References
- Antonova T.M. On convergence criteria for branched continued
fraction. Carpathian Math. Publ. 2020, 12 (1),
157–164. doi:10.15330/cmp.12.1.157-164
- Antonova T.M., Bodnar D.I. Convergence domains for branched
continued fractions of the special form. In: Approximation theory
and its Applications, Proc. Inst. Math. NAS Ukr., 2000,
31, 19–32. (in Ukrainian)
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for
branched continued fraction \(\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\)
\(\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots\,.\)
Ukrainian Math. J. 2020, 72 (7), 1018–1029.
doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Mat. Zh. 2020,
72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in
Ukrainian))
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for
branched continued fraction whose partial denominators are equal to
unity. Mat. Stud. 2020, 54 (1), 3–14.
doi:10.30970/ms.54.1.3-14
- Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued
fraction expansions of Horn’s hypergeometric function H3 ratios.
Mathematics 2021, 9 (2), 148.
doi:10.3390/math9020148
- Antonova T.M., Hoyenko N.P. Approximation of Lauricella’s
functions \(F_D\) ratio by Nörlund’s
branched continued fraction in the complex domain. Mat. Metody
Fiz.-Mekh. Polya 2004, 47 (2), 7–15. (in Ukrainian)
- Antonova T.M., Sus’ O.M. Sufficient conditions for the equivalent
convergence of sequences of different approximants for two-dimensional
continued fractions. J. Math. Sci. 2018, 228 (1),
1–10. doi:10.1007/s10958-017-3601-3 (translation of Mat. Metody
Fiz.-Mekh. Polya 2015, 58 (4), 7–14. (in
Ukrainian))
- Bilanyk I.B. A truncation error bound for some branched continued
fractions of the special form. Mat. Stud. 2019, 52
(9), 115–123. doi:10.30970/ms.52.2.115-123
- Bodnar D.I. Branched continued fractions. Naukova Dumka, Kiev, 1986.
(in Russian)
- Dmytryshyn R.I. On some of convergence domains of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2019, 11 (1), 54–58.
doi:10.15330/cmp.11.1.54-58
- Dmytryshyn R.I. Multidimensional regular C-fraction with
independent variables corresponding to formal multiple power
series. Proc. Roy. Soc. Edinburgh Sect. A 2020,
150 (4), 153–1870. doi:10.1017/prm.2019.2
- Dmytryshyn R.I. Convergence of multidimensional A- and
J-fractions with independent variables. Comput.Methods Funct.
Theory 2021. doi:10.1007/s40315-021-00377-6
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. Higher
transcendental functions. Vol. 1. McGraw-Hill Book Co., New York,
1953.
- Hoyenko N.P., Hladun V.R., Manzij O.S. On the infinite remains of
the Nörlund branched continued fraction for Appell hypergeometric
functions. Carpathian Math. Publ. 2014, 6 (1),
11–25. doi:10.15330/cmp.6.1.11-25 (in Ukrainian)
- Jones W.B., Thron W.J. Continued fractions: analytic theory and
applications. Addison-Wesley Pub. Co., Reading, 1980.
- Lorentzen L., Waadeland H. Continued fractions with applications.
Noth Holland, Amsterdam, 1992.
- Manzii O.S. Investigation of expansion of the ratio of Appel
hypergeometric functions \(F_3\) into a
branching continued fraction. In: Approximation theory and its
Applications, Proc. Inst. Math. NAS Ukr. 2000, 31,
344–353. (in Ukrainian)