References
- Blaga A.M. On gradient eta-Einstein solitons. Kragujevac J.
Math. 2018, 42 (2), 229–237.
doi:10.5937/KgJMath1802229B
- Blaga A.M. Some geometrical aspects of Einstein, Ricci and Yamabe
solitons. J. Geom. Symmetry Phys. 2019, 52, 17–26.
doi:10.7546/jgsp-52-2019-17-26
- Blaga A.M., Özgür C. Almost eta-Ricci and almost eta-Yamabe
solitons with torse-forming potential vector field. Quaest. Math.
2022, 5 (1), 143–163. doi:10.48550/arXiv.2003.12574
- Blair D.E. Riemannian Geometry of contact and symplectic
manifolds. In: Chambert-Loir A., Lu J-H., Tschinkel M.R. (Eds.)
Progress in Mathematics, 203. Birkhäuser, New York, 2010.
- Cao H-D., Sun X., Zhang Y. On the structure of gradient Yamabe
solitons. Math. Res. Lett. 2012, 19 (4), 767–774.
doi:10.4310/MRL.2012.v19.n4.a3
- Catino G., Mazzieri L. Gradient Einstein soliton. Nonlinear
Anal. 2016, 132, 66–94.
doi:10.1016/j.na.2015.10.021
- De U.C., Pathak G. On 3-dimensional Kenmotsu manifolds.
Indian J. Pure Appl. Math. 2004, 35 (2), 159–165.
- Karaca F. Gradient Yamabe solitons on Multiply Warped product
Manifolds. Int. Electron. J. Geom. 2019, 12 (2),
157–168. doi:10.36890/iejg.628073
- Hamilton R.S. The Ricci flow on surfaces. Contemp. Math.
1998, 71, 237–261. doi:10.1090/conm/071/954419
- Hsu S.-Y. A note on compact gradient Yamabe solitons. J.
Math. Anal. Appl. 2012, 388 (2), 725–726. doi:10.1016/j.jmaa.2011.09.062
- Kenmotsu K. A class of almost contact Riemannian manifolds.
Tohoku Math. J. (2) 1972, 24 (1), 93–103.
doi:10.2748/tmj/1178241594
- Kirichenko V.F. On the geometry of Kenmotsu manifolds. Dokl.
Akad. Nauk 2001, 380, 585–587.
- Sasaki S., Hatakeyama Y. On differentiable manifolds with certain
structures which are closely related to almost contact structure.
Tohoku Math. J. (2) 1961, 13, 281–294.
- Suh Y.J., De U.C. Yamabe solitons and gradient Yamabe solitons on
three-dimensional \(N(k)\)-contact
manifolds. Int. J. Geom. Methods Mod. Phys. 2020,
17 (12), 2050177. doi:10.1142/S0219887820501777
- Tanno S. The automorphism groups of almost contact Riemannian
manifolds. Tohoku Math. J. (2) 1969, 21,
21–38.
- Tokura W., Barboza M., Adriano L., Pina R. On warped product
gradient Yamabe solitons. J. Math. Anal. Appl. 2019,
473 (1), 201–214. doi:10.1016/j.jmaa.2018.12.044
- Yano K. Concircular geometry. I. Concircular
transformations. Proc. Imp. Acad. 1940, 16 (6),
195–200. doi:10.3792/pia/1195579139
- Wang Y. Yamabe soliton on 3-dimensional Kenmotsu manifolds.
Bull. Belg. Math. Soc. Simon Stevin 2016, 23 (3),
345–355. doi:10.36045/bbms/1473186509
- Wang Y. Contact 3-manifolds and \(\ast\)-Ricci soliton. Kodai Math. J.
2020, 43 (2), 256–267.
doi:10.2996/kmj/1594313553