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Recovery of continuous functions of two variables from their
Fourier coefficients known with error

Pozharskyi A.A., Pozharska K.V.>

In this paper, we continue to study the classical problem of optimal recovery for the classes
of continuous functions. The investigated classes ng pr 1 < p < oo, consist of functions that are
given in terms of generalized smoothness ¢. Namely, we consider the two-dimensional case which
complements the recent results from [Res. Math. 2020, 28 (2), 24-34] for the classes W;f of univariate
functions.

As to available information, we are given the noisy Fourier coefficients yf, i = Yij +6¢ ijr 5e€(0,1),
i,j = 1,2,..., of functions with respect to certain orthonormal system {¢; j}?j':l’ where the noise
level is small in the sense of the norm of the space I,, 1 < p < oo, of double sequences § = (Ci,]-)fj-:l
of real numbers. As a recovery method, we use the so-called A-method of summation given by
certain two-dimensional triangular numerical matrix A = {/\Z]- ijl, where 7 is a natural number
associated with the sequence ¢ that define smoothness of the investigated functions. The recovery
error is estimated in the norm of the space C([0,1]?) of continuous on [0, 1] functions.

We showed, that for 1 < p < oo, under the respective assumptions on the smoothness parameter
1 and the elements of the matrix A, it holds

nBH1-1/p

<< -
‘cqo,l]z) P(n)

n n
MW, A L) = sup sup [y — 32 Y A+ 08i,) @i
yewd Igl,<1 ==
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Notation

Let L,([0,1]%), 1 < p < oo, be the space of real-valued summable with pth power on the
square [0, 1]? functions of two variables f: [0,1]?> — R equipped with the norm

1 1 1/p
Fllop = ([ [ enratr) ™, 1<p <o

C([0,1]?) be the space of continuous on [0, 1]? functions f: [0,1]*> — R with the norm

| fllcqoapy == max_|f(t,T)[;

t,t€[0,1)2
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l,,1 < p < o0, be the set of double sequences ¢ = (éi,]-)f"]’-zl of real numbers, such that

1/p
p) < 0;

lelh, = (L3l

i=1j=1
I« be the space of bounded double sequences § = (éi,]-)f;:l of real numbers with the norm

Gijl-

1Sl == sup
ijeEN

For a function y € C([0, 1]?) let us consider its Fourier series

(o)
Zy,J(Pz,J (t,7),
1j=1

Ms

i

where
Yij =Y, 9ij) L>([0,1]2) / / (t, )i j(t, T)dtdT

are the Fourier coefficients of the function y with respect to certain system {%‘,j}fj-:l of contin-
uous on [0,1]? functions, such that ¢; ;(t, T) = ¢;(t)@;(7), where ® := {@;}>; is a complete
orthonormal system in the space L;([0,1]) of square summable on [0, 1] functions.

Assume also, that functions from the system @ satisty the condition

lorllcqon < CikP, k=12,..., (1)

where C([0,1]) is the space of continuous on [0, 1] functions with usual norm, C; > 0, 8 > 0
are some constants. The set of such systems we denote by KP.

In what follows, the notation A < B for a positive number sequence A = (A,);._; and
function B = B(J), ¢ € (0,1), that may depend on some set of parameters, means that for all
admissible values of this parameters under certain connection between n € IN and ¢ € (0,1)
the relations c;B < A < c,B are true with certain positive quantities ¢; and ¢, that do not
depend onn € IN and ¢ € (0,1). We also use symbols < and >, ie. A < B (A > B),if
A < ¢B (B < cA) for some ¢ > 0 that does not depend onn € N and ¢ € (0,1). In the case
of two positive number sequences A = (A,);,_; and D = (D,);,_;, under the indicated above
conditions we write A < D, A < D and A > D (the constants c; in corresponding inequalities
do not depend on the parameter n € IN).

Note also, that quantities C;, may depend on some parameters. This dependence is usually
not important in the investigated context.

1 Problem statement and history overview

Further, for y € C([0,1]?), let us know only approximate values yf’]- of their Fourier coeffi-
cients y; ;, such that

Vi =Vij+6Gij, iji=12...,
where d € (0,1) and § = (gl}j)?,j':l is a noise, for which

1811, < (2)
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Put o7 = (yf, ]-);?,‘]’-:1 and for a function class F C C([0,1]?) denote by Y*P(F) the set of all
accordingly given approximative Fourier coefficients y*? of functionsy € F.

