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Fixed point theorems on an orthogonal metric space using
Matkowski type contraction

Singh B.l, Singh V.1, Uddin 1.2, Acar 0.3

The purpose of this paper is to prove Boyd-Wong and Matkowski type fixed point theorems in
orthogonal metric space which was defined by M.E. Gordji in 2017 and is an extension of the metric
space. Some examples are established in support of our main results. Finally, we apply our results
to establish the existence of a unique solution of a periodic boundary value problem.
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Introduction

The Banach contraction principle has become one of the most well-known and important
discoveries in mathematics during the last century because of its simple structure and util-
ity. Numerous researchers have expanded and generalized Banach'’s fixed point theorem from
many viewpoints. One common approach to reinforce the Banach contraction principle is to
replace the metric space with other generalized metric spaces.

The contraction condition in metric spaces was improved by D.W. Boyd, ].5.W. Wong [2] by
using a control function. Y.I. Alber and S. Guerre-Delabriere pioneered the ¢-weak contraction
condition in Hilbert spaces [1]. In metric spaces, every ¢-weak contractive map has a unique
tixed point, as B.E. Rhoades has shown in [9]. ]J. Matkowski developed the idea to generalize
the Banach contraction principle [8].

Recently, for the first time, M.E. Gordji et al. [3] expanded the literature on metric space
by introducing the concept of orthogonality and establishing the fixed point result. There are
several uses for this novel idea of an orthogonal set as well as numerous forms of orthogonality.
M.E. Gordji and H. Habibi [4, 5] proved the fixed point and related results in (generalized)
orthogonal metric spaces. For more information, we refer the reader to [6,10-13].

This article is organized as follows. Section 2 contains some basic definition of orthogonal
set from the literature. In Section 3, we established fixed point theorems in the settings of
orthogonal metric spaces. Section 4 containes an application of our main result from Section 3
for the existence and uniqueness of solution to differential equation of first order with periodic
boundary conditions.
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1 Preliminaries

Definition 1 ([3]). Let E be a non-empty set and L be a binary relation defined on E. If binary
relation | fulfils the criteria

J¢o [(Vﬁ €E®L QO) or (Vl9 €E, gL 19)],
then pair (E, L) known as an orthogonal set. The element ¢ is called an orthogonal element.

Definition 2. Let (E, L) be an orthogonal set (O-set). Any two elements ¢, ¢ € E such that
¢ L ¢ are said to be orthogonally related.

An orthogonal set is illustrated in the following non-trivial examples.

Example 1. Let E = 2Z and set a binary relation | on2Z asm 1 n ifm.n = 0. Then (2Z, 1)
is an orthogonal set with 0 as an orthogonal element.

Example 2. Let E be set of all matrices of order n over R, i.e. E = M, (R). We define L on
M, (R) as A L Bif AB = BA. Then (M,(R), L) is an orthogonal set since SA = AS for a
scalar matrix § € M, (R).

Remark. A orthogonal set may have unique, more than one or infinite many orthogonal ele-
ments.

Consider a non-empty set E(# @) and define a binary relation L on set E with usual metric
d defined on set E, then triplet (X, L, d) is called orthogonal metric space (or O-metric space).

Some basic definition and properties of an orthogonal set and orthogonal metric space are
given below. For more information and examples the reader is suggested to see [3,7].

Definition 3 ([3]). Consider a non-empty set E. Let L be a binary relation defined on E. A
sequence {¢, } is called an orthogonal sequence (briefly O-sequence) if

(VneN,gn L gpy1) or (Vn € N, gui1 L Gn)-

Definition 4 ([3]). Let (E, L,d) be an orthogonal metric space. Then E is said to be an
O-complete if every Cauchy O-sequence converges in X.

Remark 1 ([3]). Every complete metric space is O-complete and the converse is not true.

Definition 5 ([3]). Let (E, L,d) be an orthogonal metric space. A function f : E — E is
said to be L-continuous in ¢ € E if for each O-sequence {¢,},cN converging to ¢ we have
f(gn) — f(g) asn — oo. Also, f is said to be L -continuous on E if f is | -continuous in each
¢ € E.

Remark 2. The authors of [3] found, that O-continuity in conventional metric spaces is weaker
than classical continuity.

