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Inverse problem with two unknown time-dependent functions
for 2b-order differential equation with fractional derivative

Lopushansky A.O.!, Lopushanska H.P.?

We study the inverse problem for a differential equation of order 2b with a Riemann-Liouville
fractional derivative over time and given Schwartz-type distributions in the right-hand sides of the
equation and the initial condition. The generalized (time-continuous in a certain sense) solution u
of the Cauchy problem for such an equation, the time-dependent continuous young coefficient and
a part of a source in the equation are unknown.

In addition, we give the time-continuous values ®;(t) of desired generalized solution u of the
problem on a fixed test functions ¢;(x), x € R”, namely (u(-,t), ;(-)) = ®;(t),t € [0,T],j =1,2.

We find sufficient conditions for the uniqueness of the generalized solution of the inverse prob-
lem throughout the layer Q := R” x [0, T] and the existence of a solution in some layer R" x [0, Ty],
To € (0, T7.

Key words and phrases:  distribution, fractional derivative, inverse problem, Green vector-
function.
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Introduction

Equations with fractional derivatives [1] and inverse problems to them appear in different
branches of science and engineering, and the range of the applicability of the generated mod-
els increase considerable. The conditions of classical solvability of the Cauchy and bound-
ary value problems to equations with a time fractional derivative were obtained, for example,
in [2-8]. The inverse boundary value problems to a time fractional diffusion equation with
different unknown functions or parameters were investigated, for example, in [9-19]. Most
papers were devoted to inverse problems with an unknown right-hand sides, mainly under
regular data.

In this paper, for the equation

uf) — A(D)u—r(H)u = gBOFo(x, ) + F(x, 1), (xt) €ER"x(0,T]:=Q (1

with the Riemann-Liouville fractional derivative of order B € (0,1) we study the inverse prob-
lem
u(x,0) = F(x), xeR" (2)

(W( 1), ¢1() = @1(t),  (u( 1), @2(-)) = P2(t), t€[0,T], 3)
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of determination the triple (u,r, g) where

AD)u= Y, A,D"u,
|v[<2b

d
a—btl — A(D)u is the parabolic differential expression [3], F; and F are given Schwartz type

distributions [20], &1, ®; are given continuous functions, the symbol (u(:,t), ¢;(-)) stands for
the value of an unknown distribution u on the given test function ¢; for every t € [0, T].

Note that source inverse boundary value problems for time-fractional diffusion equations
under regular given data in the right-hand sides and similar (integral) over-determination
conditions were studied, for example, in [9-11]. The over-determination condition of kind (3),
but with the scalar product (1, @) in abstract Hilbert space, was used in [12]. An overview of
individual results on inverse problems for anomalous diffusion processes is given in [13]. The
inverse boundary value problem with an unknown only young coefficient in the case b = 1,
one over-determination condition of kind (3) and regular data was studied in [14], and in [15] in
the case of given distributions with compact supports in the right-hand sides. Source inverse
problem for a 2b-order equation with a time-fractional derivative was studied in [16]. Inverse
problems for a time-fractional differential equations with a time-integral over-determination
conditions were investigated, for example, in [17-19].

In this paper, the result [16] is generalized to the case when, in addition to the solution of
the Cauchy problem, we look for two unknown, time-dependent functions (part of the right-
hand side and the lowest coefficient in the equation).

1 Notations, definitions and auxiliary results

We use the following notations: Q = R"” x (0, T], x = (xq,...,x,) € R", & = (aq,...,a),
&= (ao,0), & € Zy,j€{0,1,...,n}, |a] = a1+ +ay x* = xiteeexyt, DYo(x,t) =

Dio(x,t) = %, D% (x,t) = (5)%D%v(x,t). S(R") is the space of indefinitely differ-

entiable functions v in R” such that x7D*v are bounded in R” for all multi-indexes «, 7y (the
Schwartz space of smooth rapidly decreasing functions), S (R"), v > 0, is the space of type
S(IR") (see [20, p. 201]), defined as

