References

  1. Antonova T.M. Multidimensional generalization of the theorem on parabolic domains of convergence of continued fractions. Mat. Met. Fiz.-Mekh. Polya 1999, 42 (4), 7–12. (in Ukrainian)
  2. Antonova T.M., Bodnar D.I. Convergence domains for branched continued fractions of the special form. Approx. Theor. and its Appl.: Pr. Inst. Matem. NAS Ukr. 2000, 31, 19–32. (in Ukrainian)
  3. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction \(\sum_{i_1=1}^N\!\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\!\frac{a_{i(2)}}{1}{\atop+}\) \(\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots\) . Ukr. Math. J. 2020, 72 (7), 1018–1029. doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Mat. Zh. 2020, 72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in Ukrainian))
  4. Antonova T.M., Sus’ O.M. On one criterion for the figured convergence of two-dimensional continued fractions with complex elements. J. Math. Sci. (N.Y.) 2010, 170 (5), 594–603. doi:10.1007/s10958-010-0104-x (translation of Mat. Metody Fiz.-Mekh. Polya 2009, 52 (2), 28–35. (in Ukrainian))
  5. Baran O.E. Some convergence regions of branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (1), 4–13. doi:10.15330/cmp.5.1.4-13 (in Ukrainian)
  6. Bilanyk I., Bodnar D. Convergence criterion for branched continued fractions of the special form with positive elements. Carpathian Math. Publ. 2017, 9 (1), 12–12. doi:10.15330/cmp.9.1.13-21
  7. Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  8. Bodnar D.I. On the convergence of branched continued fractions. J Math Sci. 1999, 97 (1), 3862–3871. doi:10.1007/BF02364926
  9. Bodnar O.S., Dmytryshyn R.I. On the convergence of multidimensional \(S\)-fractions with independent variables. Carpathian Math. Publ. 2018, 10 (1), 58–64. doi:10.15330/cmp.10.1.58-64
  10. Bodnar O., Dmytryshyn R., Sharyn S. On the convergence of multidimensional \(S\)-fractions with independent variables. Carpathian Math. Publ. 2020, 12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
  11. Bodnar D.I., Kuchminska Kh.Yo. Parabolic convergence region for two-dimensional continued fractions. Mat. Stud. 1995, 4, 29–36. (in Ukrainian)
  12. Bodnarchuk P.I., Skorobohat’ko V.Ya. Branched Continued Fractions and Their Applications. Naukova Dumka, Kyiv, 1974. (in Ukrainian)
  13. Cuyt A., Verdonk B. A review of branched continued fraction theory for the construction of multivariate rational approximations. Appl. Numer. Math. 1988, 4 (2–4), 263–271. doi:10.1016/0168-9274(83)90006-5
  14. Dmytryshyn R.I., Antonova T.M. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. Mat. Stud. 2020, 54 (1), 3–14. doi:10.30970/ms.54.1.3-14
  15. Dmytryshyn R.I. Convergence of multidimensional \(A\)- and \(J\)-Fractions with independent variables. Comput. Methods Funct. Theory 2021. doi:10.1007/s40315-021-00377-6
  16. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 1853–1870. doi:10.1017/prm.2019.2
  17. Jones W., Thron W. Convergence of continued fractions. Canad. J. Math. 1968, 20, 1037–1055. doi:10.4153/CJM-1968-101-3.
  18. Jones W.B., Thron W.J. Continued fractions: analytic theory and applications. In: Encyclopedia of Mathematics and its Applications, 11 Addison-Wesley, Reading, MA, 1980.
  19. Khovanskii A.N. The applications of continued fractions and their generalizations to problems in approximation theory. Moscow, 1956. (in Russian)
  20. Kuchminska Kh.Yo. Two-dimensional continued fractions. Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, NAS of Ukraine, Lviv, 2010. (in Ukrainian)
  21. Lorentzen L., Waadeland H. Continued fractions. Vol. 1. Convergence theory. Atlantis Press, Amsterdam, 2008.
  22. Murphy J.A., O’Donohoe M.R. A two-variable generalization of the Stieltjes-type continued fraction. J. Comput. Appl. Math. 1978, 4 (3), 181–190. doi:10.1016/0771-050X(78)90002-5
  23. Perron O. Die Lehre von den Kettenbrüchen. B. G. Teubner, Stuttgart, 1957. (in German)
  24. Thron W.J. Two families of twin convergence regions for continued fractions. Duke Math. J. 1943, 10 (4), 677–685. doi:10.1215/S0012-7094-43-01063-4
  25. Siemaszko W. Branched continued fractions for double power series. J. Comput. Appl. Math. 1980, 6 (2), 121–125. doi:10.1016/0771-050X(80)90005-4
  26. Skorobogatko V.Ya. Theory of branched continued fractions and its applicatiot in computational mathematics. Nauka, Moscow, 1983. (in Russian)
  27. Wall H.S. Analytic theory of continued fractions. Van Nostrand, New York, 1948.