Definition 6 ([3]). Let a pair (E, L) be an O-set, where E(# @) is a non-empty set and L is a
binary relation on E. A mapping f : E — E is said to be L -preserving if f(¢) L f(¢) whenever
¢ L ¢ and weakly L -preserving if f(¢) L f(9) or f(9) L f(gc) whenever¢ L 9.
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2 Main Results

Theorem 1. Let (E,d, 1) be an O-complete metric space and suppose that f : E — E be
L -continuous and | -preserving, satisfying

d(f(c). f(8)) < ¢(d(¢,9)), V¢ deE with ¢L9,
where ¢ : RT™ — [0, 00) is upper semi-continuous from right, i.e. for any sequence
ty > t>0 = }}ggosup P(tn) < ¢(1),

and satisfies 0 < ¢(t) < t fort > 0. Then f has unique fixed point ¢*. Also f is a Picard
operator, that is ligf” (¢) =¢* forallg € E.
n

Proof. Let ¢p € E be an orthogonal element in E, then by definition
(Vl9 €E gL 19) or (Vﬂ €EQOL QO)-

It follows that (o L f(go)) or (f(go) L go). Let

¢1=f(0), c2=f(c1)=F*(s0) Gu+1=f(gn) =f""(co), VmeN.

Since f is L-preserving, {¢,} is an O-sequence.
Set a, = d(¢ny—1,6n). Observe that {a,} is a bounded below monotonically decreasing

sequence, then {a, } is convergent to 4, i.e. lgn ap = a.1fa > 0, we have a, 11 < ¢(ay,), so that
n—o00

a < lim sup ¢(t) < ¢(a),

t—at

which is a contradiction. Contrary, assume that O-sequence {¢, } is not Cauchy O-sequence,
then 3 e > 0 and sequences {my}, {ny} of integers with my > n; > k such that

dy = d(Gm, Gn,) > €, d(gm_1,6n) <€ k=1,23,....

Now, € < dy = d(Gm, 6n,) < d(GmprGmy_y) +A(Gmy_1,Cn) < am, + €, which implies that
di — € as k — 0. But, now

dk = d(gmk, gnk> S d(gmk, gmk+1) + d(gmk+1/ gnkﬂ) + d(gnk+1/ an) S 2ak + ()b(dk)

Thus, we have € < ¢(e) as k — oo, which is a contradiction. Hence our assumption is wrong,
so O-sequence {¢, } is a Cauchy O-sequence. Since E is O-complete, then there exists ¢* € E
such that {¢,} — ¢*. Since orthogonal continuity of f implies that f(¢,) — f(¢*), then

f(¢") = f(lim ¢u) = lim f(gn) = lim 6,1 = ¢™

n—oo

For uniqueness, assume that 9* € E such that f(¢*) = ¢*. Also f"(¢*) = &, now for choice
of gp € E, we have [go L ¢* or ¢* L go] and [go L & or 8* L ¢o], since f is L-preserving, we

have [f"(co) L f"(¢*) or f*(¢*) L f"(co)] and [f"(co) L f"(97) or f*(8%) L f"(go)] for all
n € IN. Therefore, by ¢(t) <t, t >0,
d(c*,0) = d(f"(¢*), f(87)) < ¢(d(f"~" (¢"), [~ (9)))
<d(f"7HeN), fTHOY) < ...<d(cF, 9.
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It is a contraction, thus it follows that ¢* = ¢*. Finally, let ¢ € E be arbitrary. Similarly, we have

[So L ¢"and go L cJor[¢" L gpand ¢ L gol, and [f"(go) L f"(¢") and f"(go) L f"(¢)] or
[f"(¢*) L f"(co) and f"(g) L f"(go)] for all n € IN. Hence, for any n € IN we get

d(g*, f(c)) = d(f*(¢*), f*(¢)) < pd(f" ("), " (g)))
< QA2 (6), ) < ... < ¢M(d(g", ) = 0

as n — oo. Hence, proof is complete. O

Example 3. Let ([0,1], L,d) be an O-complete metric space, where ¢ 1 ¢ if ¢ — & > 0 and with

metric
c—19], ¢®€l01),
d(g,0) =
¢c+0, ¢=lord=1.

Let a self map f on E be defined as

2
/4, ¢ 9€]0,1),
flg) =

¢—1, g=1lord=1

Now, if we define
/2, 0<t<1,
¢(t) =
t—1, 1<t < oo,

then the hypothesis of Boyd and Wong’s theorem is violated, since f is not continuous. As a
result, Theorem 1 is useful extension of Boyd and Wong’s fixed point theorem.