S4(R") = {v € S(R") : |D"0(x)| < cae*a\x\%, x€R", VYa}
with some positive constants C, = C,(v) and a = a(v). For the fixed a > 0 define
S, (R") = {v € Sy(R") : D v(x)| < Ca,(s(v)e_(“_d)'x'%, xeR", Va, Vé>0},
c=0(Q) = {o € C™(Q) : (2)vlier = 0, k € Z.}. S(O) (5,(Q), S, (s)(Q)) is the space
of functions v € C*(%)(Q) such that (%)Sv(-,t) € S(R") (54(R"), S, (4)(IR"), respectively) for

eacht € [0,T|, s € Z.. The symbol (f, ¢) stands for the value of the distribution f on the test
function ¢. Similarly to [21, p. 209], we introduce the space

5;,(a),c(Q) ={f¢ SQ,(a)(Q) t (f(x,), ¢(x)) €C[0,T] Vo €S, (R")}, a>0.
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We denote by (g%¢)(x) = (g(¢), ¢(x+¢)) the convolution of the distribution g and the test
function ¢, by fxg the convolution of the distributions f and g, namely (f x g, ¢) = (f,¢%¢)
for any test function ¢. We use the function

A—1
Al = e(lf)(tM for A>0 and fi(t) = fl,(t) for A <0,

where I'(A) is the Gamma-function, 6(t) is the Heaviside function. Note that f * f, = fy,,

and f)\ ;Pf]l = f)\+ﬂ'
The Riemann-Liouville derivative v(f) (t) of order > 0 is defined by the formula

0P () = f_p(t) % 0(t),
the Djrbashian-Caputo (regularized) fractional derivative of order B € (0, 1) is defined by

1

DFPo(t) = )

/O (= )P/ (1) dr,

and therefore
DPu(t) = olP)(t) — fi_p(£)0(0).
We denote

(Lo)(x, 1) = 0P (x, 1) — (A0)(x, 1),
(L") (x,t) = DPo(x,t) — (Av)(x,t),
(Lo)(x,t) = f-p(t)*v(x,t) — (Av)(x,t), (x,t) € Q.

The following Green formula

/Qv(x,T)(fl/J)(x,T)dxdT:/

Q(Lregv) (x, T)Y(x, T)dx dt + /Q v(x,0)f1-p(T)Pp(x,T)dx dr

holds, where v, € S(Q).

Definition 1. The functionu € S:Y (@) C(Q) is called a solution of the Cauchy problem (1), (2) if
the identity

[ [T ) w9 0)] ai .
= [ 18O FC0,90,0) + (FC0,900)] d+ (Bif-p(0), 9(0,0)
holds forall € S, ;)(Q).

Definition 2. The triple (u,1,g) € S; (@) c(Q) x C[0, T] x C[0,T] is called a solution of the
problem (1)—(3) if the identity (4) and the condition (3) hold.

It follows from (2) and (3) the compatibility conditions

(Fi, ¢1) = P1(0), (F, 2) = P2(0). )
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Definition 3. The vector-function (Go(x, t),Gi(x, t)) is called a Green vector-function of the
Cauchy problem (2) to the equation (Lu)(x,t) = ®(x,t), (x,t) € Q, if under rather regular
®, F; the function

t —
u(x, ) = /0 it [ Golx—yt-T0y T dy+ [ Gilx—ywOHEW)dy, (xt)€Q,
is the regular solution of this problem.
Such Green vector-function exists (see, for example, [6]) and has the following bounds:

B _2b_

pn B 2 ,

Go(x, )| < Ct= B P le=exl2)® Py (x|t 28),
2b

_B 2b
Bn —~ 8
Gilx, )] < Gt el 3T Py, (),

1, m <0,
where ¥,,(z) = < 1+ |Inlz||, m =0, for |z| <1and ¥, (z) = ¥ (1) for |z| > 1.
|z|~™, m >0

In what follows, ¢, C, ¢y, Cy, dy, dAk, Cy, ék are positive constants for k € Z, . Let

-~ —

Gop) 1) = [ dt [ oe 06—yt - D)dx, (1) €0,

T
Go)y) = [ at [ oxt)Gi(x—yndx, yeR",

Co)w ) = [ o()G(x—yHdx, (1) €Q j=01

Lemma 1 ([16]). Ifa > 0,7 >1— %, @ € S, (2)(R"), then there exist numbers C > 0,4’ € (0, 4]

B
(@' =aif 0 < aT2?v < ¢)such that for allk € Z.;, multi-index x, |x| =k, § > 0 the following
bounds hold:

