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Metric properties of Cayley graphs of alternating groups

Olshevskyi M.S.

A well known diameter search problem for finite groups with respect to its systems of generators
is considered. The problem can be formulated as follows: find the diameter of a group over its
system of generators. The diameter of a group over a specific system of generators is the diameter
of the corresponding Cayley graph.

It is considered alternating groups with classic irreducible system of generators consisting of
cycles with length three of the form (1,2,k). The main part of the paper concentrates on analysis
how even permutations decompose with respect to this system of generators. The rules for moving
generators from permutation’s decomposition from left to right and from right to left are introduced.
These rules give rise for transformations of decompositions, that do not increase their lengths. They
are applied for removing fixed points of a permutation, that were included in its decomposition.
Based on this rule the stability of system of generators is proved. The strict growing property of
the system of generators is also proved, as the corollary of transformation rules and the stability
property.

It is considered homogeneous theory, that was introduced in the previous author’s paper. For
the series of alternating groups with systems of generators mentioned above it is shown that this
series is uniform and homogeneous. It makes possible to apply the homogeneous down search
algorithm to compute the diameter. This algorithm is applied and exact values of diameters for
alternating groups of degree up to 43 are computed.

Key words and phrases: Cayley graph, graph diameter, system of generators, alternating group.

Taras Shevchenko National University, 64/13 Volodymyrska str., 01601, Kyiv, Ukraine
E-mail: msolshevskyi@gmail.com

Introduction

In group theory the diameter search problem for specific system of generators can be for-
mulated as follows. For a finite group G and its system of generators S find the diameter
Dg(G) of the Cayley graph I'(G,S) of G with respect to S. The diameter of Sym(n) over

={(1,k):ke€2,...,n} was found in [1].

The general variant of this problem, the diameter search problem, is formulated as the
problem to find maximum of Dg(G) for all systems of generators S of G. The research in
this direction was stimulated by the paper of L. Babai and A. Seress [2]. A few recent papers
dealing with this topic are [3,4,6,7,9].

The minimum-length generators sequence search problem is another well known problem
for finite groups. It can be formulated as follows: for a finite group G, its system of generators
S and an element ¢ € G find the shortest generators sequence realizing g. In [5], it is shown
that this problem is NP-hard for permutation groups.
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In the present work, we consider alternating groups Alt(n), n > 3. As a system of gener-
ators of Alt(n) we consider SoG(n) consisting of cycles (1,2,k), k = 3,...,n. We investigate
properties of multiplication of even permutations by such generators. These properties pro-
vide an opportunity to establish rules of moving generators in permutation’s decompositions
from left to right and from right to left. This leads to the proof of the main result of the paper.
We show that our groups with respect to mentioned systems of generators are stable, i.e. for
an even permutation its minimal length of a decomposition is preserved when the degree of
the alternating group grows. Also, we show that our system of generators is strictly growing.

This paper is partially based on the previous author’s work [8]. We consider the series of
alternating groups and their generator systems and show that it is uniform and homogeneous.
Then to find the diameter we apply the homogeneous down search algorithm. As a result
of computations we present the exact values of diameters for alternating groups Alt(n) with
respect to generators (1,2,k), k = 3,...,n, of degree n up to 43.

The paper is organized as follows. Section 1 describes specific notations, elementary prop-
erties of generators and introduces one of the main tools of the paper, the trajectory of a point
over permutation’s decomposition. In Section 2, the rules of moving generators over decom-
positions from left to right or from right to left are obtained. In Section 3, using the rules from
previous section it is proved stability of alternating groups with respect to considered systems
of generators. Also, as corollary it is shown that the strictly growing property of these sys-
tems of generators hold. Section 4 recalls definitions of groups-generators series. It is proved
that alternating groups-generators series is uniform and homogeneous. Homogeneous down
search algorithm is applied for the alternating groups of degrees up to 43.

Unless otherwise specified in the paper we denote a finite group by G and a system of
generators of G by S.

1 Preliminaries

The main object of research of the paper is the alternating group Alt(n) with its system
of generators ((1,2,3),...,(1,2,n)),n > 3. We consider some useful elementary properties of
this system of generators and introduce the trajectory of a point over permutation’s decompo-
sition. This notion will be intensively used in the sequel and we present general classification
of trajectories.

1.1 Basic definitions, notations and properties

Every element g of G can be decomposed as a product
l
g=]1s«
k=1

of generators from S for some natural I. The tuple of generators (s1,...,s;) will be called a
decomposition of the element g over S. The length |g|s of the element g over S is the length of the
shortest decomposition of g over S. The diameter Ds(G) of G with respect to S is the maximum
of lengths |¢|s, ¢ € G. An element ¢ € G such that |g|s = Ds(G) is called a diameter element.

Let us introduce the operation of concatenation over tuples of generators. Let 77, T be ele-
ments from G and D = (dy,...,dw), T = (t1,...,t,) be its decompositions over S correspond-
ingly. Then the concatenation of D and T is the decomposition (dy,...,dw, t1,...,t,) of the
element 77 - T.
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An element a € G will be called properly generated over S if for arbitrary A C S, A # S, we
have a ¢ (A). A system of generators S of a group G will be called strictly growing if every
diameter element is properly generated.

Fix an integer n.

Definition 1. A groups-generators series G is the sequence of pairs (G(n), SoG(n) : n > ng) such
that:

1) G(np+1) < G(ng+2) < G(np+3) <... is an ascending group series;
2) SoG(n) is a system of generators of G(n) and SoG(n) C SoG(n+1), n > ny.
Let G be a groups-generators series.

Definition 2. The series G will be called stable if for arbitrary integers N1, N>, np < N < Ny,
and every element a € G(N;) the following equality holds

’a’SoG(Nl) = \a\SoG(Nz)~

Let G(n) be the alternating group Alt(n), n > 3. We fix the natural embedding of Alt(n)
into Alt(n+1), n > 3. Denote by sy the cycle (1,2,k), k > 3. Let SoG(n) = {s3,...,s1)},n > 3.
Denote by A the groups-generators series ((Alt(n), SoG(n)) : n > 3).

In this paper, we consider the right rule of permutation’s multiplication: for every permu-
tations 7r, T and for every natural number x we have

(- 7)(x) = T(r(x)).

As usual, the support of a permutation 77 in A will be denoted by supp(7), i.e. supp(m) =
{x e1,n:m(x) #x},wherel,n ={1,2,...,n}.

Fix a natural number n > 3. The group A = Alt(n) is a permutation group on the set 1, 1.
The elements of this set will be called points.

Let S = SoG(n). Let D = (iy,...,iy) be a tuple of m > 1 natural numbers, each greater or
equal than 3. We will use notation [y, . .., in]s for the product

m

m
H Sik = H(l, 2/ lk)
k=1 k=1
For simplicity we will identify the tuple D = (iy, ..., iy) of indices with the tuple (s, ..., s;,)

of generators. The later forms a decomposition of the permutation [iy, ..., iy]s over S.
7T

. _
We will use notationa — b for 1 € A and a,b € 1,1 such that 7r(a) = b. Moreover, if for

some permutation T € A and a point ¢ additional equality 7(b) = c holds, then we use the
T T

. . A A . . .
following notation 2 — b = b — c. This notation can be naturally generalized for products of
arbitrary number of permutations.

Proposition 1. The following equalities hold:
1) [i,i,i]ls =e,i>3;

2) lijls = o ivils, irj = 3,i # .
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Proof. 1. Every cycle of length t has order t. Then [i,i,i]s = (1,2,i)® =e.
2. It is enough to show that s; - s; and s; - s; - 5; - s; coincide on every point from the set
{1,2,1,j}. Direct computations are summarized in the following table.

Case Si - 8 Sj*8j"Si" S

5 5j 5j 5j 5 S

1 1=22=2=j|1=22=2=j=]—=]=]—]
S 5j 5j 5j S 5

2 2—i=i—i |2—=]j=]—=1=1=22=2—i
5 S 5 5 Si S

1 I—»1=1-2|imi=i—si=1i—1=1—2
5 5 5j Sj 5 S

] j—=j=j—=1]|j=1=1=2=2—i=i—1

1.2 The trajectory of a point over a decomposition

Let € A be a permutation. Fix a decomposition D = (iy, ..., iy) of 7 over S. We assume
thatm > 3. Leta € {1,2,i1,...,im}-

We will define the trajectory of a over the decomposition D as follows. For arbitrary points
¢,d and k € 1,m such that s; (c) = d we will use notation c % 4. Then in the graph of the
action of the generating system S on 1,1 the decomposition D defines the unique path of the
form

1 2 3 m
a=ap—a; —day — ... — ay = 1t(a).