Theorem 2. Let (E,d, L) be an O-complete metric space and suppose that f : E — E be
L -continuous and | -preserving, satisfying

d(f(c), f(8)) < ¢(d(c,8)), Vg O€E with ¢ L9,

where ¢ : R™ — R™ is monotonic non-decreasing function, that satisfies lgn P"(t) = 0,
n—oo

V't > 0. Then f has unique fixed point ¢*. Also f is a Picard operator, that is lgn f'(¢) =¢
n—oo

forallg € E.

Proof. By the definition of orthogonality, there exists an orthogonal element gy € E such that
(VO€E, gy L 9)or (VOEE, ¥ L ¢gp). It follows that (o L f(go)) or (f(go) L ¢o)- Let

61 = f(g0), 62 = f(61) = f2(60), Gnv1 = f(gn) = f"(go), V1 € N. Since f is L-preserving,
{¢n} is an O-sequence. Let a, = d(G,—1,6n), then

A(Gnt1,6n) = d(f(6n), f(6n-1)) < ¢(d(gn,6n-1)) = ¢(f(cu-1), f(gn-2))
< ¢*(gn-1,6n-2) < ¢"(51,60)

as n — oo, then by the definition of ¢ we get lgn d(¢ns1,6n) = 0. Now, we show that
n—o00

O-sequence {¢,} is a Cauchy sequence. Also we note that for any € > 0, ¢(e) < €. Since

lgn a, = 0, so for ¢ > 0, we can choose n € IN such that a, < € — ¢(e). Now define
n—o00

M= {¢ € E:d(g,¢n) < €} withg L 9, then for any ¢ € M we have

d(f(9),6n) < d(f(8),f(gn)) +d(f(n) 6n) < ¢(d(8,¢n)) +d(Gn1,6n) < p(e) +€—P(e) <e¢,
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this implies that f(d) € M, i.e. f(M) C M. It follows that d(¢m,¢n) < €,Vn > m. By the
completeness of X, there exists ¢* € E such that nh_r)n Gn = ¢*. Since f is L -continuous, hence

fen) = f(¢"), then
f(g") = f(lim ¢u) = lim f(gn) = lim 6,1 = ¢
Therefore, ¢* is a fixed point. To prove uniqueness of the fixed point, let " € E be another
fixed point of f different from ¢* such that f"(9*) = 9%, then d(¢*, %*) > 0. Now, for choice of
Go € E, we have [gp L 0] or [0* L go], since f is L-preserving, we have [f"(¢o) L f"(9*)] or
[f"(8*) L f"(go)] forall n € IN. Then
d(c*,9%) =d(f"(c"), f*(97)) < p(d(f"(¢™), f171(8"))) < ... < P"(d(c", 8)),
nlgrolo d(f(¢*),®*) = 0 this implies that ¢* = ¢*.
Finally, let ¢ € E be arbitrary. Similarly, we have
[0 L ¢"and go L ¢Jor[¢" L goand ¢ L o,

and

[f"(g0) L f*(¢¥) and f*(co) L f"(¢)] or [f"(¢") L f"(co) and f*(g) L f*(go)]

for all n € IN. Hence, for all n € IN, we get

d(c”, f"(¢)) = d(f"(¢"), f" () < p(d(f" (), f7H(6)))
< PHA(f (), f1720))) <. < @Al ) = 0
as n — oo. This completes the proof. O

Example 4. Given a function

f(g) =
It satisfies the condition of Theorem 2, where¢ | ¢ if ¢ > & > 0 with usual metricd and ¢ is

given by ¢(t) = t/5. Hence, the hypothesis of Matkowski’s theorem is violated, since f is not
continuous. As a result, Theorem 2 is a useful extension of Matkowski’s fixed point theorem.

Remark 3. The main result of M.E. Gordji et. al. [3] is the extension of Banach contraction
principle. In this case, if we use ¢(t) = at, the number « € [0,1) is such that d(f(g), f(9)) <
ad(g,9) withx L y.

3 Application

Here, in this part, we discuss usefulness of our main result discussed in previous section
of the article by investigating the existence and uniqueness of solution of differential equation
of first order with periodic boundary condition.

Consider

W) =g(t,u(t), te[0A] @
#(0) = u(A),
where A > O and ¢ : [0,A] x R — R is continuous function. Let E = C[0,A] be the set

of all continuous functions and the metric is d(p,v) = sup,cjo ) |p(t) —v(t)| with p L v if
u(t) <wv(t),vteloAl
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Theorem 3. Consider a first order differential equation with boundary condition mentioned
in equation (1) and suppose that there exists some K > 0 such that for sy, s, € R withsy > s

0 < g(t,s1) + Ks1 — [g(t,52) + Ksp] < K¢p(s1 — s2),

where ¢ is a function given in Theorem 2. If there exists a lower solution for differential equa-
tion (1), then this implies that ditferential equation (1) has unique solution.

