References
- Acu A.M., Manav N., Sofonea D.F. Approximation properties of \(\lambda\)-Kantorovich operators. J. Inequal. Appl. 2018, 2018. doi:10.1186/s13660-018-1795-7
- Ayman-Mursaleen M., Nasiruzzaman Md., Rao N., Dilshad M., Nisar K.S. Approximation by the modified \(\lambda\)-Bernstein-polynomial in terms of basis function. AIMS Mathematics 2024, 9 (2), 4409–4426. doi:10.3934/math.2024217
- Bernstein S.N. Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Commun. Soc. Math. Charkow Sér. 13, 1912, 1–2.
- Cai Q.B., Lian B.Y., Zhou G. Approximation properties of \(\lambda\)-Bernstein operators. J. Inequal. Appl. 2018, 2018, article number 61. doi:10.1186/s13660-018-1653-7
- Cai Q.B. The Bézier variant of Kantorovich type \(\lambda\)-Bernstein operators. J. Inequal. Appl. 2018, 2018, article number 90. doi:10.1186/s13660-018-1688-9
- Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2 (3–4), 241–244. doi:10.4064/cm-2-3-4-241-244
- Gadjiev A.D., Orhan C. Some approximzation theorems via statistical convergence. Rocky Mountain J. Math. 2002, 32 (1), 129–138. doi:10.1216/rmjm/1030539612
- Heshamuddin Md., Rao N., Lamichhane B.P., Kiliçman A., Ayman-Mursaleen M. On One- and Two-dimensional \(\alpha\)-Stancu-Schurer-Kantorovich operators and their approximation properties. Mathematics 2022, 10 (18), 3227. doi:10.3390/math10183227
- Korovkin P.P. Linear Operators And Approximations Theory. In: International Monographs on Advanced Mathematics and Physics, 16. Hindustan Pub. Corp., India, Delhi, 1960.
- Lupaş A. A \(q\)-analogue of the Bernstein operator. Seminar on Numerical and Statistical Calculus. University of Cluj-Napoca 1987, 9, 85–92.
- Rahman S., Mursaleen M., Acu A.M. Approximation properties of \(\lambda\)-Bernstein-Kantorovich operators with shifted knots. Math. Methods Appl. Sci. 2019, 42 (11), 4042–4053. doi:10.1002/mma.5632
- Phillips G.M. Bernstein polynomials based on the \(q\)-integers. Ann. Numer. Math. 1997, 4 (1–4), 511–518.
- Ye Z., Long X., Zeng X.M. Adjustment algorithms for Bézier curve and surface. In: Proc. of the 5th Intern. Conf. on Computer Science & Education, Hefel, China, 2010, 1712–1716. doi:10.1109/ICCSE.2010.5593563