1 1
|DE(Gog) (y, £)] < cptP~lem @ =Ml max sup D (x)[e* ", (y,£) € Q,
SK xelR"

— / 1 N _
IDE(Gio) (v, £)] < cxe™ @O max sup [D*g(x)[e* 1", (y,1) € Q.

|o| <k xeRn
2 Existence and uniqueness theorems

B ~
Lemma 2. Assume thaty > 1,0 < aT?® < ¢, F,F € S; (Q)C(Q), F € S; (a)(]R”), @i, Ag; €
S0 (a)(R™), @;, @) € C[0,T], j = 1,2, the conditions (5) hold,

d(t) i= 1 () (Fo, @2) — D2(t) (Fo, 1) #0, ¢ € [0, T).

The triple (u,r,g) € S; (@) c(Q) x C[0,T] x C[0, T] is the solution of the problem (1)—3) if
and only if u is the solution of the equation
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+ [T (1l ), (Gor) = D) 375 o
+/t [@2(1) (u(, 7), Agi ()
= 01(7) (u(7), A2 ()] (ol ), (Gog) ot = 1) 35
T (o), 9()) V€ Sy (R, £ [0,T]
where
(100).00)) = [ (FC 0, (Gog) (= D) T+ (R (), (Gr)(, 1)
+/th0(r)(F0( 1), (Cog) (-t r))% Vg €S, (R, tE[0,T],

ho(1) = @1 (1) [ @ (1) — (E(-,7), 92())] — P2(0) [@1F) (1) — (F(, 1), 91 ()], Te[0,T],

h(z) = (Fo, 92)[@(7) = (F(, 1), 91())] — (Fo, 1) [®F) (7) — (F(, 1), 92(-))], T €0, T]

(7)

= oa(t)[@ (1) - (u(,1), A () - (FG. o))}, teloT]
Proof. We wright the equation (1) as follows
u(x,t) = fot)  (A(x, D)u) (x,£) + fo () * (r(B)ux,£)) + (fy % ) (VFo(x) + fot)  E(x, ).
By using the condition (3) we get

D;(t) =fp(t) * (u(,t), Agj(-)) + fp(t) * (r(t)P;(t))
+ fpx (8OF (1), 9 1) + fo () * (F(, 1), 9;(-)),  j=12,

and therefore,
P (1) = (u(-, 1), Ag;(-)) + r(DD;(1) + g(1) (Fo(, 1), 9;(-) + (F(, 1), 9;(-),  te[0,T),

Under the condition d(t) # 0, t € [0, T], from here we find r(t), ¢(t), as in (7).
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By assumptions, r,¢ € C[0, T] for each u € S; (@) -(Q). Repeating the proof of Theorem 1

from [16] we get that u < S; (a) C(Q) is the solution of the Cauchy problem (1), (2) if and only
if it is the solution of the equation

(40 00) = [ (FC0) + 7@t 1)+ g(OR (), (Gop) (1 = 7))+ (R ), (Gro) (- )
forallp €S, (;)(R"), t € [0, T], that is

~

(u0.00)) = [[ 70 (1010, Cog) ot = ) e
+ [ (B +8(0R(, 0, Gop)ot - 1)) de + (B, (Gug) ()

forallp € S, ,(R"), t € [0, T]. Substituting (7) in (8) we get (6) for the solution of the problem
(1)—(3). O

It was shown in [16] that f € S; ( a)(]R”) if and only if there exist constants C, > 0,
k =k(a) € N, k > 2, such that

[(fr )l < Callgllia Vo €S, 4)(RY),

(8)

1
where || @[, = sup (1= 1) 1|7 |ID*@(x)| < +o0.
|a| <k, xeR"
The number k can be called the order of f € S; (a) (R™).

Theorem 1. In assumptions of Lemma 2 there exists T > 0 and the solution (u,1,g) €

Sfy,(a),C(Q) x C[0, T] x C[0, T] of the problem (1)—3) such that u is the solution of the equa-
tion (6), r(t) and g(t) are defined by (7).