A recovery problem for functions y € F from their coefficients y*” consists in determination
or choosing a mapping A: Y%P(F) — C([0,1]?) (method of the recovery) such that the quantity

e(6) = A(F, A1y, C([0,1]?)) == sup sup [ly — Ay’”
yeF (g, <1

lc(oap)

tends to zero as 6 — 0.

Quite complete information on a general problem statement for the optimal recovery in
normed spaces, as well as corresponding results for the classes of smooth and analytic func-
tions defined on various compact manifolds can be found in [8]. In the paper by A.M. Tikho-
nov [17] a method of series summation was suggested based on the idea of regularization.
Note, that earlier [16] the scientist has formulated general ideas on regularization.

As to recovery problems for functions in the case where one knows exact values of the re-
spective Fourier coefficients instead of noisy one, they are well studied for different classes and
error norms. In the context of linear methods of summation of the Fourier series defined by
triangular matrices, we mention the well-known names of A.N. Kolmogorov, S.M. Nikol’skii,
S.B. Stechkin, N.P. Korneichuk, V.K. Dzyadyk, A.I. Stepanets and others. Among recent results
in this direction, we refer to the following papers: [9], where order estimates of the uniform
approximations by Zygmund sums on the classes of convolutions of periodic functions were
obtained, [1] for direct and inverse theorems of approximation by the methods of Zygmund,
Abel-Poisson, Taylor-Abel-Poisson in the Orlicz-type spaces, and [11] for the investigation of
saturation of several linear methods of summation of the Fourier series.

Another important direction of research deals with investigation of summation methods
defined by a set of functions of a natural argument, e.g., the approximation of functions from
different classes by the classical, biharmonic or three-harmonic Poisson integrals, Weierstrass
integrals, etc. (see the papers [2—4,6,7], were one can find further references).

As to “ill-posed” problems (for the perturbed Fourier coefficients of respective functions),
for a more detailed information concerning the univariate case we refer to the paper [5].

The two-dimensional case is much less investigated. In particular, initially here appears
the problem of choosing an algorithm for the construction of an effective apparatus of approx-
imation. A core point here is determining a structure of the finite sets of points (i,]) in Z2
which form the base for building subsets in the set {¢;;}_;, that generate finite dimensional
approximative subsets. Usually, such sets are squares, circles, so-called “hyperbolic crosses”,
etc. So, in solving the recovery problem on the classes of functions of Sobolev type of smooth-
ness and functions with dominating mixed partial derivatives in the paper [10] rectangles have
been used, in [12] hyperbolic crosses, and in [13] triangles and non-uniform hyperbolic crosses.

In the present paper we use a method of series summation of the following form

TA ; Z ,]]/z ]q’l] T) 3)

as a recovery method, where 7 is a natural number associated with §, A = {A j,j—1 1s certain
two-dimensional triangular numerical matrix, the elements of which satisfy the condition

iiNe
|1—A;jj|gc2(n—]2), i,j=T,n, neN, (4)
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for some number § > 0 and positive constant C,. One says, that the method T2 (y°) is a
summation method on the squares

On:={(,j) €Z* 1<i<n 1<j<n},

and, if the condition (4) holds, it is of the order 6.
The aim of the present paper is to estimate the quantity

A(sz,/\l) = Sup sup H]/ ZZ)‘ y1]+561])¢1]‘ ()
yewy, &, =<1 i=1j=1 ’

1<p<oo,de€(0,1), when:
1) ® € K¥;

2) for elements of the matrix A the condition (4) is satisfied;

3) W;pr = {y € Ly([0, 1) Hpr X;Z INPlyiglP < 1} where the sequence
i=1]

{y(k), k € N} belongs to the further defined set ¥+, 4,, 0 < 71 < 72.

Therefore, in this problem statement, firstly, the case is covered when the noise ¢ is stronger
than in the space I, (in view of ||¢][;, < [|¢]|;, if 1 < p < 2), but still not stochastic. Secondly, a

quite wide spectrum of the classes W;IJ pr 1 < p < oo, is considered of functions to recover. As

to the classes W;P "
embedding W;lfp - ngq, 1 <p <g < o, holds.

