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On convergence of branched continued fraction expansions of
Horn’s hypergeometric function Hj; ratios

Antonova T.M.

The paper deals with the problem of convergence of the branched continued fractions with two
branches of branching which are used to approximate the ratios of Horn’s hypergeometric function
H3(a,b;c;z). The case of real parameters ¢ > a > 0,¢c > b > 0, ¢ # 0, and complex variable
z = (z1,22) is considered. First, it is proved the convergence of the branched continued fraction for
z € Gy, where Gy, is two-dimensional disk. Using this result, sufficient conditions for the uniform
convergence of the above mentioned branched continued fraction on every compact subset of the
domain H = Uye(—/2,1/2) Gp, Where

Gy = {z € C* : Re(z1¢7'?) < Ay cos ¢, [Re(ze™'?)| < Azcos g,
|zk| + Re(zre %) < v cos® @, k = 1,2; |z122| — Re(z1z0¢29) < v3 cos? ¢},

are established.

Key words and phrases: Horn’s hypergeometric function Hz, branched continued fraction, conver-
gence.
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Introduction

Solving various problems of applied mathematics involves the use of special functions. An
important class of special functions is hypergeometric functions, among which the hypergeo-
metric function of Gauss should be noted at the first place. This function is a solution to the
ordinary differential equation [13, p. 56]. Usually, the literature provides a definition of the
hypergeometric function of Gauss with the help of a hypergeometric series. In 1889, J. Horn
gave the definition of a hypergeometric series of two variables. He studied, in particular, the
series of the second order. The list of the series, regions of convergence and corresponding
systems of differential equations in partial derivatives are given in [13, pp. 224-229].

It is known that continued fractions have numerous applications in the theory of approxi-
mation of functions of one variable [15,16]. Multidimensional generalizations of continued
fractions can be considered as a tool of rational approximation of functions of several variables
[11,12]. In particular, branched continued fractions (BCF) of the form

© 2 ooz
d0<z)+DZC;_<">¥ (1)

where i(k) = (iy,1p,...,i) isamultiindex, Z = {i(k) : i, =1,2, 1 <r <k, k> 1} isasetof
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multiindices, the do(z) and the elements ¢; ) (z) and d; () (z), i(k) € Z, are certain polynomials,
that usually used to approximate the ratios of some hypergeometric functions from the Horn’s
list [14,17]. In this case, we need to solve the following problems:

* to construct the expansion of ratio of multiple hypergeometric functions into BCF;
* to investigate the convergence of this expansion;

¢ to prove that the BCF converges to a function which is an analytic continuation of the
ratio of multiple hypergeometric function in some domain.

Some approaches for solving these problems for ratios of the Horn hypergeometric function
Hj (see [13]), which is defined by double power series

v v (@omgn(D)n 27" 25 1\2 1
H3(a/blclz) - m;O(C)T%EI |Zl| <7, |ZZ| <s, r+ <S - 5) - Z/ (2)

are described in [5]. In the series (2), the parameters a4, b and c are complex constants, c is
not a non-positive integer, z = (z1,z,) € C?, (+) is the Pochhammer symbol defined for any
complex number « and non-negative integer k by («)g = 1and (a)y =a(a+1)...(a +k—1).
In the above mentioned paper, the ratios
Hs(a,b;c; z)

Ri(a,b;c;z) = , k=12,
Kl z) Hy(a+ 8L, b+6%c+1;2)

where 5£ is the Kronecker delta, are considered.
Using the recurrence relations for the function (2), the formal expansions for

(1- 4215120)Ri0(ﬂ, b;c;z), iy=1,2,

into BCF of the form (1) are constructed. The elements of these BCF are defined as follows

52 (3)

