References

  1. Acar T., Kursun S., Turgay M. Multidimensional Kantorovich modifications of exponential sampling series. Quaest. Math. 2021 (accepted).
  2. Bardaro C., Bevignani G., Mantellini I., Seracini M. Bivariate generalized exponential sampling series and applications to seismic waves. Constr. Math. Anal. 2019, 2 (4), 153–167. doi:10.33205/cma.594066
  3. Bardaro C., Butzer P.L., Mantellini I., Schmeisser G. On the Paley–Wiener theorem in the Mellin transform setting. J. Approx. Theory 2016, 207, 60–75. doi:10.1016/j.jat.2016.02.010
  4. Bardaro C., Butzer P.L., Mantellini I., Schmeisser G. A fresh approach to the Paley-Wiener theorem for Mellin transforms and the Mellin-Hardy spaces. Math. Nachr. 2017, 290 (17–18), 2759–2774. doi:10.1002/mana.201700043
  5. Bardaro C., Butzer P.L., Mantellini I. The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting. Sampl. Theory Signal Image Process. 2014, 13 (1), 35–66. doi:10.1007/BF03549572
  6. Bardaro C., Butzer P.L., Mantellini I. The Mellin-Parseval formula and its interconnections with the exponential sampling theorem of optical physics. Integral Transforms Spec. Funct. 2016, 27 (1), 17–29. doi:10.1080/10652469.2015.1087401
  7. Bardaro C., Faina L., Mantellini I. Quantitative Voronovskaja formulae for generalized Durrmeyer sampling type series. Math. Nachr. 2016, 289 (14–15), 1702–1720. doi:10.1002/mana.201500225
  8. Bardaro C., Faina L., Mantellini I. A generalization of the exponential sampling series and its approximation properties. Math. Slovaca 2017, 67 (6), 1481–1496. doi:10.1515/ms-2017-0064
  9. Bardaro C., Mantellini I. A note on the Voronovskaja theorem for Mellin-Fejer convolution operators. Appl. Math. Lett. 2011, 24, 2064–2067. doi:10.1016/j.aml.2011.05.043
  10. Bardaro C., Mantellini I. On Mellin convolution operators: a direct approach to the asymptotic formulae. Integral Transforms Spec. Funct. 2014, 25 (3), 182–195. doi:10.1080/10652469.2013.838755
  11. Bardaro C., Mantellini I. On a Durrmeyer-type modification of the exponential sampling series. Rend. Circ. Mat. Palermo, II. Ser. 2021, 70 (3), 1289–1304. doi:10.1007/s12215-020-00559-6
  12. Bardaro C., Mantellini I., Schmeisser G. Exponential sampling series: convergence in Mellin-Lebesgue spaces. Results Math. 2019, 74 (3), 119. doi:10.1007/s00025-019-1044-5
  13. Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Appl. Anal. 1997, 64, 203–217. doi:10.1080/00036819708840531
  14. Bertero M., Pike E.R. Exponential-sampling method for Laplace and other dilationally invariant transforms, II. Examples in photon correlation spectroscopy and Fraunhofer diffraction. Inverse Problems 1991, 7 (1), 21–41.
  15. Butzer P.L., Fischer A., Stens R.L. Generalized sampling approximation of multivariate signals; general theory. Atti Sem. Mat. Fis. Univ. Modena 1993, 41 (1), 17–37.
  16. Butzer P.L., Fischer A., Stens R.L. Generalized sampling approximation of multivariate signals; theory and some applications. Note Mat. 1990, 10 (1), 173–191. doi:10.1285/i15900932v10supn1p173
  17. Butzer P.L., Jansche S. A direct approach to the Mellin transform. J. Fourier Anal. Appl. 1997, 3 (4), 325–375. doi:10.1007/BF02649101
  18. Butzer P.L., Nessel R.J. Fourier Analysis and Approximation I. Academic press, New York – London, 1971.
  19. Butzer P.L., Splettstösser W., Stens R.L. The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math.-Ver. 1988, 90, 1–70.
  20. Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 1987, 50 (1), 25–39. doi:10.1016/0021-9045(87)90063-3
  21. Gori F. Sampling in optics. Advanced topics in Shannon sampling and interpolation theory. Springer, New York, 1993, 37–83.
  22. Higgins J.R. Sampling theory in Fourier and signal analysis: Foundations. Oxford Univ. Press, Oxford, 1996.
  23. Mamedov R.G. The Mellin transform and approximation theory. Elm, Baku, 1991. (in Russian)
  24. Ries S., Stens R.L. Approximation by generalized sampling series. In: Proc. of the Intern. Conf. on Constructive Theory of Functions, Varna, Bulgaria, 1984, Bulgarian Academy of Science, Sofia, 1984, 746–756.
  25. Zayed A.I. Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton, 1993.