We should also mention, that in the paper [14] the classes (and spaces) S¥ were introduced
with non-symmetric metric that in partial case coincide with corresponding classes W;P p of

one-variable functions

we additionally note that for fixed system ® and function ¢ the following

Wy, = {v e La(,1)): ny|\w¢—zw yel” <1},

1
where yr = (Y, 9k)1,(01)) = /0 y(t)e(t)dt, k = 1,2,..., are the Fourier coefficients of y

with respect to certain complete orthonormal in the space L([0,1]) with the inner product
(/) Ly(j0,1]) System { @ };32; of continuous on [0, 1] functions. There (see also [15]) the estimates
are obtained for the best approximations and Kolmogorov widths of g-ellipsoids in this spaces.

2 Estimates of the recovery error

By ¥,,7,, 0 < 71 < 72, we denote the set of continuous, positive and strictly increasing on
[1, 00) real-valued functions i that satisfy the conditions:

D (1) =

2) for some 7y, y1 < v < 72, the function ¢_(7) := v7/¢(7) does not increase for T > 1,
and ¢_(7) = 0as T — oo;

3) the function ¢ (7) := 772/¢(7) does not decrease for T > 1.
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In particular, power functions ¥(7) = ™ with 91 < a1 < 7, and also functions of the form
(1) = ™ (log™(1))*2, 71 < a1 < 72, a2 € Ror (1) = 2(log’ (1))*, a < 0, belong to
the set ¥, 1,, where log™ (7) = max{1,log(7)}, and the symbol log denotes a logarithm with
arbitrary basea > 0,a # 1.

Theorem. Let1l < p <2, ¢ € ‘Flﬂ%ﬂ’ or2 < p <o, € ¥g,14and T,ﬁ\(y‘s) is a method of
recovery defined by the formula (3). Then for nf*1=1/Py(n) < 1/5 we have the estimate
WBH1-1/p

p(n)

Proof. First note that under the conditions of the theorem the set Wép p consists of continuous

AWY

5 N 1p) <

on [0,1]? functions, and for any y € ng , its Fourier series } 52 722 1 yi j@i (t, T) with respect
to the system {¢;;}75_; converges uniformly on [0, 1)? to y, because

Z Yi,jPi

(1)) €Z2\0y

—0 as n— o0
C([01]?)

(see further estimates of the terms I, I3 and I4 of the relation (5)).
Therefore, for any y € W;P we can write

n n
ZZ %19”1]

Z Z Yi,jPi;

ly = T ()l (o)

C([01]?) i= 1] n+1 C([012)
Z Y Yij i Z Z YijPij )
1j=1 c([o1 ]) i=n+1j=n+1 C([0,1]?)
n n
ZZ 1]61]901] , = h+Dh+ L+ 1+ I
=1j= C([01]?)

Let us estimate first the term I from (5). Taking into account the condition (4) and norm
properties, we obtain

n n

b= Y 30— Ayijgis < czz):(”) i illlislegore)
i=1j=1 C([0,1]2) i=1j=1 ©)
ij H%;Hc ([0,1]2)
=C YViil— -
ZZZ%]U :) WO

Now note the following. In further speculations, in particular, when using the Holder’s
inequality for number sequences, an important thing in the form of writing is that p # 1.
Nevertheless, this speculations as well as their result remain true also for p = 1 after their
corresponding correction with respect to the definition of norm in the space le.

Therefore, applying the Holder’s inequality to the right-hand side of (6) for 1/p+1/p’ =1,
p # 1, we get

(g fomorn) " (EE () e )

i=1j=1

n n N\ 0 H%,H 1] p'\ /7'
SCZ”y”Wz“fp(ZZ(w((il)%(ﬁ ]nigm])) ) '
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Now, taking into account, that ||y|,, a < 1, the function 1 satisfies condition 3) in the

definition of the set ¥, 4, with 7, = 6, and in view of (1) from (7) we have

1/¢ 1/p'
G(Cr)?
1< Ca gy 29<ZZ”<”””COHZ> < G (LE0")

i=1j=1 i=1j=1

_ GG () (5 < QG i CAC)? agiayy)
“ G (%) (B) " < o’ = Giges

(8)

j=1

The same estimate holds also for p = 1.
Further we move to estimation of the term I, from the right-hand side of (5). First, applying
the Holder’s inequality (for p # 1) and using (1), we can write

n oo
Z Z Yi,j @i

@i
L= i,
’ =1 j=nt1 c(oap) ;];-147 y]l/’( DY) o)
Vr a2 gl om)”’)””’
WP lyi il ¥ijlic(o1]?)
<(L 2 wovornr) (L 2 (G g