Definition 3. The trajectory of the point a in the permutation 7 over the decomposition D is a
tuple Tr(a, t, D) := (j1, ..., i) of all indices from D, such that exactly one condition aj, =1lor
aj,1=2 holds forevery 1 < k < t.

In other words, the trajectory of a is the tuple of all positions in D, such that in the graph of
the action corresponding generator defines the arrow that either starts in 2 or terminates at 1.
Since m > 3 the trajectory is well defined.

In many cases we can use more compact form of the path of a point. For arbitrary k,/ € 1,m,
k < I, such that 2 = s;l(ak) Fag=...=aq1 # s;(a-1) =1, ap # 1,2, we will use the

notation a; g ax. Note that in this case both k,I € Tr(a, 7, D).
The following properties of the trajectory Tr(a, r, D) = (ji,...,j:) hold:

1) a;, # 2 for every k € 1,4

. . Jrodk+
2) aj, = aj;_,1ifand only if a;

aj, is well defined in the path of a over D.

We will omit the following parts of the path of a in 7t over D:
1) the initial part of the path up to the first occurrence of a, if a # 1, 2;

2) the closing part of the path after the last occurrence of 7(a), if 7w(a) # 1,2.

Under these conditions we have the following assertion.
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Proposition 2. Let m € A, D be its decomposition over S and a be a point from {1,2} U D.
Depending on the values of a and 7t(a) the path of a over D has one the following forms.

Case 1.1. a =1, t(a) = 1. Then

1.4 2 . Ju o 4 Al 5 242 . j3j N N e e A =V T
15250 i, > 1=—=2250, =22 i 2512 22 i, , ==, > 1

Case1.2. a =1, (a) = 2. Then

1 2. , ‘ 2+1 +2 . J3
1—>2—>zjl%]2]i>1]2—>2]2—>1j3%
A 12+1 A
1]},2 Jt—2 1]t2 2]f2 ’Z]tljtljf ljfm 1m2
Case 1.3. a =1, t(a) # 1,2. Then

Lo i il a2
1—>2—>z]-1%z]-2]—2>1]2—>2]2—>z]-3%

. ji-3 ji—3+1 Ji—3+2 . jf*Z/jf*% . Ji-1 ji-1t1 ji-1+2
Ljy_3 1 2 Ljy_p Ljt— 1 2 Lji
Case 2.1. a =2, t(a) = 1. Then

, +1 +2 . j3,] . jf— jt—p+1 jt_0+2 . it—1,0t .
2 —> 111 zélj 1]2 2 =1 —>]2 2 = 2 — ij %3] s iy, Jiz2 1 Jiz2 2 Jiz2 i, :>]' Lt ij, LNy |
Case 2.2. a =2, 7t(a) = 2. Then
1 . juja . 1l 2 . s . i iotl a2 . i . om—1
250 2B, B A BN g B g I I g Ry A M1 Mo

‘],‘1 . 1“1‘1 1+2 . ‘3,‘

. ji-3 -3+
Ljy_s 1

1 ] + . ‘7[‘7 . ‘7 —+1 —+
/2]f3211]t2]f2]t%l]‘t1]t1]]tl 2]t12>1]}
Case 3.1. a7é127'c(a)—1 Then

. +1 1+2 . jo, 3+1 3+2 . ja
i ]_1>1]1 2]1 i ]]g ]3]_3>1]3 2]3 i, ]4]g

J2

N P ks N S P S P
L2 1 2 Ji-1 > i, — 1
Case 3.2. a # 1,2, m(a) = 2. Then

. i1+1 +2, , 41 42 iy
Zjl J_1> 1 n ]1 2]3 1]3 J3 Bq J3 o BT J3 l]-4 J4 Jg

. a1 Yo i . m—1
1]},2 Jt—2 1]t2 2]f2 'th,l Jt—1,jt ljfm 1ﬂ>2
Case 3.3. # 1,2, t(a) # 1,2. Then
o4 i+l a2 2 J jat+1

. . 342 . jaj
iy =1 =—>2—1i, 2 1]3—3>1—>2]3—>z]-4%

. Je3 4 Jestl ) jrst2 ]'tfzr]‘tfg g1 g Jeat a2
Li-s 1 2 L2 Lot 1 2 i
Let m € A be a permutation with decomposition D = (dj, ..
be a point from {1,2,dy, ..

|Tr(p, T, D)| < 2.

.,dm) over S, m > 3,and p
., dm}. We will say that the point p has trivial path in 7t over D if
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2 Multiplication of permutations by generators

In order to prove stability of the series A we need to establish how a decomposition of a
permutations from A behaviors being multiplied by a generator element from S. More pre-
cisely, in this section we show that conjugation by a generator or its inverse does not increase
the length of a decomposition. The proof breaks into a series of lemmas.

Lemmal. Letm € A, D = (dy,...,dn), m > 3, be its decomposition over S, d be some point
from D. Then for arbitrary point p such that p > 3 and p # dy, k € 1, m, permutation T € A,
defined by the equality

p, ifd;=d,

d;, otherwise,

T=|[H,...,tm], where t;= { (1)

and each point x the following equality holds
p, ift(x) =d,
T(x) = ¢ (p), ifx=d,
nt(x), otherwise.
Proof. The decomposition T = (t1,...,ty,) of T is obtained from D using substitutions of d by
p. Note that in the graph of the action on a point x this transformation changes only one vertex.
Namely, the vertex d substituted by p. Hence, paths of x, which are defined by decompositions
of 7 and 7, have the same labels on arrows. As the result, for every point x, x # d and
nt(x) # d, we have Tr(x, 7w, D) = Tr(x, 7, T). This equality implies that T(x) = 7r(x) for every
x € supp(m), m(x) #d.
Moreover, equality (1) implies:
1) from Tr(d, 7, D) = Tr(p, 7, T) it follows that:
(a)if t(d) = d, then T(p) = p,
(b) if 1(d) # d, then T(p) = n(d);

2) from 7t(p) = p it follows that 7(d) = d.

This completes the proof. O
Lemma 2. Let T € A be a permutation such that 1,2 ¢ supp(7t). Then for each point p such
that p > 3 and p & supp(m) the equality s, - T = 7 - s, holds.

Proof. Note, that supp(s,) N supp(rr) = @. It is enough to show, that (s, - 71)(x) = (77 -5p)(x)
for every point x € {1,2, p} Usupp(m). The results of direct computations are summarized in
the following table.

Case Sp - 7T TS
Sp Y T Sp
—~ —~ = —~ —~
x=1 1—-2=2-2 1-1=1-=2
5p i T Sp
—~ = —~= —~ =
x =2 2—=p=>p—p 2—=2=2—=p
/-ii-\ /—/71-\ ._/L ,_1_\
xX=p p—1=1-=1 p—p=p—1
Sp ﬁ X °r
x € supp(m) |x > x=x— n(x) | x = (x) = m(x) — (x)

Hence, s - m =7+ s)p. ]
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21 Multiplication from the left

Let w € A be a permutation with decomposition D = (dy,...,dy) over S, m > 3. Note that
if the point 1 is fixed in 77 and has trivial path in 7t over D, then via Proposition 2 the path of
the point 1 over D has the form

1502, By g g g

Lemma 3. Let T € A be a permutation with decomposition D = (dy,...,dy), m > 3,1 is fixed

in 7t over D with trivial path, d = ﬂ_l(dz) and p be a natural number > 3, such that there is
nok € 1, m such that p = dy. Thens, - T = T - s, where

[ dyda, . dy s, ifd #2
C\[dda, .. dmils,  ifd =2

Proof. Denote 7t~1(2) by y. Consider cases d # 2 and d = 2 independently.

Letd # 2. Denote [dy, . ..,dy—1]s by 0. From the construction of 7 it follows that for every
point x, x € {1,2,p,d,y}, we have 71(x) ¢ {1,2,p,d,y}. Therefore (s, - m)(x) = m(x) =
T(x) = (7 -sp)(x). Hence, it is enough to show that (s, - 71)(x) = (7 -sp)(x) for every point x
from {1,2,p,d,y}.