Proof. According to Lemma 2, in order to prove the existence of the problem (1)—(3) it is suffi-
cient to prove the solvability of the equation (6) in S; (a) -(Q).
In assumptions of the theorem, using Lemma 1, for all ¢ € S%(g) (R"™), t € [0, T] we get

JIECD, Cop) ot =) T < G [ 1(Cop) ot = Dl i
t _ C
<G [ =0 drgligs = 51 ol
[ 10 (R 0, o)t = ) 7 < Ca [l

[(FL(), (Grp) (4 )| < G311 (G19) (s ) lkya < Call @l

if F(-,t), Fo(+,t) have the orders k, ko, respectively, for each t € [0, T], F; has the order k; as
distributions from S; (ﬂ)(]R”). Then uy € S; (@) -(Q) and it has the order K = max{k, ko, k1 }
for each t € [0, T]. So, the solution of the equation (6) (if exists) has the order K. We putk > K,

My, () = My (4)(T) = {U €S ,c(Q) : vllm,,, = max ~ sup |(o( 1), 9(-))] < +00},

(PES,)/I(H)(]Rn),
ol (a)=1

Mk,(a),R(T> = {U S Mk,(a)(T> : ”v”Mk,(a) < R}
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and prove the unique solvability of the equation (6) in the space My, r(T) C My ,(T) C
S; (@ c(Q) for each k > K with some R > 0, T > 0.

On M; ;) we consider the operator P:

((P0),90) == [ [(Fa0), 920)) (0 0 A1 () = (ol 7)1 0)) o, ), Aga ()]

xmmwwawmw4»£1

7)
+ (uo(-, t), q)()) Vo € S%(a)(]Rn), v e Mk,(a)/ te [O, T].

Then for each ¢ € S, (,)(R"), v € M (4)r t, T € [0, T], by using Lemma 1 we obtain
|(Po) (1), ¢(-))]
( Tols ) < GstP[(R* + R) ([[A@1llka + [[A@2llia) + R] + [luoll
a
< C6tﬁ(R2 + R) + HM()HMk,(a).

We first choose R > 2l|ug||um, ,, and t1 € (0, T], tf < ﬁ, such that

CotP R+ ||uollm, ) <

M| 5

Vt e [0,t].

Then for such R, t € [0, t] we obtain

[(Po) (1), ¢())]
191l

R
< CetPR? + >

Now we choose R > 2[|ug|| m, @ and t, < t; such that C4tPR? < %, that is 2C4RtP < 1. Then
foreach v € My () g, 0 <t < min{ty, t2} we get || Po[y, , < R.

Similarly, for each v1,v2 € My (4) g we have

Pvqy)(-,t) — (Pva) (1), (-
’(1()|@m( 9O ¢ bR Agalla + 1 Agalin) o1 — ool

< CgtPR|[v1 — 02| my

and for 0 <t < f3 < min{ty, t2} we get ||[Po1 — Poz|[m, ,, < [[o1 — 02[lm -

So, P is the contraction operator on My ;) r(T) with some T < t3, and by the Banach
theorem we obtain the unique solvability of the equation (6) in My (,) r(T) O
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Theorem 2. Let ¢j, A; € S,((R"), ®;, ®F € C0,T),j=12F €&

%(H)(]R”) and
d(t) #0,t € [0, T]. Then the solution of the problem (1)~3) is unique.

Proof. Let (uy,71,81), (112,12, $2) be two solutions of the problem (1)—(3). Then for u = 1y — uy,
r=ry —12,8 = g1 — g2 We obtain the problem

Lu(x,t) =r(t)ug + ro(H)u + g(H)Fo(x, t), (x,t) € Q,
u(x,0) =0, xeR"

(u(-, 1), 91(-) =0, (u(-t),92(-)) =0, te][0,T].

As in the proof of Theorem 1, using (3), we find

r(t) = —% [(Fo( 1), @2()) (u(, 1), Ap1(+)) — (Fo (1), @1(1)) (u(-, t), Aga(:)) ],
9)
g(t) = % [@a(t) (u(-t), Apr(-)) — P1(t) (u(-t), Apa(-))], te0,TI.

By Definitions 1 and 2 the identity

T R T
[ @, @6 + 0w 0) = [ (rOml 0 + 50RO, $(0)a )
holds for all ¢ € S, (;(Q). According to [16, Lemma 4], for each p € S, ,)(Q) there exists
= Gop € S,,(a)(Q) such that (Ly)(x,t) = p(x,t), (x,t) € Q. Then (10) implies
T . T ~
0,00, + 20 Gop) ) dt = [ (1B (18) + (OR), Gop) 1)
forallp € S, (;)(Q).

