References

  1. Altınkaya Ş., Yalçın S. On the Chebyshev polynomial bounds for classes of univalent functions. Khayyam J. Math. 2016, 2 (1), 1–5. doi:10.22034/kjm.2016.13993
  2. Altınkaya Ş., Yalçın S. On the Chebyshev coefficients for a general subclass of univalent functions. Turkish J. Math. 2018, 42 (6), 2885–2890. doi:10.3906/mat-1510-53
  3. Çağlar M., Orhan H., Kamali M. Fekete-Szegö problem for a subclass of analytic functions associated with Chebyshev polynomials. Bol. Soc. Parana. Mat. 2022, 40 (3), 1–6. doi:10.5269/bspm.51024
  4. Dziok J., Raina R.K., Sokół J. Application of Chebyshev polynomials to classes of analytic functions. C. R. Math. Acad. Sci. Paris 2015, 353 (5), 433–438. doi:10.1016/j.crma.2015.02.001
  5. Fekete M., Szegö G. Eine Bemerkung Über ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8 (2), 85–89. doi:10.1112/jlms/s1-8.2.85
  6. Keogh F.R., Merkes E.P. A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 1969, 20 (1), 8–12. doi:10.1090/S0002-9939-1969-0232926-9
  7. Szatmari E., Altınkaya Ş. Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials. Acta Univ. Sapientiae Math. 2019, 11 (2), 430–436. doi:10.2478/ausm-2019-0031
  8. Szynal J. An extension of typically real functions. Ann. Univ. Mariae Curie- Skolodowska Sect. A. 1994, 48, 193–201.