Case x = 1. Note, that 71(2) # 1. So, 77(2) is some number from {dy,ds, ...,dy_1} or 2.
Consider cases:

1) if 71(2) # 2, then 71(2) = ¢ (2). So, T(1) = 7(2);

2)if 7(2) =2, theno(2) =1. So, t(1) = 1.
As the result, we have the following table.

Sp'ﬂ T'Sp
Sp T T Sp
/\ . 7\
n(2)#2|1=2=2->mn2)|1—-n2)=n2) = n(2)
S S
f—/p\\ /—/HH f—/T\\ f—/p\\
n2)=2| 1=-2=2—=2 1-1=1—-2

Case x = 2. Note, that from 71(d) = d,, it follows that the path of 4 over D ends on the mth
position. So, o(d) = 2, as ¢ does not contain the mth position of D. Hence, 7(2) = 2. As the
result, we have the following table.

SP'TC T'Sp
Sp T T Sp

—_— | —~=~
2 p=p—=p|2=2=2—=p

Case x = p. In this case, we have the following table.
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Case x = d. Note, that d; is the unique represented in decomposition of ¢. Then ¢ (1) = d;.
So, T(d) = d;. As the result, we have the following table.

Sp'ﬂ T'Sp
Sp 7'c T Sp

— —| ——
d—d=d—dy,|d—>dy=dy — dy

Case x = y. Note, that the case y = 2 is already considered. Also, y # 1 and y # p. So, y is
some point inside decomposition D. From 7t(y) = 2 it follows that 7(y) = 1. As the result, we
have the following table.

Sp T T Sp
y—=-y=y—2y—=>1=1-2

Let d = 2. From the construction of 7 it follows that for every point x, x ¢ {1,2,p,y}, we
have 7t(x) & {1,2, p,y}. Therefore,

(sp - ) (x) = 7(x) = T(x) = (T-5)(x):

Hence, it is enough to show that (s, - 71)(x) = (7 -sp)(x) for every point x from {1,2, p,y}.
Case x = 1. Note, that d; is the unique represented in decomposition of 7. So, (1) = d;.
As the result, we have the following table.

Sp T T Sp

—~ ——~ | A~ ——
1-22=2>dy,|1—>dy=dy —dy

Case x = 2. Note, that from 77(2) = d,, it follows that T(2) = 2. As the result, we have the
following table.

Sp'n T'Sp
Sp T T Sp

—_— | N —~=~
2 p=p—=p|2=2=2—=p

Case x = p. In this case, we obtain the following table.

g g
/—’L /—’T; ._/L /—’L
p—=>1=1=1|p—=>p=p—1

Case x = y. Note, that y ¢ {1,2,p}. So, y is some point inside decomposition D. From
nt(y) = 2 it follows that T(y) = 1. As the result, we have the following table.

sp T T Sp

o — | A~
y=>y=y—>2y—=-1=1-=2

The proof is complete. O
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Note, that the transformation of decomposition s, - 7t to decomposition 7 - s, do not affect
any points except p, double d; (clearly d,, d;;) and its prototype d. Moreover, the transformation
does not change the length of decomposition.

Lemma 4. Let t € A be a permutation with decomposition D = (dy,...,d), m > 3,1 is fixed
in 7t over D with trivial path, 7t(d,,_») = dy, and there isnok € 1,m — 3 such thatd, = d,; ».
Then for every natural number p, p > 3, there exists T € A such thats, - 7 = T -5, and T has
a decomposition (ty,...,t;), wherel < mandp & {t1,...,t}.

Proof. Note, thatif p & {dy,...,dn}, then the statement holds by Lemma 3.
Letp € {dy,...,dn}. Consider seven different cases:

1)dy = p;

2)dy # p,dm-1,dm—2 # p;

3)dy #p,dy—1 =pand dy,_» # p;

4)dy # p,dy—1 # p,dm—2 = pand 7' (p)
5)dy # p,dp_1,dm_2=pandd:= 11 (p) #2
6) dy # p,dy—1 # p,dw— = pand 771 (p) = 2;
Ndy #p,dy_1,dn_o = pand 7 (p) = 2.

1) Let d = p. From Proposition 1 it follows that:
(a) if d1 # p, then
S}? 7T = [P]S : [dll P/ d3/ .. '/dm—ll P]S - [P/ dl/ P/ d3/ .. '/dm—ll P]S
- [dlr dlr pr pr pr d3r ey d?’H7lr p]S — [dl, dlr d3r ey d?’H7lr p]S/

so, T = [d1,d1,d3,...,dy,—1]s with the length equals to m — 1;
(b) if d; = p, then

SP C 7= [p]S : [p/ p1d3r~~~/dm71/ p]S - [p/ p/ p/d3r~~'/d1’i17lrp]s — [d3r"'rd1’lfl*1]s : [p]Sr

so, T = [d3,...,dy—1]s with the length equals to m — 3.
2) Letdy # p, dyy—1,dm—2 # p. Construct T as follows

dn—a, ifd;=p,
= [dm—z, ti,.. ., tmfl]S/ where t; = m—2 i=7P
d;, otherwise.

Leto = [d, t,..., tm_g]s. Note, that T =0 - [tm_z, tm,1]5 =0- [dm_z, dmfl]s.
From the construction of 7 it follows that for every point x, x & {1,2,d,,_2,p, 7 (p)}, we
have 71(x) & {1,2,dy—2, p, m1(p)}. Therefore, (s, - 7)(x) = m(x) = T(x) = (T-5p) ().
Hence, it is enough to show that (s, - 7)(x) = (7-sp)(x) for every point x from
{1,2,dw2,p, 7} (p)}-
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Case x = 1. Note, that

(a) if 1(2) = 2, then the path of 2 in 77 over D ends on the mth position. So, ¢(2) = 1,
from which it follows that 7(1) = 1;

o (1/2/d)7172) (1,2/‘1;7171)
A~

(b) if 7(2) = p, then o(1) = dy—». Thenwe havel - d,, » = dy 2 —>1= 12,
which means that 7(1) = 2;

(c)if (2) # 2, p, then (2) = 7(1).

As the result, we have the following table.

Sp'n T'Sp
Sp T T Sp
—~ = —~ = —~ —~
m(2) =2 1—-2=2->2 1-1=1—-2
S S
n(2)=p 1-2=2—=p 1-2=2-=p
Sp T T Sp
—~ -
n2)#2,p|1—=2=2—=mn(2)|1—=n2) = n(2) > n(2)

Case x = 2. Note, that
(a)if t(p) # p, then 7(2) = 71(p), based on construction T from 7;
[ (1/2&172) (1,2,61,,,,1)

—~ =
(b)if n(p) = p, theno(2) =dyy—2. S02 - dy_2 = dy_» - 1= 1— 2, which means
that 7(2) = 2.
As the result, we have the following table.

Sp'ﬂ T'Sp
n(p) #p|2—=p=p—>n(p) |2—nlp) = n(p) = n(p)
s T s
/—’p\—\ ,_/L —~ /—’p\—\
(p) =p 2p=>p—p 2p=>p—2

Case x = d,;—p. Note, that 7(d,,—2) = dyy = dy = T(dy—2). As the result, we have the
following table.

Sp'n T'Sp
Sp 7T T Sp

N\

——
Adpo —dy o=dy o —dy |dyo—dy=dy— do

Case x = p. In this case, we have the following table.

Sp T T Sp
p—=>1=1=1|p—=>p=p—1
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Case x = 7w 1(p). Letd = 7t~ !(p). Note, that cases d = 2 or d = p are already considered.
o (1,2,dp-2) (12/dp—1)
A~

e

Also, d doesn’t equal 1. Then for d in T we haved — d,;,_» = dy—2» -1 = 1—2 . As the
result, we have the following table.

d=n1l(p,d#2,p|ld—d=d—p|d—=2=2—=p

3) Letd, # p,d;;—1 = p and d,,,—» # p. Construct T as follows

du—o, ifd;=rp,
T=[dm-at1,. .. tmals, where t;=¢ " ’ l p
dj, otherwise.

Leto = [dmfz, t,..., tm,3]5. Note, that T =0 - [tm,2]5 =0- [dmfz]s.

From the construction of 7 it follows that for every point x, x ¢ {1,2,d,,_», p}, we have
m(x) & {1,2,dyu—2, p}. Therefore, (s, - 77)(x) = m(x) = 7(x) = (7 -5p)(x). Hence, it is enough
to show that (s, - 71)(x) = (7 -sp)(x) for every point x from {1,2,d,,_, p}.