Proof. 1t is possible to rewrite problem (1) as

W (t) + Ku(t) = g(t, u(t)) +Ku(t), tel0,A],

then it is identical to the integral equation of the form

A
p() = [ Glt5)[g(s,m(s)) + Kp(s)ds,

where

ol B eK()\-i-s—t)/eK)L—l’ 0<s<t<A,
(ts) = eK(s—t) KA1 0<t<s<A.

Let a mapping T : E — E be defined by

A
(Tt = [ G(t,9)lg(s, 1)) +Ku(s)lds.

It is evident that a fixed point of T is a solution to the preceding problem (1). Now we will
demonstrate that the hypothesis in Theorem 3 is satisfied.
Asp Lvifu(t) <v(t),Vt € [0,A], from the hypothesis we obtain

g(t, u(t)) + Ku(t) < g(t,v(t)) +Kv(t), Viel0,A]

As G(t,s) > 0,Vt,s € [0,A], we have
A A
(Tu)(t) :/0 G(t,s)[8(s, u(s)) + Ku(s)]ds S/O G(t,s)[8(s,v(s)) + Kv(s)lds = (Tv)(t).

Hence, T is 1 -preserving.
Let {1, } be an O-Cauchy sequence converging to u € E. Then

po(t) < pa(t) < pot) < pa(t) <... < pn(t) <...<pu(t), Vtel0,A],

this implies that u, L u,Vt € [0,A]. As T is L-preserving, then f(u,) — f(u). Therefore, T is
O-continuous.

Now, assume that there exists a lower solution, say pp € X, such that u{(t) < g(t, puo(t)),
which may be rewritten in the following way

Ho(t) + Kpo(t) < g(t, po(t)) + Kpo(t) for £ € [0,A]
Multiplying eX! to above inequality, gives

(o (t)e")" < [g(t, po(t)) + Kpo(t)]eX! for t € [0,4],
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and thus, we have

po(t)eX < po(0) + /O t[g(sfuo(S))+Kuo(s)]ests for te0,4], 2)

which implies that

10(0)eX < up(A)eft < 1g(0) + /OA[g(S, 10(s)) + Ko (s)]e¥ds,
thereby yielding
A pKs
100) < [ 1805, 1m0(5)) + po(s)lds:

Using the inequality (2), we get that

t A eKs
Ho(t)e! S/O[g(sfﬂo(s))+V0(S)]€st5+/0 St [8(5/ Ho(8)) + po(s)]ds
t oK(s+A) 0 oKs
=/, W[g(sluo(s»Jruo(S)]dH/t KA1 18 (5, po(s)) + po(s)lds

A Ks
+ [ —rla(s mols) + pols)lds

t K(s+A) A eKs
:/O W[g(s,yo(s»—kyo(S)]dS—F/t eK/\—_l[g(S,HO(S»_"HO(S)]dS.

Hence,

t LK(s+A—t) A oK(s—t)
xo(t) S/O — 1 18(5 o (s) + pro(s d5+/ —k=T 18(5 1o (s)) + po(s)]ds,

w(t) < [ G(t,9)la(6m0(s)) + po(s))ds = (Tuo(e).

Hence, T possesses a fixed point in E. 0
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Y 11iit poboTi AoBeaeHO Teopemu Boriaa-Borra Ta MaTKOBCHKOTO PO HEPYXOMi TOUKM B OPTOTO-
HaABHOMY METPUMYHOMY IIPOCTOpi, sikuit 6yB o3Hauermit M.E. I'opaxi y 2017 porii i € posmmpeHHsIM
MeTpu4HOro Ipocropy. HaBeaeHO KiabKa IpMKAaAiB Ha ITiATBEPAKEHHSI OCHOBHIIX pe3yAbTaTiB. 3a-
CTOCOBAHO OTPMMaHi pe3yAbTaTH AASL BCTAHOBAGHHSI iCHYBaHHSI €AMHOTO PO3B’SI3Ky IepioAMJHOL
KpayoBoi 3apadi.

Kntouosi cnoea i ppasu: HepyxoMma TOUKa, OPTOrOHaAAbHA MHOXMHA, OPTOTOHAABHII MeTPIYIHI
MPOCTip, METPUYHMIA IPOCTIp.