< g (£ £ (b))

In what follows, we split estimation of the right-hand side of (9) into two cases: when
l1<p<2and2 <p < co.
Let1 < p <2, then from (9) taking into account that || y||w¢ < 1, we obtain
2p

o (L (iFT2E PNV = jPr1/2ve g PNV
(| (k) ) (B, o)) o
2 ( 1) El lp(l) 11/2+£ j—;l ’7”(]) ]1/2+£

(here € > 0 is arbitrary).
By the conditions of the theorem, the function i belongs to ¥g,1,24, therefore for suffi-
ciently small ¢ > 0 (10) yields

1/p % 1/p
< C1)2<ii(1/2+£)p,> g (”+1)ﬁ+1/2+8< 2 ]~(1/2+s)p’> p, (11)
=)\ & pln+1) \ 4,

Obviously, for any a > 1 the following relations hold

n

n n
Zk“":1+2k“"§1+/ x_“dx:1+1%(n_"‘+1—1)

k=1 k=2 1 x (12)
14 1 _ 1 < o
o a—1 (a—TDnel T a—1
and
i k= < /oo x Ydx = L(0 —n ot = o (13)
= Ja o l—a -1

k=n+1
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Inview of 1 < p < 2itholds (1/2+¢) p’ > 1, besides (1) = 1 (see condition 1) from the
definition of the set ¥, ,,), and hence using (12) and (13), from (11) we derive

L<(C (1/2+4e)p YV (n+4 1)1/ 2epl/y/-(1/240)
2_( 1) <((1/2+€)P'—1)2>

/ " 1U1Mn+1) (14)
<(C1)2< (1/2+¢)p ) nPHi-1/p
B (172 +¢)p' —1)? ¥(n)
It is easy to show, that for p = 1 it holds
L < (C))? n? (15)
SRR

Assume now, that 2 < p < co. Here, as in the previous case, we take into account the
condition ¢ € Y4, 14, and for sufficiently small ¢ > 0 from (9) we get

nosiBtle 1 \NPN\NVP ;oo sipiide 1\ P\ /P
1<C2< Co ) ) (2, (o))
2 < (Gy) Z; MOREE j_;l p(j) jire

(i (1e)p y”nﬁ”e § s v
¢><J )

j=n+1

(16)

Since 1 < p’ < 2, then (1+¢)p’ > 1, and therefore (16) yields

1+e)p  \VPnpr1-1p
<@ (i) e (47

From the relations (14), (15) and (17) we conclude, that

anJrl*l/p

I < C3(P)W,

1<p<oo, (18)

where
(C1)% p=1
C(p) = § (P24 /(1/2+e)p' =117, 1<p<2
@P((+ap /(1 +ap ~1)"7, 2<p<e
Making similar speculations, we obtain the same estimate also for the term I3 from the right-
hand side of (5):

c ( )n;3+1—1/p
< 7’
o) P )

Z Z%J‘Pu

i=n+1j=1

1<p< oo (19)

Estimate now the fourth term from the right-hand side of (5). If 1 < p < 2, arguing
similarly as in proving the estimate (10), for arbitrary ¢ > 0 we write

o2 o sip+1/2+e 1 \PN\2/P 20
< —_— .
2 l, 2 : YijPij c(01P) < (G1) <i_§1< (i) i1/2+£> ) (20)

i=n+1j=n+1
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Then, in view of (13) and the condition ¢ € ¥, from (20) we get for sufficiently small ¢ > 0,
that