107

b+1—a 2c—a
ot =1+ (10, o2

(2c + 51-20 —a— 25120 (2c—a—"Db)z)(a+ 51-10)21

= cc+1) : 4)
c (Z) B _(b+5i))(c+(5120—a)(1—421)22 (5)
S c(c+1) ’
and k=152 _ sl k-1 52
b+, o6 —06;)+1—a 2c—a+k+ Ykl s
p=0 p=0
diy(z) =1+ ;p+ . ip 22y —2 — ip 82, ©)
(2c—a+k+ Z’;;%) 51‘2,, = 2512]((2c —a—b+k)zp)(a+ 2];;}) 51-1p)21

Ci(k),l(z) = - (C n k) (C . 1) , (7)
() (e —at T o2 ) (1 - 42z .
Ci(h) 2(2) = — ISy ()

foralli(k) € Z.
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In this paper we continue to investigate the convergence of the obtained BCF. Let us recall
some basic concepts and notations. Finite BCF

is called the nth approximant of the BCF (1). Note that for each n € IN the approximant f,(z)
can also be written as

2
- (2) = do(z) + Ci(l)(z)’
f( ) 0( ) 1-1;1 Ql((nl))(Z)

where the tails Qf?k)) (z),i(k) € Z,1 < k < n, are defined as follows
Qi) (2) = dign)(2), n =1, ©9)

2 .
Q@) =digy(2) + Y Ciger(=) ikyeZ, 1<k<n-1, n>2  (10)

with nth approximants f, and f,;, respectively, are said to be equivalent if f,, = f;;, n > 1. The
BCF

(9]

2
Z i(k) (Z Pitk-1)Pik) a1

di(x) (2) ik

where p;0) = 1, pjk), i(k) € Z, k > 1, are non-zero complex numbers, is equivalent to the
BCF (1).

The BCF (1), whose elements are functions of two variables in the certain domain D,
D C (2, is called uniformly convergent on set E, E C D, if sequence of its approximants
{fu(z)} converges uniformly on E. When this occurs for an arbitrary set E such that E C D
(here E is the closure of the set E) we say that the BCF converges uniformly on every compact
subset of D.

Note that some interesting and effective methods for studying the convergence of branched
continued fractions are considered in works [1,3,4,7,8,10].

In what follows, we will use the following auxiliary statements.

Proposition 1. Let elements of the BCF (1) be the functions defined in some domain D,
D C C2. If there exist positive functions 8i(k)(z) given in the domain D such that for each
z € D and for all possible values of multiindices i(k) € T the following condition

2 [eike1)(2)]
i) (2)| = &igxy(2) + ——,
o Bitt ik§=1 Si(k+1)(2)
holds, then BCF (1) converges for each z € D and

2 Clz)‘
fn(=) = do Z::glz

(12)
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The correctness of this statement can be verified by the scheme of proving the general-
ization of the Sleshinsky-Pringsheim criterion for other multidimensional generalizations of
continued fractions [2].

Proposition 2. Let elements of the BCF (1) be the functions defined in some domain D,
D C C?, and the following conditions for each z € D and for all possible values of multi-
indicesi(k) € 7 are valid:

(1) Redi(k)(z) > 0;

(2) there exist functions g;()(z) given in the domain D such that 0 < g;()(z) < Red;(z)
and

Xz: |Ci(ks1)(2)| — Recjrqn)(2)

< 2(Redy ) (2) — i) (2))-
Sitk+1)(2) <2 0)(2) = 8 (2))

Ig1=1
Then for eachn > 1

Re(Q[f) (2)) > giy(2) forall i(k)€Z, 1<k<n, and z€D,

where Qf?k)) (z),i(k) € Z,1 <k <n,n > 1, defined by (9) and (10).
This statement follows from [6, Lemma 1] for N = 2.

Theorem 1. Let {f,(z)} be a sequence of functions, holomorphic in the domain D, D C C?,
which is uniformly bounded on every compact subset of D. Let this sequence converges at
each point of the set E, E C D, which is the 4-dimensional neighborhood of the point z0,
O € D. Then {f,(z)} converges uniformly on every compact subset of the domain D to a
function holomorphicin D.

