβ+1+ε

ψ(j)

1

j1+ε

)p′)1/p′

≤
(C1)

2

ψ(1)

( n

∑
i=1

i−(1+ε)p′
)1/p′

nβ+1+ε

ψ(n)

( ∞

∑
j=n+1

j−(1+ε)p′
)1/p′

.

(16)

Since 1 < p′ < 2, then (1 + ε)p′ > 1, and therefore (16) yields

I2 ≤ (C1)
2

(

(1 + ε)p′

((1 + ε)p′ − 1)2

)1/p′
nβ+1−1/p

ψ(n)
. (17)

From the relations (14), (15) and (17) we conclude, that

I2 ≤ C3(p)
nβ+1−1/p

ψ(n)
, 1 ≤ p < ∞, (18)

where

C3(p) =











(C1)
2, p = 1,

(C1)
2
(

(1/2 + ε)p′/((1/2 + ε)p′ − 1)2
)1/p′

, 1 < p ≤ 2,

(C1)
2
(

(1 + ε)p′/((1 + ε)p′ − 1)2
)1/p′

, 2 < p < ∞.

Making similar speculations, we obtain the same estimate also for the term I3 from the right-

hand side of (5):

I3 =

∥

∥

∥

∥

∞

∑
i=n+1

n

∑
j=1

yi,jϕi,j

∥

∥

∥

∥

C([0,1]2)

≤ C3(p)
nβ+1−1/p

ψ(n)
, 1 ≤ p < ∞. (19)

Estimate now the fourth term from the right-hand side of (5). If 1 < p ≤ 2, arguing

similarly as in proving the estimate (10), for arbitrary ε > 0 we write

I4 =

∥

∥

∥

∥

∞

∑
i=n+1

∞

∑
j=n+1

yi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

≤ (C1)
2

( ∞

∑
i=n+1

(

iβ+1/2+ε

ψ(i)

1

i1/2+ε

)p′)2/p′

. (20)
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Then, in view of (13) and the condition ψ ∈ Ψβ+1,θ , from (20) we get for sufficiently small ε > 0,

that

I4 ≤ (C1)
2

[[

(n + 1)β+1/2+ε

ψ(n + 1)

]p′
n1−(1/2+ε)p′

(1/2 + ε)p′ − 1

]2/p′

≤
(C1)

2

((1/2 + ε)p′ − 1)2/p′
n2(β+1−1/p)

(ψ(n))2
. (21)

One can easily verify that for p = 1 it holds

I4 ≤ (C1)
2 n2β

(ψ(n))2
. (22)

In the case 2 < p < ∞ we obtain the estimate

I4 ≤
(C1)

2

((1 + ε)p′ − 1)2/p′
n2(β+1−1/p)

(ψ(n))2
. (23)

Respectively, combining (21), (22) and (23) for 1 ≤ p < ∞ we obtain

I4 ≤ C4(p)
n2(β+1−1/p)

(ψ(n))2
, (24)

where

C4(p) =











(C1)
2, p = 1,

(C1)
2/((1/2 + ε)p′ − 1)2/p′ , 1 < p ≤ 2,

(C1)
2/((1 + ε)p′ − 1)2/p′ , 2 < p < ∞.

It remains to estimate the term I5 from the right-hand side of (5). Note, that the condition

(4) yields uniform boundness of the elements λn
i,j of the matrix Λ, moreover |λn

i,j| ≤ C2 + 1,

i, j = 1, n, n ∈ N. So, we can write

I5 = δ

∥

∥

∥

∥

n

∑
i=1

n

∑
j=1

λn
i,jξi,j ϕi,j

∥

∥

∥

∥

C([0,1]2)

≤ (C2 + 1)δ
n

∑
i=1

n

∑
j=1

|ξi,j|‖ϕi,j‖C([0,1]2). (25)

Using the Hölder’s inequality to the right-hand side of (25) for 1/p + 1/p′ = 1, p 6= 1, and

then taking into account the conditions (2), (1), we get

I5 ≤ (C2 + 1)δ

[ n

∑
i=1

n

∑
j=1

|ξi,j|
p

]1/p[ n

∑
i=1

n

∑
j=1

‖ϕi,j‖
p′

C([0,1]2)

]1/p′

≤
C2 + 1

(C1)−2
δ‖ξ‖lp

[ n

∑
i=1

n

∑
j=1

(ij)βp′
]1/p′

.

Hence, making similar speculations to that in proving the estimate (8), we obtain

I5 ≤ (C2 + 1)(C1)
2δn2(β+1−1/p). (26)

The same estimate holds also for p = 1.

Further, combining the initial inequality (5) with the estimates (8), (18), (19), (24) and (26),

we derive

‖y − TΛ
n (yδ)‖C([0,1]2) ≤ ((C1)

2C2 + C4(p))

(

nβ+1−1/p

ψ(n)

)2

+ 2C3(p)
nβ+1−1/p

ψ(n)

+ (C2 + 1)(C1)
2δn2(β+1−1/p)

= n2(β+1−1/p)

(

(C1)
2C2 + C4(p)

(ψ(n))2
+

2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ

)

= n2(β+1−1/p)

(((C1)
2C2 + C4(p))

nβ+1−1/p

ψ(n)
+ 2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ

)

.

(27)
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Assume first, that 1 ≤ p ≤ 2, ψ ∈ Ψβ+1/2,θ . Then for any n ∈ N and a sufficiently small

ε > 0 we have

1 =
ψ(1)

1β+1/2+ε
≤

ψ(n)

nβ+1/2+ε
,

therefore
nβ+1/2+ε

ψ(n)
≤ 1.