Case x = 1. Note, that

(a) if 7(2) = 2, then in the decomposition of T: 1 Lo 2 th = .. S dys xm-g

Ao m=2, 1, where x is the last position of p, before m — 1. So, 7(2) = 1;

(b) if (2) = p, then the last point of 2 was the (m — 1)th position in the decomposi-

1,2,d
o (12,d2)
tion D. As the result, 0(1) = 1. So,1 —+ 1 = 1 — 2, which means that 7(1) = 2;

o (1L,2,dm—2)
() if 71(2) # p, then (1) = 7(2) # dy_s. So,1 — 7(2) = 7(2) — 71(2), which means
that 7(1) = 7(2).
As the result, we have the following table.

Sp T T Sp
~ = —~ = —~ =
m(2) =2 1—-2=2->2 1-1=1—-2
S S
n(2)=p 1-2=2—=p 1-2=2-=p
Sp T T Sp
—~ = I
n2)#2,p|1—=2=2—=mn(2)|1—=n2) = n(2) > n(2)

Case x = 2. Note, that

(a) if T(p) # p, then 0(2) = 7(p), because of 2 L dyy_»in 7. As the result, we have that
o (1/2rdm72)

2> n(p) = n(p) — m(p), which means that 7(2) = 7(p);

(b) if T(p) = p, then the last point in the path of action of 2 over the decomposition D

o (Lzldmfz)
will be the (m — 1)th position. As the result, 0(2) = 1. So,2 -1 = 1 — 2, which means

that 7(2) = 2.



556 Olshevskyi M.S.

As the result, we have the following table.

Sp'ﬂ T'Sp

Sp T T Sp

Ve

wp)#p|2—=p=p—nlp) |2 n(p) = nlp) - n(p)

Sp T T Sp
—~ = — —~ = — =
(p)=p 2= p=>p—p 252=2—>p

Case x = d,,_». Note, that T(d,,—2) = dp. As the result, we have the following table.

SP‘TC T‘SP

Sp 7T T Sp

- ——
dm—Z — dm_g = dm_g — dm dm—Z — dz = dz — dz

Case x = p. Note, that T(p) = p, because there are no point p in the decomposition of 7. As
the result, we have the following table.

Sp'n T'Sp
Sp 7T T Sp

—~ N A
p—=1=1=1|p—=>p=p—1

Case x = m1(p). Letd = 7w !(p). Note, that cases d = 2 or d = p are already considered.
o (1,2,dm,2)

—~ —~ =
Also, d does not equal to 1. Then for 4 in T we have d -+ 1 = 1 — 2 , which means that
T(d) = 2. As the result, we have the following table.

d=n1(p),d#2,p|ld—d=d—p|d—=2=2—=p

Note, that in this case, the length of T over S equals to m — 1.
4) Letdy # p,dy1# p,dm_o = pand 71 (p) # 2. Letd = 7~ (p). Note, that in this case
d,,—2 is unique representation of point p in D. Construct T as follows
T = [d/ dl/ dZ/ ceey dm,:)), dZ/ dm—l]S/

where d = 7~ 1(p).

From the construction of 7 it follows that for every point x, x & {1,2,d,,_» = p,d} we have
m(x) ¢ {1,2,du—2 = p,d}. Therefore, (s, - )(x) = m(x) = 7(x) = (7 -5p)(x). Hence, it is
enough to show that (s, - 77)(x) = (7 -s,)(x) for every point x from {1,2,d,,_» = p,d}.

Case x = 1. Note, that
(a)if r(2) =2, then (1) =1;
(b) if 1(2) # 2, then 7(1) = 7(2).

As the result, we have the following table.

Sp'ﬂ T'Sp
5p 7T T Sp
—~ —~= —~ —~
n2)=2| 1=-2=2—=2 1-1=1—-2
Sp T T Sp
/\ . 7\
n(2)#2|1=2=2->mn2)|1—-n2)=n2) = n(2)
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Case x = 2. Note, that 7(2) = [dy,...,dpy—3,d2,dy,—2]s(d) = dy. As the result, we have the
following table.

Sp'ﬂ T'Sp

S S
P SR S R G Gy
2= p=>p—dy|2—=dy=>dy —dy

Case x = p. In this case we have 7(p) = p. As the result, we obtain the following table.

g g
/—’L /—’T; ._/L /—’L
p—=>1=1=1|p—=>p=p—1

Case x = d. Note, that the case d = p is already considered. So, in the decomposition of T,

we have the path d L1523 0,220 4, 5150 5o, T(d) = 2. As the result, we have
the following table.

5)Letdy # p, dy_1 = duo =pand 71 (p) # 2. Letd = 7~ 1(p). Note, that in this case,
dyu—2,dy,—1 are unique represented of the point p in D. Construct T as follows

T = [d/ dlleI cee ,dm,:)), dZ/ d2]5'

From the construction of 7 it follows that for every point x, x ¢ {1,2,d,,_» = p,d}, we have
m(x) € {1,2,du—2 = p,d}. Therefore, (s, - 7)(x) = m(x) = 7(x) = (7 -5p)(x). Hence, it is
enough to show that (s, - 77)(x) = (7 -s,)(x) for every point x from {1,2,d,,_» = p,d}.

Case x = 1. Note, that
(a)if m(2) =2, then 7(1) = 1;
(b) if 1(2) # 2, then 7(1) = 7(2).

As the result, we have the following table.

Sp'ﬂ T'Sp
Sp 7T T Sp
—~ —~= —~ —~
n2)=2| 1-2=2-=2 1-1=1—-2
Sp T T Sp
/\ N 7\
n(2)#2|1—-2=2->mn2)|1—-n2)=n2) > n(2)

Case x = 2. Note, that T7(2) = [dy,...,dyu_3,d2,d2]s(d) = dp. As the result, we have the
following table.

S S
2o p=2p—-dy|2—=dy=dy—dy
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Case x = p. In this case T(p) = p. As the result, we have the following table.

SP'TC T'Sp

Sp T T Sp
—~ = A~ A —~ =
p—=1=1=1|p—=>p=p—1

Case x = d. Note, that the case d = p is already considered. So, in the decomposition of 7,

we have the path d L1223 d» Sm_ d» moloqgmoy So, T(d) = 2. As the result, we have
the following table.

Sp'n T'Sp

6) Letdy # p, dp_1 # p, dw_o = p and 7 (p) = 2. Note, that in this case d,,_» is the
unique representation of the point p in D. Construct T as follows

T= [dlleI cee rdm—3/ dZ/ dmfl]S'

From the construction of 7 it follows that for every point x, x € {1,2,d,,_» = p}, we have
m(x) ¢ {1,2,p}. Therefore, (s, - m)(x) = m(x) = T(x) = (7 -5sp)(x). Hence, it is enough to
show that (s, - r)(x) = (7 - 5p)(x) for every point x from {1,2, p}.

Case x = 1. Note, that in decomposition of T there is the next path of the point 1, namely

15234, i d 221 224 2 50, T(1) = 2. As the result, we have the following table.

S S
/—/pH /—/L f—’TH f—/p\\
122=2—-p|1=2=2—=p

Case x = 2. Based on the fact that d,,,_; is the unique representation of p in D, we have that
t(p) = dp. In the same time, 71(2) = p = d,,—p, which means that 7(2) = d,. As the result,
we have the following table.

Sp'ﬂ T'Sp
Sp T T Sp

—~ —— ——
2= p=>p—dy|2—=dy=>dy —dy

Case x = p. Note, that 7(p) = p. As the result, we have the following table.

SP'TC T'Sp
/—iL /—’T[R __/\_.T /—iL
p—=1=1=1|p—=>p=p—1

7) Letds # p,dy_1 = dy_o = pand w!(p) = 2. Note that in this case, d,,_»,d,,_1 are the
unique representations of p in D. Construct T as follows

T=[dy,dy, ..., dy_3,dy, ds]s.

From the construction of 7 it follows that for every point x, x ¢ {1,2,d,,_» = p}, we have
m(x) € {1,2,p}. Therefore, (s, - 7)(x) = m(x) = T(x) = (7 -5sp)(x). Hence, it is enough to
show that (s, - m)(x) = (7 - sp)(x) for every point x from {1,2, p}.



Metric properties of Cayley graphs of alternating groups 559

Case x = 1. Note, that there is the next path of point 1 in the decomposition of 7, namely

1522 4,202 g, 21 "L ) 5o, T(1) = 2. As the result, we have the following table.