L<(C )ZH(n + 1>ﬁ+1/2+s]p’ pl—(1/2+¢)p’ 2/;7’< (Cy)? 12(B+1-1/p) )
! pn+1) | (A2+ep 1] T (A/2+e)p' =17 (p(0))*
One can easily verify that for p = 1 it holds
28
< L
14 = (Cl) (ll)(i’l))z (22)
In the case 2 < p < oo we obtain the estimate
2 2(p+1-1/p)
P = V. (23)
(A+e)p' =17 (p(n))?
Respectively, combining (21), (22) and (23) for 1 < p < oo we obtain
nz(,BWLlfl/p)
< -
14 >~ C4(P) (ll)(i’l))z ’ (24)
where
(C1)% or=1
Ca(p) = § (C1)*/((1/2+e)p' —1)*/P, 1<p<2,

(C12/((L+e)p =1V, 2<p<oo
It remains to estimate the term I5 from the right-hand side of (5). Note, that the condition
(4) yields uniform boundness of the elements )\Zj of the matrix A, moreover Mf]] <G +1,

i,j =1,n, n € N. So, we can write
ZZ)‘z]éwq’u
i=1j=1

Using the Holder’s inequality to the rlght-hand side of (25) for 1/p+1/p' =1, p # 1, and
then taking into account the conditions (2), (1), we get

Is < (C +1)5 [2>:rcw]l/p[ii|r¢z,|\c0”2] _(Czjlanculp[zzz]ﬁp}w.

i=1j=1 i=1j=1 i=1j=1

<(C+1)3Y Y 1&ijllleillconp: (25)

i=1j=1

Hence, making similar speculations to that in proving the estimate (8), we obtain
Is < (Cp + 1)(Cy)26n2BH1-1/p), (26)

The same estimate holds also for p = 1.
Further, combining the initial inequality (5) with the estimates (8), (18), (19), (24) and (26),
we derive

Iy = T2 o) < (C1°Ca+ Calp)
+(Co+ 1)(Cr 2o BH=1/p)

<(C1)2C2 + C4(P) + 2C3(p) + (Cz + 1)(C1>2(5> (27)

(((

nb+1-1/p

p(n)

nb+1-1/p

) + 2C3(P) lIJ(Vl)

n2(B+1-1/p

(p(n))? nPH1=1/py(n)
ﬁ—i—l 1/p
C1)*Cy + C4(P))7 +2G5(p)

(B+1-1/p)
2(B11/p) - /p‘i((ni (Gt 1)(c1)25> .
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Assume first, that 1 < p < 2,9 € Ygi1/26- Then for any n € IN and a sufficiently small

¢ > 0 we have
L) g
T BHL/24e = pBt1/24¢€’

therefore
nPt1/2+e

- <1
P(n)
Then, from (27), in view of 1/p —1/2 4 ¢ > 0, it follows that
ly = T2 ) o)
(Cl)ZCZ + C4(p) nBt1/2+e

1/p—1/2+e +2G(p)
< p2pr1-1/p) (P e /Z/E?r)l) +(c2+1>(C1)25> (28)
C1)?*Cy +C 2C
_nz(ﬁ+1—1/p)<( 1) nzﬁL_;;EZ)p&) 3(p) +(C2+1)(C1)25>.

Arguing similarly in the case 2 < p < o0, P € Y19, we get
nptlte

p(n)

Respectively, from (27) we have the estimate

ly — T2 () le(oap)

<1

(C1)2Cy + Cy(p) nPr1te
< n2(/3+1—1/p)( nl/pte P(n)

nB+1=1/py(n)
2
2p+1-1/p) { (C1)°Ca + Cu(p) +2C5(p) 2
n ( T T (G D) ).
Hence, according to (28) and (29), for all 1 < p < oo it holds

(C1)*Ca + Ca(p) +2C5(p)
nPH=Py(n)

Now, if n € N and 6 € (0,1) are such that nf*1=V/Py(n) < 1, then (30) yields

n/3+1—1/p

p(n)

Theorem is proved. 0

+(Cy + 1)(c1)25> (29)

ly = T leoap < n2E110(

+(Co+ 1)((:1)25). (30)

ly = T2 ) o) <

Remark 1. In the case (k) = k¥, p = 2, Theorem yields the estimate for A(W. 2 2\, 1), where
Wy = {y € La(O1P): Iyl = 3 1o, <1},
22 i=1j=
withB+1/2 < u <0, n < 62/ r+28+1) namely
A(WS,, A, L) < nPt1/270,
or, in terms of the parameter 6

A(WE

Nor A ) < §BH2BN/ (2pet2ptD),

This estimate was obtained earlier in the paper [10].
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Remark 2. The estimate of the quantity A(Wf pr A, lp), 1 < p < o, for the introduced above

classes Wip » of univariate functions is obtained in the paper [5] (with appropriately moditied
restrictions (4) on the elements A}, k = 1,...,n, of the matrix A\).