Then, from (27), in view of 1/p − 1/2 + ε > 0, it follows that

‖y − TΛ
n (yδ)‖C([0,1]2)

≤ n2(β+1−1/p)

(

(C1)
2C2 + C4(p)

n1/p−1/2+ε

nβ+1/2+ε

ψ(n)
+ 2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ

)

≤ n2(β+1−1/p)
( (C1)

2C2 + C4(p) + 2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ
)

.

(28)

Arguing similarly in the case 2 < p < ∞, ψ ∈ Ψβ+1,θ , we get

nβ+1+ε

ψ(n)
≤ 1.

Respectively, from (27) we have the estimate

‖y − TΛ
n (yδ)‖C([0,1]2)

≤ n2(β+1−1/p)

(

(C1)
2C2 + C4(p)

n1/p+ε

nβ+1+ε

ψ(n)
+ 2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ

)

≤ n2(β+1−1/p)
( (C1)

2C2 + C4(p) + 2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ
)

.

(29)

Hence, according to (28) and (29), for all 1 ≤ p < ∞ it holds

‖y − TΛ
n (yδ)‖C([0,1]2) ≤ n2(β+1−1/p)

( (C1)
2C2 + C4(p) + 2C3(p)

nβ+1−1/pψ(n)
+ (C2 + 1)(C1)

2δ
)

. (30)

Now, if n ∈ N and δ ∈ (0, 1) are such that nβ+1−1/pψ(n) ≍ 1
δ , then (30) yields

‖y − TΛ
n (yδ)‖C([0,1]2) ≪

nβ+1−1/p

ψ(n)
.

Theorem is proved.

Remark 1. In the case ψ(k) = kµ, p = 2, Theorem yields the estimate for ∆(W
µ
2,2, Λ, l2), where

W
µ
2,2 =

{

y ∈ L2([0, 1]2) : ‖y‖2
W

µ
2,2

=
∞

∑
i=1

∞

∑
j=1

(ij)2µ |yi,j|
2 ≤ 1

}

,

with β + 1/2 < µ ≤ θ, n ≍ δ−2/(2µ+2β+1), namely

∆(W
µ
2,2, Λ, l2) ≪ nβ+1/2−µ,

or, in terms of the parameter δ

∆(W
µ
2,2, Λ, l2) ≪ δ(2µ−2β−1)/(2µ+2β+1).

This estimate was obtained earlier in the paper [10].
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Remark 2. The estimate of the quantity ∆(W
ψ
1,p, Λ, lp), 1 ≤ p < ∞, for the introduced above

classes W
ψ
1,p of univariate functions is obtained in the paper [5] (with appropriately modified

restrictions (4) on the elements λn
k , k = 1, . . . , n, of the matrix Λ).

Here, for 1 ≤ p ≤ 2, ψ ∈ Ψβ+1/2,θ , or 2 < p < ∞, ψ ∈ Ψβ+1,θ and n ≍ ψ−1([1/δ]) (notation

ψ−1 stands for inverse of ψ, [a] for integer part of a ∈ R) it holds

∆(W
ψ
1,p , Λ, lp) ≪

nβ+1−1/p

ψ(n)
,

that is,

∆(W
ψ
1,p, Λ, lp) ≪ δ(ψ−1([1/δ]))β+1−1/p .

Note, that here, when defining the set Ψγ1,γ2 , 0 < γ1 < γ2, the assumption ψ(1) = 1 is not

obligatory.
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Пожарський О.А., Пожарська К.В. Вiдновлення неперервних функцiй двох змiнних за їхнiми кое-

фiцiєнтами Фур’є, що заданi з похибкою // Карпатськi матем. публ. — 2021. — Т.13, №3. — C.

676–686.

У данiй роботi ми продовжуємо вивчати класичну задачу оптимального вiдновлення на

класах неперервних функцiй. А саме, розглянуто класи W
ψ
2,p, 1 ≤ p < ∞, функцiй, що зада-

ються у термiнах узагальненої гладкостi ψ. Дослiджено двовимiрний випадок, який доповнює

недавнi результати роботи [Res. Math. 2020, 28 (2), 24–34] для класiв W
ψ
p функцiй однiєї змiнної.

Вважаємо, що для функцiй вiдомi їхнi коефiцiєнти Фур’є yδ
i,j = yi,j + δξi,j, δ ∈ (0, 1),

i, j = 1, 2, . . . , вiдносно деякої ортонормованої системи {ϕi,j}
∞
i,j=1, якi збуренi шумом. При цьо-

му, рiвень шуму вважаємо малим в сенсi норми простору lp, 1 ≤ p < ∞, подвiйних послiдо-

вностей ξ = (ξi,j)
∞
i,j=1 дiйсних чисел.

У якостi методу вiдновлення, взято так званий Λ-метод пiдсумовування, що задається де-

якою двовимiрною числовою матрицею Λ = {λn
i,j}

n
i,j=1, де n — натуральне число, яке певним

чином пов’язане iз послiдовнiстю ψ, що визначає гладкiсть дослiджуваних функцiй. Похибку

наближення оцiнено в нормi простору C([0, 1]2) неперервних на [0, 1]2 функцiй.

Показано, що при 1 ≤ p < ∞, за вiдповiдних умов на гладкiсний параметр ψ та елементи

матрицi Λ, справедлива оцiнка

∆(W
ψ
2,p , Λ, lp) = sup

y∈W
ψ
2,p

sup
‖ξ‖lp≤1

∥

∥

∥
y −

n

∑
i=1

n

∑
j=1

λn
i,j(yi,j + δξi,j)ϕi,j

∥

∥

∥

C([0,1]2)
≪

nβ+1−1/p

ψ(n)
.

Ключовi слова i фрази: ряд Фур’є, метод регуляризацiї, Λ-метод пiдсумовування.