Using (9), from here we get

[ 0000 + 20 Gap) 1) e = = [ (Rl 1) 0200) (), Agi ()

— (Fo(, 1), @1()) (u(-,£), Aga(-)) ] (ua (- 1), (gop)(.'t))%

+ [ (@20 (40, Agn () — @1() (1), Aga()]

< (R0, Gop) 1) 50t

forallp € S, ), that is

(@

r 1

J (560,00, +ra()(Gop) (1) + g5 [(Fo 1), 92() Aga ()
0

(Rl 1), 91()) Ag2()] (1, £), (Gop) (-, 1)) an

_% [@2(8) Agr(-) — 1(t) Aga ()] (Fol-), (Gop) (-, t>)> }dt o

forallp € S, (,)(Q).
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By assumptions of the theorem, we have Ag; € S, ,)(R"), j = 1,2, Gop € S, a)(Q),

(u1(-,1), (Gop) (1)) := pi(t,p), (Fo(,1), (Gop)(-,t)) := pa(t,p) are the known functions from
C[0, T]. Then

-~

o(-11) +72(5)(Gop) (-, 1) + %{ [(Fol, ), @a2()) Agn ()
— (Fo( 1), 91(-)) Ag2 ()] pa (£, p)
+ [@2()Ap1(-) = @1(H)A@2 ()] pa(t,p) | € Sy () (R")

forall t € [0, T]. For each ¢(x,t) = @(x)u(t) with ¢ € S, (,)(R"), p € C®(0)[0, T] the linear
Volterra equation

p(:, ) +12(1) (Gop)( %{ 2(1)) Ag1 () = (Fo( 1), 91(-)) Apa () pa (£, p)
+ [@2()Agi () = (D AP ()] palt,p) } = @(x)p(t)

has the unique solution p € S, (;)(Q). Then from (11) we get

[ w9 )t =0 Vg€ 5, (R, p e 00,7

By Du Bois-Reymond lemma we obtain u = 0 in S' (Q) Then (9) implies r(t) = 0, g(t) =

/

0,t€o,T]. 0

Conclusions

We established the uniqueness and local solvability of the inverse problem of the deter-
mining dependent on time unknown young coefficient and component in the right-hand side
of 2b-order differential equation having fractional derivative of order € (0,1) with respect
to time and given Schwartz type distributions in the right-hand sides of the equation and the
initial condition.
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Mu BuBuaeMo obepHeHy 3aaady AAS AVidpepeHIIiaAbHOTO PiBHSHHS IOPSIAKY 2b 3 Apo60BOIO TI0-
xiaHoto Pimana-AiyBiast 3a gacoM i 3apaHVMMM y3araabHeHMMM pyHKIissMy Tvany [Bapria y mpasmx
yJacTMHaX PiBHSHHS i moyaTkoBoi ymoBu. HesiaoMmumu € y3araabHeHMIT po3s’si30K u 3aaaui Komri
AASL TAKOTO PiBHSIHHSI (HellepepBHMIA 32 4acOM y MeBHOMY CeHCi) i 3aAeXHi BiA yacy HelepepBHUI
MOAOAIINIT KOedpillieHT Ta KOMITOHEHTa IPaBOi YaCTVHM PiBHSHHS.

AOAATKOBO MM 3aAa€MO HeTlepepBHi 3a yacoM 3HaueHHs P;(t) ITykaHOTO y3araAbHEHOTO PO3-
B's13Ky u 3anaui Kommi Ha dpikcoBanmx ocHoBHMX dyHKIisX @j(x), x € R", a came (u(-,t), ¢;(+)) =
®;(t),t€[0,T],j=1,2

3HaXOAVMMO AOCTATHi yMOBY €AMHOCTI y3araAbHEHOTO PO3B’ 3Ky 06epHeHOI 3aAadi y BCbOMY Illa-
pi Q :=R" x (0, T] 11 icHyBaHHs po3B’s13Ky B AesikoMy mmapi R” x (0, To], To € (0, T1.

Kniouosi cnosa i ppasu: pos3noain, Apo6oBa moxiaHa, obepHeHa 3aaava, BekTop-dpyHkiis I piHa.