Here, for1 < p < 2,9 € ¥p,1/20,0r2 < p < oo, 9 € ¥p19 and n < ¢~ 1([1/6]) (notation
p!

stands for inverse of , [a] for integer part of a € R) it holds
nﬁ—i—l—l/p

A(w;/jp,/\, l,) < RO

that is,

A(w;/jp,A, 1) < 8(p~1([1/0]))fH1-Vp,

Note, that here, when defining the set ¥, 1,, 0 < 71 < 72, the assumption (1) = 1 is not
obligatory.
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IMoxapcekmit O.A., TToxapceka K.B. BioHos.ienHs HenepepsHux QyHKyili 080X 3MIHHUX 34 IXHIMU Koe-
¢iyienmamu Dyp’e, wjo 3adani 3 noxubkor // Kapmarceki mareM. my6ba. — 2021. — T.13, Ne3. — C.
676—686.

Y aaHilT pob0OTi MM IIPOAOBXYEMO BMBUATH KAACWUHY 3aAady ONTMMAABHOTO BiAHOBAEHHS Ha
KAacax HeTllepepBHUX (pyHKIIN. A caMe, PO3TASIHYTO KAAaCy Wujp, 1 < p < oo, PyHKUIN, IO 3aha-
IOThCSI y TepMiHax y3araAbHeHOI TAQAKOCTI . AOCAIAXKEHO ABOBMMipHIMI BUIIAAOK, SIKII AOTIOBHIOE
HeAaBHi pe3yabTaTyi pobotu [Res. Math. 2020, 28 (2), 24-34] AAst kraciB W;,p dpyHKLI OAHi€l 3MiHHOI.

BBaxxaemo, 110 AAst dpyHKIIN Biaomi ixHi xoedpitienTn Dyp’e yf’j = yij+9Gij, 6 € (0,1),
i,j=1,2,..., BIAHOCHO AeSKOi OPTOHOPMOBAHOI CHCTEMM {goi,]-}fj-:l, s1ki 36ypeni rirymom. ITpum mpo-
My, piBeHb IIyMy BBaXXKa€EMO MAaAMM B CEHCi HOpMM MpocTopy Iy, 1 < p < oo, MOABIMHMX TOCAIAO-
BHOCTeI § = (Ci,]-)fj-zl AIICHMX UMCeA.

Y SKOCTi METOAY BiAHOBAEHHSI, B3ITO TaK 3BaHMI /A-MeTOA IiACYMOBYBaHHsI, IO 3aAA€THCSI Ae-
SIKOIO ABOBMMIPHOIO U/CAOBOIO MaTpuiiero A = {/\Z]-}ijl, Ae 11 — HaTypaAbHe UMCAO, SIKe TIeBHIUM
YNMHOM TIOB’s13aHe i3 MOCAIAOBHICTIO 1, IIIO BUM3HAYa€ IAAAKICTb AOCAiAXYBaHMX pyHKIi. IToxnbky
HabAV>KeHHs oLiHeHo B Hopmi ipoctopy C([0, 1]?) Henepepsrmx Ha [0, 1] dyrkuiit.

IToxasano, mo npu 1 < p < o0, 32 BIATIOBIAHMX YMOB Ha TAaAKiCHMII MapaMeTp 1§ Ta eAeMeHTH
MaTpuii /A, cipaBeAAVBa OLLIHKA

2BH1-1/p

n n
A(Wlp ,A\ L) = sup sup |ly-— Al (yi i+ 6 1) i
e yew;epmzqu ;,; A ]‘cuo,uz) $(n)

Kntouosi crosa i ppasu: psip Dyp’e, MeToA peryaspmsaniii, A-MeTOA IiACyMOBYBaHHSI.



