References
- Antonova T.M. Multidimensional generalization of the theorem on
parabolic domains of convergence of continued fractions. Mat. Met.
Fiz.-Mekh. Polya 1999, 42 (4), 7–12. (in Ukrainian)
- Antonova T.M., Bodnar D.I. Convergence domains for branched
continued fractions of the special form. Approx. Theor. and its
Appl.: Pr. Inst. Matem. NAS Ukr. 2000, 31, 19–32. (in
Ukrainian)
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for
branched continued fraction \(\sum_{i_1=1}^N\!\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\!\frac{a_{i(2)}}{1}{\atop+}\)
\(\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots\) .
Ukr. Math. J. 2020, 72 (7), 1018–1029.
doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Mat. Zh. 2020,
72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in
Ukrainian))
- Antonova T.M., Sus’ O.M. On one criterion for the figured
convergence of two-dimensional continued fractions with complex
elements. J. Math. Sci. (N.Y.) 2010, 170 (5),
594–603. doi:10.1007/s10958-010-0104-x (translation of Mat. Metody
Fiz.-Mekh. Polya 2009, 52 (2), 28–35. (in
Ukrainian))
- Baran O.E. Some convergence regions of branched continued
fractions of special form. Carpathian Math. Publ. 2013,
5 (1), 4–13. doi:10.15330/cmp.5.1.4-13 (in
Ukrainian)
- Bilanyk I., Bodnar D. Convergence criterion for branched
continued fractions of the special form with positive elements.
Carpathian Math. Publ. 2017, 9 (1), 12–12.
doi:10.15330/cmp.9.1.13-21
- Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986.
(in Russian)
- Bodnar D.I. On the convergence of branched continued
fractions. J Math Sci. 1999, 97 (1), 3862–3871.
doi:10.1007/BF02364926
- Bodnar O.S., Dmytryshyn R.I. On the convergence of
multidimensional \(S\)-fractions with
independent variables. Carpathian Math. Publ. 2018,
10 (1), 58–64. doi:10.15330/cmp.10.1.58-64
- Bodnar O., Dmytryshyn R., Sharyn S. On the convergence of
multidimensional \(S\)-fractions with
independent variables. Carpathian Math. Publ. 2020,
12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
- Bodnar D.I., Kuchminska Kh.Yo. Parabolic convergence region for
two-dimensional continued fractions. Mat. Stud. 1995,
4, 29–36. (in Ukrainian)
- Bodnarchuk P.I., Skorobohatko V.Ya. Branched Continued Fractions and
Their Applications. Naukova Dumka, Kyiv, 1974. (in Ukrainian)
- Cuyt A., Verdonk B. A review of branched continued fraction
theory for the construction of multivariate rational
approximations. Appl. Numer. Math. 1988, 4 (2–4),
263–271. doi:10.1016/0168-9274(83)90006-5
- Dmytryshyn R.I., Antonova T.M. Truncation error bounds for
branched continued fraction whose partial denominators are equal to
unity. Mat. Stud. 2020, 54 (1), 3–14.
doi:10.30970/ms.54.1.3-14
- Dmytryshyn R.I. Convergence of multidimensional \(A\)- and \(J\)-Fractions with independent
variables. Comput. Methods Funct. Theory 2021.
doi:10.1007/s40315-021-00377-6
- Dmytryshyn R.I. Multidimensional regular C-fraction with
independent variables corresponding to formal multiple power
series. Proc. Roy. Soc. Edinburgh Sect. A 2020,
150 (4), 1853–1870. doi:10.1017/prm.2019.2
- Jones W., Thron W. Convergence of continued fractions.
Canad. J. Math. 1968, 20, 1037–1055.
doi:10.4153/CJM-1968-101-3.
- Jones W.B., Thron W.J. Continued fractions: analytic theory and
applications. In: Encyclopedia of Mathematics and its Applications,
11 Addison-Wesley, Reading, MA, 1980.
- Khovanskii A.N. The applications of continued fractions and their
generalizations to problems in approximation theory. Moscow, 1956. (in
Russian)
- Kuchminska Kh.Yo. Two-dimensional continued fractions. Pidstryhach
Institute for Applied Problems in Mechanics and Mathematics, NAS of
Ukraine, Lviv, 2010. (in Ukrainian)
- Lorentzen L., Waadeland H. Continued fractions. Vol. 1. Convergence
theory. Atlantis Press, Amsterdam, 2008.
- Murphy J.A., O’Donohoe M.R. A two-variable generalization of the
Stieltjes-type continued fraction. J. Comput. Appl. Math. 1978,
4 (3), 181–190. doi:10.1016/0771-050X(78)90002-5
- Perron O. Die Lehre von den Kettenbrüchen. B. G. Teubner, Stuttgart,
1957. (in German)
- Thron W.J. Two families of twin convergence regions for continued
fractions. Duke Math. J. 1943, 10 (4), 677–685.
doi:10.1215/S0012-7094-43-01063-4
- Siemaszko W. Branched continued fractions for double power
series. J. Comput. Appl. Math. 1980, 6 (2),
121–125. doi:10.1016/0771-050X(80)90005-4
- Skorobogatko V.Ya. Theory of branched continued fractions and its
applicatiot in computational mathematics. Nauka, Moscow, 1983. (in
Russian)
- Wall H.S. Analytic theory of continued fractions. Van Nostrand, New
York, 1948.