V4

This theorem follows from [9, Theorem 2.17 | for N = 2.

Main results

Using the method of studying the convergence of branched continued fractions, which
was described in the article [5], some new sufficient conditions for convergence of BCF are
established.

Theorem 2. Let parameters of hypergeometric function H3(a, b; c; z) are such that
c>a>0 c¢c>b>0. (13)

Then the BCF (1) with do(z), c;)(z), and d;(z), i(k) € Z, defined by (3)~(8), for iy = 1
converges to a finite value f(z) for each z € Gy, where

Gh = {Z - CZ . ‘Zl‘ < hl, ‘Zz‘ < hz}, (14)
and hy, hy are positive numbers such that
81y (14 2hp) (1 — 4hy — hp) 4+ 4(1 + 4y )hy < (1 — 4hy — hp)?; (15)

it converges uniformly on every compact subset of Int Gy, to a function f(z) holomorphic in
Int Gy,
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Proof. Leti(k) € T and z € Gy, with positive numbers hy and hy. If 2g;x)(z) = |dj()(z)], then
condition (12) takes the form

2 e (@)
i(k+1)
L T @ @)

IN

1
T

irr1=1

Let us estimate elements of the investigated fractions under conditions (13)—(15) and iy = 1.
If iy = 1, then d;)(z) = 1. If i = 2, then

k—1(52 _ 51 _
’d (Z)’ > 1 _ |b+zp:0((sip (SiP) +1 ﬂ| ’22’ _4’21’2C—ﬂ+2k—1
i(k) - c+k 2c + 2k
b—a|+k—1 2c—a+2k—1
>1- T - —|zp| — >1—hy — 4h;.
>1 1k ’Zz’ 4’21’ 2c 1ok >1 ‘Zz’ 4‘21‘ >1—hy —4hy
Also, then
2c—a)(a+1
a(@)] = 2 P )] < 20| < 2
b(c—a)|(1 —4z1)z
ea(a)] = UL < 14z o] < (1 ),
and
| ()] = |2c—a+k+2';_05i2p—2512]((2c—a—b+k)zz|(a+Z';_05}p)| |
il 1121 = C+k)(ct+k+1) “1
<(2c—a—{—2k—|—25i2k(2c—a—b+k)|zz|)(a+k+1)
= Cc+h)(ctk+1) 2]
2c—a+2k)(1+4+2|z2])(a+k+1
<! (c—i—)gc)(c +|k2£(1) ) |z1] < 201+ 20zl 21 < 200 (1 + 29),
(c—a+Tp002)(b+T5_00?)
’Ci(k),Z(Z)‘ < (C—{—k)(clp—}—k—}—l) L (1+4‘Zl‘)’22‘
c—a+k)(b+k
< e DO tfal)aal < (14 4zl < (1+ )

Hence it follows that

2 .
¥ Ci(k+1)(2)] _2n(142hy) | (14 din) -

1
it i (D) i) (2)] — 1 =4 —hy (14l —h)*> — &
therefore, according to Proposition 1 and Theorem 1, the BCF converges for each z € Gy
to a function f(z). Convergence is uniform on every compact subset of IntGy, and f(z) is

holomorphic in Int Gy,. ]

Remark 1. It is easy to check that in the case of hy = hy = 1/25 the inequality (15) is valid.
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Theorem 3. Let the parameters a, b, and c of the hypergeometric function (2) satisfy inequali-
ties (13), A1, A2, 11, H2, v1, 2, and v3 be positive numbers such that

Vp + 4vs i 211 211 + 4vs
< min (2(1 — ——, 2(1 —4A — Ay — -——).
S min (201 - p) = S 20140 =y — ) - =22

Then the BCF (1), where do(z), ¢;)(2z) and d;(z), i(k) € Z, defined by (3)—8), forip = 1,
converges uniformly on every compact subset of H = Uyc (- /2,7/2) Gp, where

(16)

Gy ={zeC*: Re(z1e™'?) < Ay cos ¢, |Re(z2e™'?)| < Aycos g,
|z¢| + Re(zxe %'?) < vy cos? @, k =1,2; |z122| — Re(z1z0¢2?) < v3c08’ 9}, (17)

to a function f(z) holomorphicin H.

