References

  1. Acu A.M., Manav N., Sofonea D.F. Approximation properties of \(\lambda\)-Kantorovich operators. J. Inequal. Appl. 2018, 2018. doi:10.1186/s13660-018-1795-7
  2. Ayman-Mursaleen M., Nasiruzzaman Md., Rao N., Dilshad M., Nisar K.S. Approximation by the modified \(\lambda\)-Bernstein-polynomial in terms of basis function. AIMS Mathematics 2024, 9 (2), 4409–4426. doi:10.3934/math.2024217
  3. Bernstein S.N. Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Commun. Soc. Math. Charkow Sér. 13, 1912, 1–2.
  4. Cai Q.B., Lian B.Y., Zhou G. Approximation properties of \(\lambda\)-Bernstein operators. J. Inequal. Appl. 2018, 2018, article number 61. doi:10.1186/s13660-018-1653-7
  5. Cai Q.B. The Bézier variant of Kantorovich type \(\lambda\)-Bernstein operators. J. Inequal. Appl. 2018, 2018, article number 90. doi:10.1186/s13660-018-1688-9
  6. Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2 (3–4), 241–244. doi:10.4064/cm-2-3-4-241-244
  7. Gadjiev A.D., Orhan C. Some approximzation theorems via statistical convergence. Rocky Mountain J. Math. 2002, 32 (1), 129–138. doi:10.1216/rmjm/1030539612
  8. Heshamuddin Md., Rao N., Lamichhane B.P., Kiliçman A., Ayman-Mursaleen M. On One- and Two-dimensional \(\alpha\)-Stancu-Schurer-Kantorovich operators and their approximation properties. Mathematics 2022, 10 (18), 3227. doi:10.3390/math10183227
  9. Korovkin P.P. Linear Operators And Approximations Theory. In: International Monographs on Advanced Mathematics and Physics, 16. Hindustan Pub. Corp., India, Delhi, 1960.
  10. Lupaş A. A \(q\)-analogue of the Bernstein operator. Seminar on Numerical and Statistical Calculus. University of Cluj-Napoca 1987, 9, 85–92.
  11. Rahman S., Mursaleen M., Acu A.M. Approximation properties of \(\lambda\)-Bernstein-Kantorovich operators with shifted knots. Math. Methods Appl. Sci. 2019, 42 (11), 4042–4053. doi:10.1002/mma.5632
  12. Phillips G.M. Bernstein polynomials based on the \(q\)-integers. Ann. Numer. Math. 1997, 4 (1–4), 511–518.
  13. Ye Z., Long X., Zeng X.M. Adjustment algorithms for Bézier curve and surface. In: Proc. of the 5th Intern. Conf. on Computer Science & Education, Hefel, China, 2010, 1712–1716. doi:10.1109/ICCSE.2010.5593563