SP'TC T'Sp

S S
/—/&-\ ’-/7; /—/T\-\ z—’pR
1-2=2—-p|1=2=2—=p

Case x = 2. Based on the fact that d,,,_, is the unique representation of p in D, we have that
7(p) = dp. In the same time, 7(2) = p = d,;—1, which means that 7(2) = d,. As the result,
we have the following table.

S S
2o p=>p—dy|2—=dy=>dy = dy

Case x = p. Note, that 7(p) = p. As the result, we have the following table.

Sp T T Sp
—~ = N —— —~ =
p—=>1=1=1|p—=>p=p—1

The proof of lemma is completed. O

Lemma 5. Let 7t be a permutation with decomposition D = (dy,dy,...,dy), m > 3,1 is fixed
in 7t over D with trivial path and 7t~!(dy) # 2. Then for every natural number p, p > 3, there
exists T € A such thats, - 71 = T-s, and T has a decomposition (t1,...,t), wherel < m and

p ¢ {tl,...,tl}.

Proof. Note, that the case, when there is no such k € 1,m that d; = p, is already proved in
Lemma 3, and the case, when 7w~ !(d,;,) = d,,_» withno such k € 1,m — 3 that dy = d,,_5, is
already proved in Lemma 4.

The basis. Letd = 7t~ 1(dy, ). Note, that due to assumptions of the lemma, the decomposition
of the permutation 7t requires: 2 positions for dy, d,;; at least 2 positions for non-trivial path of
the point d,,; 1 position for d,,_1. The last means that m > 5.

We will prove the basis for cases m = 5, 6.

1) If m = 5, then d = 2 and there exists the following decomposition of 71, namely
= [dq,d,d3,dy,ds)s, where di = d3, dy = dy, ds # dp and ds # d4. Based on Lemma
3, it is enough to consider three cases depending on p from {dy,d,,ds}. In case p = d; let
T = [dy,dy, dy]s. It follows that sy - 71 = T -s4. Incase p = dp let T = [d4]s. It follows that
S4, " 7T = T -54,. Incase p = ds let T = [dp, dy]s. It follows that s, - 71 = T - 54,. In each case we
used direct calculations.

2) If m = 6, then d can be equal to 2, or not. We consider the next three cases: d = 2 and
d3 #d5;d:2andd3 :d5;d 752.

Let d = 2. Then we have the next decomposition of 71, namely 7w = [dq,dy, d3, ds, ds, dgs,
where d; = dy, d» = dg and d3, ds are different from dq, d>.

Let d3 # ds. Based on Lemma 3 it is enough to consider four cases depending on p from
{d1,d>,d3,ds}. In case p = dy let T = [d3, d, ds]s. It follows that sy, - 77 = T - s4,. In case p = d»
let T = [dy,d3,d3,ds)s. It follows that sz, - 1 = T -s4,. Incase p = ds let T = [ds5,dp, dy,dq]s. Tt
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follows thats;, - 1 = T-s4,. Incase p = ds let T = [dy, dy, d3,d1]s. It follows that sy, - 1 = T - s4,.
In each case we used direct calculations.

Let d3 = ds. Note, that 71(d3) = d3. Based on Lemma 3 it is enough to consider two cases
depending on p from {dy,d>}. Incase p = d; let T = [dy,dy, d1]s. It follows that sy, - 71 = T -s4,.
In case p = dp let T = [dq]s. It follows that sz, - T = T-s4,. In each case we used direct
calculations.

Let d # 2. Then there is the next decomposition of 77, namely 7w = [dq,dp, d3,d4, ds, dg)s,
where d3 = d4, dy = dg and points dq,d>, d3,ds are pairwise different. From Proposition 1
we have T = [dl,dz, ds,ds,ds, dz]s = [dz, dr,dq,dq,ds, ds, ds, dz]s = [dz, dr,ds, dq, ds, dz]s. State-
ment is directly implied from Lemma 4.

Induction step: case m under assumption that for | < m the statement holds. Let d = 7= 1(dy,).
Consider cases of d.

Let d = 2. Consider different cases.

1) Letd, = d;, = p. There are possible the next two options. If d; = p, then by Proposition 1
we have s, - 71 = [pls - [p,p,d3,...,du-1,pls = [d3,...,dm-1]s - [pls = T-5p. If dy # p, then
based on Proposition 1 we obtain

SP CTT = [p]S : [dll p/d3r~~'/d1’i17lrp]s = [dlrdlrprprprd3r'~~rdl’lflfll p]S
= [dy,dv,d3,...,dyu—1]s - [pls = T - sp.

2) Letdy # p,dm # p. Denote 7t(p) by d. There are possible the following three options.

i)Letd =2,d,,_1 = pand there isno t € 1,m — 2 such that p = d;. Construct T as follows
T= [dl,dz, .. .,dm_z]s.

From the construction of 7 it follows that for every point x, x ¢ {1,2,p, pfl}, we have
nt(x) € {1,2,p,p'}. Therefore, (s, - 7)(x) = 7(x) = T(x) = (T -s,)(x). Hence, it is enough
to show that (s, - 7)(x) = (7 - s,)(x) for every point x from {1,2,p, p~'}.

Case x = 1. Note, that d; is the unique point in the decomposition of 7. So, (1) = dp. As
the result, we have the following table.

Sp T T Sp

—~ —— | A~ ——
122=2—>d,|1—>dy=dy — dy

Case x = 2. From 71(2) = d,, it follows that T(2) = 1. As the result, we have the following
table.

Sp‘n N‘Sp
Sp Yy T Sp

— — | A~
2—op=p—2|2=1=1—=2

Case x = p. In this case, we have the following table.

Sp T T Sp
—~ = N —~ =
p—=>1=1=1|p—=>p=p—1
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Case x = p~1. From 7t(p~!) = p, d;y_1 = p and d,, = p it follows that T(p~!) = 2. As the
result, we have the following table.

Sp'n TC'SP

Sp T T Sp
—_——— —— | —/—

1 1 1 1 57
p T —=p =p —plp —2=2-=p

if) Let d = 2 and d,,_1 # p. That means that there exists the path of p over D such that

p Ly Lo M e %dm,l M7 1 ™ 5 The last means that ¢ = [y, ..., dmu_1]s

satisfies conditions of the lemma. Based on induction assumption, the decomposition D can
be transformed into some decomposition Y = (y1,...,yy) such thatu < m, y,_1 = p and there
isnot € 1,u — 2 such that p = y;. Based on previous case, we can obtain 7.

iif) Let d # 2. Note, that based on the lemma assumptions, we have the next path of

ty,m—2 m—2, m—1

the point 2 over D, namely 2 1 dq % . dpn —5 1 2= 2 5 4, for some
natural numbers fq,t,. Suppose that t; # m —2 and t, = 1. Then the permutation ¢ =
[dt,41, .- ., dm—2] satisfies conditions of the lemma. Based on induction assumption, the de-
composition D can be transformed into some decomposition Y = (v, ..., yu) such thatu < m,
Y1 = y,_2 and there isno t € 2, u — 3 such that y; = y:.

So, without loosing of generality, we can assume that {; = m —2 and t; = 1. Consider
different cases of d,;,_1.

Case d,,—1 = p. Construct T as follows

dl, if dz' = p,
T=1It;,...,tm_2]s, where t; {di, otherwise.

From the construction of 7 it follows that for every point x, x ¢ {1,2,p, p‘l}, we have
n(x) ¢ {1,2,p,p'}. Therefore, (s, - 7)(x) = 7m(x) = t(x) = (7 -s,)(x). Hence, it is enough
to show that (s, - 1) (x) = (T - sp)(x) for every point x from {1,2,p, p~'}.

Subcase x = 1. Note, that d, is the unique point in the decomposition of 7. So, T(1) = ds.
As the result, we have the following table.

S S
f—/p\\ /—/L z—j% /—’L
122=2—>d,|1—>dy=dy— dy

Subcase x = 2. From 7t(p) = d and substitution p by d; it follows that there is the path of

the point 2 in 7, namely 2 L dy EEA dy — ... — d, where x is the first position of p in 7. As
the result, we have the following table.

S
2—-p=>p—d|2—=d=>d—d

Subcase x = p. In this case, we have the following table.

SP'TC TC'Sp
/—iL /—’T[R __/\_.T /—iL
p—=1=1=1|p—=>p=p—1
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Subcase x = p~!. From (p~') = p, d,,_1 = p and d, = p it follows that T(p~!) = 2. As
the result, we have the following table.

