References

  1. Antonova T.M. On convergence criteria for branched continued fraction. Carpathian Math. Publ. 2020, 12 (1), 157–164. doi:10.15330/cmp.12.1.157-164
  2. Antonova T.M., Bodnar D.I. Convergence domains for branched continued fractions of the special form. In: Approximation theory and its Applications, Proc. Inst. Math. NAS Ukr., 2000, 31, 19–32. (in Ukrainian)
  3. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction \(\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\) \(\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots\,.\) Ukrainian Math. J. 2020, 72 (7), 1018–1029. doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Mat. Zh. 2020, 72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in Ukrainian))
  4. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. Mat. Stud. 2020, 54 (1), 3–14. doi:10.30970/ms.54.1.3-14
  5. Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function H3 ratios. Mathematics 2021, 9 (2), 148. doi:10.3390/math9020148
  6. Antonova T.M., Hoyenko N.P. Approximation of Lauricella’s functions \(F_D\) ratio by Nörlund’s branched continued fraction in the complex domain. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 7–15. (in Ukrainian)
  7. Antonova T.M., Sus’ O.M. Sufficient conditions for the equivalent convergence of sequences of different approximants for two-dimensional continued fractions. J. Math. Sci. 2018, 228 (1), 1–10. doi:10.1007/s10958-017-3601-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2015, 58 (4), 7–14. (in Ukrainian))
  8. Bilanyk I.B. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52 (9), 115–123. doi:10.30970/ms.52.2.115-123
  9. Bodnar D.I. Branched continued fractions. Naukova Dumka, Kiev, 1986. (in Russian)
  10. Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54–58. doi:10.15330/cmp.11.1.54-58
  11. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
  12. Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput.Methods Funct. Theory 2021. doi:10.1007/s40315-021-00377-6
  13. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. Higher transcendental functions. Vol. 1. McGraw-Hill Book Co., New York, 1953.
  14. Hoyenko N.P., Hladun V.R., Manzij O.S. On the infinite remains of the Nörlund branched continued fraction for Appell hypergeometric functions. Carpathian Math. Publ. 2014, 6 (1), 11–25. doi:10.15330/cmp.6.1.11-25 (in Ukrainian)
  15. Jones W.B., Thron W.J. Continued fractions: analytic theory and applications. Addison-Wesley Pub. Co., Reading, 1980.
  16. Lorentzen L., Waadeland H. Continued fractions with applications. Noth Holland, Amsterdam, 1992.
  17. Manzii O.S. Investigation of expansion of the ratio of Appel hypergeometric functions \(F_3\) into a branching continued fraction. In: Approximation theory and its Applications, Proc. Inst. Math. NAS Ukr. 2000, 31, 344–353. (in Ukrainian)