Proof. Letforalli(k) € T
Pik) = e 0, gc (—m/2,1/2). (18)
We will estimate the elements of the BCF of the form (11), equivalent to the investigated BCF,
under conditions (13), (16) and iy = 1 in the domain (17).
Leti(k) € Z, ¢ be an arbitrary real in (—71/2,71/2) and z be an arbitrary point in G,. If
i =1, then
Re(djx) (z)e™'?) = cos @ > py cos ¢.

If iy =2, then
b+ Y5 p(6] — 61 )+1—a

c+k

2 —a+k+ Y5 ;67 .
-2 "y PRe(z1e7'?).

Re(djx) (z)e™'?) = cos ¢ + Re(zpe ')

Taking into account condition (13), we obtain

k—1
—c—k<—a—k<b+) (6 —0)+1l-a<btk<c+k
0

p:
and
k—1
0<2c—a+k+ 2‘512,, <2c+2k—a—1<2c+ 2k,
p=0
hence ‘
Re(djky(z)e™"?) > (1 —4A1 — A2) cos ¢ > pi cos ¢.
Further,

(a+ 50 (51'1p)(26 —a+k+ Lo (512”) (]z1] + Re(z1e™%?))
(c+k)(c+k+1)
267 (a+ Y08} )(2c —a —b+k)
(c+k)(c+k+1)
< 2(|z1] +Re(z1¢7%7)) + 46 (|2122| — Re(2122))
< (21 + 451-2](1/3) cos? ¢

ik 1(2)| — Re(cygp) 1 (ze %) <

(|z122| — Re(z122))
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and

(c—a+Xp—007)(b+E5—007)
(c+k)(c+k+1)

+ 4|z125| — 4Re(z122¢729)) < (v + 413) cos? @,

lcir2(2)] — Re(ci pze™#9) < (Iz2] + Re(z0~2%)

hence, for alli(k) € Z,

XZ: |Ci(k+1)(z)| ReC(k+1

S <2v1 v2t 4 3) cosp <2(1—pq)cosg
e Piyy, COS @ (19)
= 2(Re(d;(rye” ) —uycosg), k=1,
and
XZ: lcigkr1) (2)] — Recz‘(k—i—l)(ze_Zi(P) < (21/1 + 4v3 e +4v3> cos @
igp1=1 Hip,, COS @ B H1 H2 20)

<2(1—4A; — Ay —up)cos g
< 2(Re(d;e~'?) — pacos ), ik =2,

It follows from (19), (20) that for the elements of the BCF (11), where p;(y) is defined by (18),
the conditions of Proposition 2, where g;)(z) = p;,, i(k) € Z, are satisfied. Therefore, for the
tails of the BCF (1), whose elements are defined by (3)—(8), the inequalities

Re(QE("k)) (z)e '?) > w;, cos g, i(k) €T, (21)
are valid. This means that the approximants of investigated BCF are holomorphic functions in
the domain G, and, consequently, by virtue of arbitrariness of ¢, forall z € H.

Let K, be an arbitrary compact subset of the domain G,,. Then there exists an open ball B,
with center in the origin and radius r, such that K, C B,. Taking into account estimate (21),
we obtain for the arbitrary z € K(P and any n > 1

(2c—a)(a+1)
otz = 1+zlz:1\ )] B V10(6+1)Cosq)r¢

b(c —a)
_.I_
pac(c+1)cos @

(144ry)ry = M(Kyp),

i.e. {fu(z)} is a uniformly bounded sequence on K,,. Thus, this sequence is uniformly bounded
on every compact subset of the domain (17).