Sp T T Sp
—N— —_—N— | ——

1 1 1 1 5
p—=p =p —plp —2=2-=p

Case d;;, # p. Construct T as follows.

dl/ lf di = p,

T=1[t, ., tm—2,tm_1]s, where t; {di, otherwise.
From the construction of T it follows that for every point x, x ¢ {1,2,p,p" '}, we have
n(x) ¢ {1,2,p,p'}. Therefore, (s, - 7)(x) = 7m(x) = t(x) = (7 -s,)(x). Hence, it is enough
to show that (s, - 1) (x) = (T - sp)(x) for every point x from {1,2,p, p~'}.
Subcase x = 1. Note, that d; is the unique point in the decomposition of 7. So, T(1) = d;.
As the result, we have the following table.

Sp T T Sp

—~ —— | A~ ——
122=2—=d,|1—>dy=dy — dy

Subcase x = 2. From 7t(p) = d and substitution p by d; implies that there is the path of the

point 1in 7, namely 1 EN dy L d =59, where x is the first position of p in 7r. As the result,
we have the following table.

S
;L /-/7{-\ f—};\ /—/p\-\
2—p=>p—d|2—=d=>d—d

Subcase x = p. In this case, we have the following table.

SP'TC TC'Sp

Sp T T Sp
—~ = A~ A —~ =
p—=1=1=1|p—=>p=p—1

Subcase x = p~1. From 7t(p~!) = p it follows that there is the path of the point p~! in T,

namely p_l — .S d % dy_» m-z g omol 2, where x is the last position of p in D. As
the result, we have the following table.

Sp T T
—_—~— —— | —

) 1 1 1 b
p = p T =>p o —plp —2=2=p

Sp

Let d # 2. Then there exists the natural numbers x, y and path of d = d, in 7w over D such

+1 +2 -2 —_ _
thatd % 1 25 2 5 dyyo = ... s dy_» mo2 o mol oo om dy;. The last means that

Tr(d, 7,D) = (y,t1,71,- .., tu, ru, m) for some natural numbers t1,7, ..., t,, 1, € y+2,m—2,
u > 0. Let mp = [dy—1,dy,...,dr,,,] for every k € 1,u. Note, that 7, satisfies assumption
of the lemma and the length of its decomposition is less than m. Then, based on induction
assumption, for every natural p, p > 3, we have s, - 71 = T - 5 for some T, which length of
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the decomposition is less or equal to ry — t; +2. Letv = [dy,...,d, 1]s and p = [d;y_1, dm]s.
Thenm=v-s;-my - ..- Ty - U=V -T4-Sg-T2 oo Ty - Y=1..=V-T] .. Ty-Sq"H

Note, that transformation from 7, to T does not introduce points dy, d;;, because they
are unique represented in D and they are not represented in 7y, k € 1,u; there are
no d in the decomposition Y of 71, which is the concatenation of considered decompositions
V, T, e, T, d]s, w, T(d) = dp.

As the result, from Lemma 4 it follows the proof. O

2.2 Multiplication from the right

Let T € A be a permutation with the decomposition D = (dy,...,dy), m > 3, over S. Note,
that if the point 2 is fixed in 7t and has trivial path in 77 over D, then, based on Proposition 2,

dydy _
the path of the point 2 over D is the following 2 RN d =22 d,,_4 molog oy,

Lemma 6. Let T € A be some permutation with the decomposition D = (dy,dy,...,dm),
m > 3,2 is fixed in 7t over D with trivial path, d = 7(dy). Then for every p & {dy,...,dm},
p > 3, we have 7 - s, = s, - T, where

o d)s, i d £,
(do ... dyr,duls,  if d=1.

Proof. Leto = [dy, ..., dm]s. Consider cases d # 1 and d = 1 independently.

Let d # 1. From the construction of 7 it follows that for every point x, x ¢ {1,2,p,d1},
we have 77(x) € {1,2,p,d1}. Therefore, (77 -s,)(x) = m(x) = t(x) = (s - T)(x). Hence, it is
enough to show that (77 -s,)(x) = (sp - T)(x) for every point x from {1,2, p,d; }.

Case x = 1. Note, that 77(1) # 2. So, 7t(1) is some number from {d,ds, ..., d;, } or equal 1.
If 77(1) # 1, then 7t(1) = 0(2). So, T(2) = 7(1). If 7(1) =1, then ¢(2) = 1. So, T(2) = 2.

As the result, we have the following table.

TC'Sp Sp'T
T Sp Sp T
/—/\—\ /—M\
nl)#1|1—->n(1)=n(1) »>n=(1) |1 =>2=2—=mr(1)
s s
f—/n\\ /—/p\-\ /—/L\ z—’TR
n(l) =1 1-1=1—-2 1-2=2->2

Case x = 2. In this case, we have the following table.

T Sp Sp T
—~= —~ =~ | — —
222=2=p|2=p=>p—p

Case x = p. Note, thato(1) = 7t(d1) = d. So, T(1) = 1. As the result, we have the following
table.

7T'Sp SP'T

T Sp Sp T
PN, — |~ ~ =
p—p=p—>1|p—=>1=1-=1
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Case x = di. Note, that d; has unique representation in the decomposition of T on the
(m — 2)th position. So, T(d1) = d. As the result, we have the following table.

7T'Sp Sp'T

T Sp Sp T

—— — | — ——
dl—)d:>d—)d d1—>d1:>d1—>d

Let d = 1. From the construction of 7 it follows that for every point x, x ¢ {1,2,p,d1},
we have 7(x) € {1,2,p,d1}. Therefore, (77 -s,)(x) = m(x) = T(x) = (sp - T)(x). Hence, it is
enough to show that (77 -s,)(x) = (sp - T)(x) for every point x from {1,2, p,d; }.

Case x = 1. Note, that (1) # 1 and 7(2) = 7(1). As the result, we have the following
table.

T Sp Sp T
/—/H /—/%
1-n(1l)=n1)—-n(1) |1=-2=2— (1)

Case x = 2. In this case, we have the following table.

T Sp Sp .
2=2=2=p|2=p=>p—p

Case x = p. Note, that T(1) = 71(d;) = 1. As the result, we have the following table.

s Sp Sp T
PN — |~ ~ =
p—p=p—>1|p=>1=1—=1

The proof is complete. O

Lemma 7. Let T € A be a permutation with decomposition D = (dy,...,dy), m > 3,2 is fixed
point in 7t over D with trivial path and 7t(dy) = ds, which isnotin (dy, ...,dy). Then for every
natural number p, p > 3, there exists T € A such that 7t - s, = s, - T and T has a decomposition
(t1,...,t;), wherel <mandp & {t;,...,t;}.

Proof. Note, thatif p & {dy,...,dn}, then the statement holds by Lemma 6.
Letp € {dy,...,dm}. Consider seven different cases:

Ddi=p;

2)dy # p, da,d3 # p;

3)dy # p,dy, = pand d3 # p;

4 diy # p,dp # p,ds =pand n(p) #1;
5)dy # p,dy,ds = pand 7t(p) # 1;
6)di # p,dy # p,d3 = pand 7(p) = 1;
7)d1 # p,dp,d3 = pand (p) = 1.
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1) Letd; = d,,,—1 = p. Consider two cases.
(a) If dyy # p, then based on Proposition 1 we have

7T'Sp = [pleI---/dmlep/dm]S : [P]S - [p]s * [dz,...,dmledm,dm’p’p’p]s
= [P]S ’ [dZI---rdm—Zrdm/dm]S =5p T,

where the length of the decomposition of 7 is less than the length of D at least by 1.
(b) If d,, = p, then based on Proposition 1 we have

T Sp - [p’dz" . 'rdm—le/p]S ' [P]S = [P]S ' [dZI- . .,dm—le/p/p]S
= [P]S ’ [dZI' . ‘/deZ]S =5p-T,
where the length of the decomposition of 7 is less than the length of D at least by 3.

2) Letd, # p,ds # p. Construct 7 as follows

dg, if dz' = p,

T =1ty t3,..., t_1,tm,ds]ls, where d; = .
d;, otherwise.

Leto= [ty, ..., tm]s. From the construction of 7 it follows that for every pointx, x ¢ {1,2, p,ds},
we have 7(x) € {1,2,p,ds}. Therefore, (71 -s,)(x) = m(x) = 7(x) = (sp - T)(x). Hence, it is
enough to show that (77 -s,)(x) = (s, - T)(x) for every point x from {1,2, p,ds}.