Let K be an arbitrary compact subset of H. Let us cover K with domains of the form G,,.
From this cover we choose the finite subcover

Gy Gy ) G

(P(k)
Set M(K) = [max M(G(Pm). Then for arbitrary z € K we obtain |f(z)| < M(K), forn > 1, i.e.

the sequence f(z) is uniformly bounded on every compact subset of H.
Further, we set

/ 1
v = min (Al cos @, Ay cos P 5 " cos? Q, —2 cos? ¢, 1/23 cos @, 25)
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Let G, = {z € C*: |z1| < v, |z2] < 7}. If z € G,, then elements of the BCF (1) satisfy
the conditions of Theorem 2, and this BCF converges. Since G, C G, C H and G, is the
neighborhood of the point z = 0, then, according to Theorem 1, the BCF converges uniformly
on compact subsets of H to a function f(z) holomorphic in H. O

Corollary 1. Let yq, pp, v2, A2 be positive numbers such that
1% .
y—zz <min(2(1 = 1), 2(1 = Ay — 1p)). (22)

Then the BCF (1), whose elements are detined by (3)—(8), where iy = 1, converges at each point
z € Py, where

Pp={z € C?:z = |z1[e!™29), 25 = |z|e'™, |za| < min(A2,12/2)}, |9| < 7/4.

Proof. Indeed, if condition (22) is satisfied, then there are positive constants A1, vy, v3, such that
conditions (16) are satisfied. Let us show that P, C G,. For any ¢ € [~7/4,71/4] and z € P,
we have

21| + Re(zie %?) = |z1| + Re(|z1]e™) = 0,
22| + Re(z2e 729 = |z] 4+ Re(|22/e!T29)) = |2|(1 — cos(2¢)) < 15 cos? g,
2122 — Re(z122¢ %) = |z122| — Re(|z122]e¥™) = 0,
Re(z1e7'?) = Re(|z1]e!™9)) = —|z1| cos ¢ < A; cos ¢,

|Re(zze_i9")| = |Re(|zz|e ”_9"))| = |zp|cos ¢ < Ay cos @,

which had to be proved. ]
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CratrTs mpucBsiUeHa AOCAIAXKEHHIO 361KHOCTI TiAASICTOTO AQHIFOTOBOTO APOOY 3 ABOMA TiAKaMM
PpO3TaAyXeHb, SIKVMI BUKOPUCTOBYETHCSI AASI HAOAVDKEHHS BiAHOIIIEHb TillepreoMeTpuyHOl (pyHKII1
TopHaa Hj(a, b; ¢;z). PO3rASIHYTO BUITAAOK AiMicHMX mapameTpiB ¢ > a > 0,¢ > b > 0, ¢ # 0 i xom-
IIA€KCHOI 3MIHHOI Zz = (21, zz). CrouaTKy AOBEAEHO 361KHICTb IiAASICTOTO AQHITIOTOBOTO APOOY AAS
z € G, Ae Gy, — ABOBUMMIipHIIA KpyT. BUKopucTOBytoun el pe3yAbTaT, BCTAHOBAEHO AOCTaTHI yMO-
BU piBHOMIipHOI 361>KHOCTI BUIIIe3raAaHOTO TIAASICTOTO AQHIIIOTOBOTO APO6Y Ha KOXKHIl KOMIIaKTHIA
miaMHOXuHI 06AacTi H = Uge (—r/2,7/2) o, A€

Gy = {z € C* :Re(z1e7%) < Ay cos ¢, |Re(zpe™#)| < Aycos ¢,

|z¢| + Re(zpe #9) < vpcos® ¢, k =1,2; |z122| — Re(z120¢ %) < v3cos® ¢}

Kontouosi cnoea i ¢ppasu: rimepreomerpuuna dpyHkuis 'opHa H3, TIAASCTII AQHITIOTOBUI APi6,
361KHICTB.