Case x = 1. Note, that:

o (1/2rd3)
(@)if (1) =1, then2 — 1 = 1 — 2, which means that 7(2) = 2;
o (1,2,d3)

—N ——
(b)if (1) = p, then 2 — d3 = d3 — 1, which means that 7(2) = 1;

(c)if m(1) #1,7(1) # p, then 7(2) = 7(1).
As the result, we have the following table.

o 5p 5p -

—~= —~ = —~ A~

n(l) =1 1-1=1—-2 1-2=2-=2

s s

n(l)=p l-p=p—1 1-2=2-1
T Sp Sp T

/—/H /—/%

nl)#Lp|1—=-nmn(1)=r(1) > n(l) |1 =>2=2— (1)

Case x = 2. Note, that 7(p) = p. As the result, we have the following table.

7T'Sp Sp'T

g 5
2—=2=2—=p|1=2=2—=p

Case x = p. Note, that:
g (1/21d3)
—~ —~
(@) if r(p) = 1, then (1) = [t2,...,tm]s = 1,501 -1 = 1 — 2, which means that
(1) =2 ., (12,d5)
—— ——
(b) if T(p) = p, then 1 — d3 = d3 — 1, which means that 7(1) = 1;

(o if t(p) #1,(p) # p, then (1) = 7(p), based on the construction of .
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As the result, we have the following table.
T Sp Sp T
—~ A~ —~ —~
n(p) =1 p—=1=1-2 p—=1=1-2
S S
(p) =vp p—p=p—1 p—>1=1-1
T Sp Sp T
la o N— —N—
np) #Lp|p—=nlp)=nlp) = nlp) |[p=1=1=7(p)
Case x = ds. Note, that:
o (1,2,d3)
(a)if t(d3) =1, thends — 1 = 1 — 2, which means that 7(d3) = 2;
g (1/21d3)
(b) if t(d3) = p, then d3 — d3 = d3 — 1, which means that 7(d3) = 1;
(c)if t(d3) # 1, (d3) # p, then t(d3) = 7t(ds).
As the result, we have the following table.
T Sp Sp T
—— —~ —— ——
n(ds) =1 A3 —>1=1—2 dz = d3 = d3 — 2
f—/L /—iL /—jL\ f—j\ﬂ
7T(d3):p d3—)p$p—)1 d3—>d3$d3—)1
T r Sp Sp T
7'((613) 7é 1,p d3 — 7T(d3) = 7T(d3) — 7'((613) d3 — d3 = d3 — 7'[([)13)

3) Letd, = pand d3 #

T=[t3,...,tm_1,tm, d3]s, where t; = {

Leto= [t3,...

p. Construct T as follows

ds,
d;,

if di =P,

otherwise.

, tm]s. From the construction of 7 it follows that for every pointx, x ¢{1,2,p,ds},
we have m(x) € {1,2,p,ds}. Therefore, (71 -s,)(x) = m(x) = 7(x) = (sp - T)(x). Hence, it is

enough to show that (77 -s,)(x) = (sp - T)(x) for every point x from {1,2, p,ds}.

Case x = 1. Note, that:

(@) if r(1) =1, theno(2) = (1) =1, s0, 7(2) = [d3]s(1) = 2;
(b)if (1) = p, then 0(2) = d3, so, T(2) = [d3]s(d3) = 1,

(c)if m(1) #1,7(1) # p, then 7(2) = 7(1).
As the result, we have the following table.

7T'Sp SP'T
p 5p 5p T
—~ = —~ = —~ —~ =
n(l) =1 1-1=1—-2 1-2=2-=2
s s
n(l)=p l-p=p—1 1-2=2-1
7T Sp Sp T
nl)#Lp|1—=-nm(1)=n1) > n(l) |1—=>2=2— (1)
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Case x = 2. Note, that 7(p) = p. As the result, we have the following table.

7T'Sp Sp'T

Case x = p. Note, that: ; (12.d5)
~ = ~ =
(@) if 7(p) = 1, then 0(1) = nt(dp) = n(p) = 1,s01 - 1 = 1 — 2, which means that

=2 ¢ (1243)

—— ——
(b)if (p) = p, then o (1) = d3,s0 1 — d3 = d3 — 1, which means that 7(1) = 1;
(c)if m(p) # 1, t(p) # p, then T(1) = 7t(p), based on the construction of 7.

As the result, we have the following table.

7T Sp Sp T
T Sp Sp T
—~ A~ — —~
n(p) =1 p—1=1-=2 p—1=1-=2
T Sp Sp T
P, —~ —~ —~
(p)=p p—op=p—1 p—1=1-=>1
ZE SIK Sp T
np) #Lp|p—=nlp) = nlp) = nlp) |[p=1=1—= n(p)

Case x = ds. Note, that:

1,2,d

(1,2,d3)

(a)if r(dz) =1, thends — 1 = 1 — 2, which means that 7(d3) = 2;
o (1,2,d3)

—— ——
(b) if t(d3) = p, then d3 — d3 = d3 — 1, which means that 7(d3) = 1;
(c)if 7T(d3) #1, 7T(d3) # p, then T(dg) = 7T(d3).

As the result, we have the following table.

7T'Sp SP'T
T Sp Sp T
—— A~ —— ——
7'[([7[3):1 d3—>1$1—)2 d3—>d3$d3—)2
K_L /—iL /—jL\ f—]\ﬂ
n(d3) =p d3s —>p=p—1 d3 = d3 =ds =1
7T r Sp Sp T
n(ds) #1,p | ds — n(d3) = 7(d3) = 7(ds) | d3 — d3 = d3 — 71(d3)

4)Letd, # p,ds = pand d = 7t(p) # 1. Note, that d3 is the unique representation of p in
D. Construct 7 as follows T = [dp, dy,dy, ds, ..., dy—1,dm, d]s.

that for every point x, x & {1,2, p,d1 }, we have r(x) ¢ {1,2,p,d1}. Therefore, (77-s,)(x) =
m(x) = 7(x) = (sp - T)(x). Hence, it is enough to show that (77 -5,)(x) = (sp - T)(x) for every
point x from {1,2, p,d; }.

Case x = 1. Note, that:

(@)if r(1) =1, theno(2) = (1) =1, s0, T(2) = [d]|s(1) = 2;
o (1,2,d)

(b)if 71(1) # 1, then 2 — 7(1) = 7(1) — 7(1), which means that 7(2) = 7(1).
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15224 222

As the result, we have the following table.

7T Sp Sp T
—~ = —~ —~ = —~ =
n(l) =1 1-1=1—-2 1=-2=2->2
T Sp Sp T
I N e N
1) #1|1->n(1)=n(1) - (1) |1=>2=2—mr(1)
Case x = 2. Note, that 7(p) = p. As the result, we have the following table.
7T - Sp Sp T
T Sp Sp T
—~ =

—~= —~ =
2—=2=2—=p

—~ =
1-2=2-—p

Case x = p. Note, that there is the path of the point 1 over the decomposition of 7, namely

2,m—2

Ayt 231 225 2 ™ 4 which means that T(1) = d. As the result, we

have the following table.

7‘(‘5}9

T Sp

—~ —~ =
p—d=d—d

Sp T

—~ —~
p—1=1—=d

Case x = dy. Note, that in this case 0 (d1) = 7t(d3) = d, which means that 7(d; ) = [d]|s(d) =1.

As the result, we have the following table.

n'Sp

Sp'T

S
/—/n\—\ z—’pR
d—-p=p—1

—_—— ——
dl—)d1:>d1—>1

Sp T

5)Letd, = p,d3 = pand d = 7(p) # 1. Note, that in this case d, d3 are unique represen-
tations of p in D. Construct T as follows

T = [dl,dl,d4,d5,. . -/dm—lzdm;d]s-

Let 0 = [d1,d4,d5,...,dy—1,dm|s. From the construction of 7 it follows that for every point
x, x & {1,2,p,d1}, we have rr(x) & {1,2,p,d1}. Therefore, (77-5,)(x) = m(x) = 7(x) =
(sp - T)(x). Hence, it is enough to show that (77 - s,)(x) = (s, - T)(x) for every point x from
{1,2,p,d1}.
Case x = 1. Note, that:
(@)if 7(1) =1, theno(2) = (1) =1, s0, T(2) = [d]s(1) = 2;
o (1,2,4)
(b) if 71(1) # 1, then 2 — 7(1) = 7(1) — 7(1), which means that 7(2) = 7(1).
As the result, we have the following table.

n'Sp

Sp'T

T Sp

—~ —~
1-1=1-2

T Sp

Sp T

A~ —~
1—-2=2—-2

Sp T

1—=n(1)=n(1) — (1)

A~ —
1—-2=2—-mn(1)
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Case x = 2. Note, that 7(p) = p. As the result, we have the following table.

b8 Sp Sp T

A~ ~ | —~ =
222=2—=p|1=2=2—=p

Case x = p. Note, that there is the path of the point 1 over the decomposition of T, namely

1522 dq Zm-3 A1 me2 g mol o, om d, which means that 7(1) = d. As the result, we

have the following table.

T SP Sp T

—~N —~ |~ —~
p—=d=d—=d|p—>1=1-=4d

Case x = dq. Note, that in this case (d1) = 7t(dp) = d, which means that 7(d; ) = [d]s(d) =1.
As the result, we have the following table.

N‘SP SP‘T

g 5
/—/71—\ z—’pR f—/p\ﬁ /—’T\—\
dh—=p=p—>1|d —>d=d —1

6) Letdy # p, d3 = p and 7t(p) = 1. Note, that in this case d3 is the unique representation
of pin D. Construct 7 as follows

T= [dZI dl/ d4/ d5/ v /dm—lzdm]s-

From the construction of 7 it follows that for every point x, x & {1,2, p,d; }, we have 7t(x) ¢
{1,2,p,d1}. Therefore, (71 -5,)(x) = m(x) = 7(x) = (sp - T)(x). Hence, it is enough to show
that (77 -s,)(x) = (sp - T)(x) for every point x from {1,2, p,d; }.

Case x = 1. Note, that 7(2) = 7r(1). As the result, we have the following table.

7T'Sp SP'T
T Sp Sp T
/—/H /—/%
1-n(1l)=n1)—-n(1) |1=-2=2— (1)

Case x = 2. Note, that 7(p) = p. As the result, we have the following table.

7T'Sp Sp'T

g 5
2—=2=2—=p|1=2=2—=p

Case x = p. Note, that there is the path of the point 1 over the decomposition of 7, namely

1523 dq 22 1 Ny BN 2, which means that 7(1) = 2.

As the result, we have the following table.

7T'Sp Sp'T
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Case x = dy. Note, that in this case 7(d1) = 7(p) = 1. As the result, we have the following
table.

TC'SP Sp'T
T Sp Sp T
—— —N | — ——
d1—>p:>p—>1 dl—)d1:>d1—>1

7) Letdy = p,ds = p and 7t(p) = 1. Note, that in this case dy, d3 are unique representations
of pin D. Construct 7 as follows

T = [dl,dl,d4,d5,. . -/dm—lrdm]s-

From the construction of 7 it follows that for every point x, x & {1,2, p,d; }, we have 7t(x) ¢
{1,2,p,d1}. Therefore, (77 -s,)(x) = m(x) = T(x) = (sp - T)(x). Hence, it is enough to show
that (77 -s,)(x) = (sp - T)(x) for every point x from {1,2, p,d; }.

Case x = 1. Note, that 7(2) = 7t(1). As the result, we have the following table.

T Sp Sp T

A

1—-n(1)=n1)—>n(1) |1—-2=2— (1)

Case x = 2. Note, that 7(p) = p. As the result, we have the following table.

7T'Sp Sp'T
T Sp Sp T

—~= —~ | —~
2—=2=2—=2p|1=2=2—=p

Case x = p. Note, that there is the path of the point 1 over the decomposition of 7, namely

1523 dq Zm-3 A1 m=2 g ml 2, which means that 7(1) = 2. As the result, we have the

following table.

/-/T[\-\ f—ip\\/-ii-\ /—/T\-\
p—1=1=2|p—=>1=1—=2
1.

Case x = dj. Note, that in this case T(d1) = 7(p) = 1. As the result, we have the following

table.
7T * SP Sp T
T Sp Sp T
—— —N | —— ——
dh—=p=p—>1|d —>d=d —1
The proof is complete. 0

Lemma 8. Let t € A be a permutation with decomposition D = (dy,...,d), m > 3,2 is fixed
in 7 over D with trivial path. Then for every natural number p, p > 3, there exists T € A such
that 7t - s, = s, - T and T has a decomposition (t1, ..., t;), wherel <mandp & {t1,...,1;}.

Proof. Note that the case, when there is no k € 1,m such that dy = p, is already proved in
Lemma 6; the case, when 71(dy) = d3 withno k € 4,m such that d3 = dy, is already proved in
Lemma 7.

The proof is by induction on the decomposition length m.
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The basis. Let d = 7m(dy). Note that due to assumptions of the lemma, the permutation
7t requires: 2 positions for dq, d,,_1; at least 2 positions for non-trivial path of dy; 1 point for
element d,. The last means that m > 5.

We will prove basis for cases m = 5, 6.

1) If m = 5, then d = 1 and there is the following decomposition of 71, namely
= [dy,dp,d3,dy, ds|s, where dy = dy, d3 = ds and dy # di,dy # d3. Based on Lemma 6
it is enough to consider three cases depending on p from {d;, d», d3}.

Case p = dy. Let T = [d2]s. From direct calculation it follows that 77 - 54, = s4, - T.

Case p = dy. Let T = [dy, d]s. From direct calculation it follows that 7 - 54, = s4, - 7.

Case p = d3. Let T = [dy, dy,d1]s. From direct calculation it follows that 7 - 54, = s4, - 7.

2) If m = 6, then d is equal to 1 or is not. We consider cases: d = 1 and d # 1 separately.

Let d = 1. Then there is the next decomposition of 71, namely 7t = [dq,dy,ds, ds, ds, dg]s,
where d; = ds, d3 = dg and d», dy are different from dq, ds.

Let dy # d4. Based on Lemma 6 it is enough to consider four cases depending on p from
{d1,d>,d3,ds}. In case p = dy let T = [dy, dy, dy, d3]s. Direct calculation implies 77 - 54, = s4, - T.
In case p = dy let T = [d3,dy4,dy,d3]s. Direct calculation implies 77 - 55, = s4, - T. In case
p = d3let T = [dy,dy,d4]s. Direct calculation implies 77 - s4, = s4, - T. In case p = dy let
T = [dy, d3,d1, d1]s. Direct calculation implies 7 - s4, = s, - 7.

Let dy = ds. Note that 71(dp) = dp. Based on Lemma 6 it is enough to consider two cases
depending on p from {dy,d3}. In case p = dj let T = [d3]s. From direct calculation it follows
that 77 - sy = sy, - 7. Incase p = d3 let T = [dy,d;]s. From direct calculation it follows that
7'L'-Sd3 :Sd3 - T.

Let d # 1. Then there is the next decomposition of 7, namely 7w = [dy,d, d3,ds, ds, dg)s,
where dy = ds, d3 = d4 and points dy,dy, d3, dg are pairwise different. Based on Proposition 1
we obtain T = [dl, dz, d3, dg, dl, d6]5 = [dl, dz, d3, dg, d6, d6, dl, dl]S = [dl, dz, d6, dg, dl, dl]S-
Statement is directly implied from Lemma 7.

Induction step: case m under assumption that for | < m the statement holds. Let d = m(dy).
Consider cases of d.

Let d = 1. Consider different cases: dy = d,,_1 = p; d1 # p,dy_1 # pand 71 (p) = 1;
dy # p,dn-1 # pand 77 (p) # 1.

1) Let dy = d,,—1 = p. Then there are possible the next options.

i) Let d;, = p. From Proposition 1 we have

7C - Sp: [p/dZI- . -/dmfZIP/P]S . [p]S: [P]S . [dZI‘ . -/dmle p/ p/ p]S: [P]S . [dZI- . -/dmfz]S:sp - T,

where T = [dy, ..., dpy—2]s.
ii) Let d,, # p. From Proposition 1 we have

ﬂ'slﬂ = [p’dZ"“/dm*ZIPIdm]S : [p]s = [p]S . [dZI---/dmfZIdm;dm;p;p;p]S
= [p]s : [dZI"'/dﬂl—ZldWl/dm]S - Sp - T,

where T = [dy, ..., dy—2,dm, dn]s.

2) Letd; # p,dy,_1 # pand ' (p) = 1. Then there are possible the next options.

i) Let d = p and there is no k € 3,m such that p = d;. Construct T as follows
T = [dg,...,dm]s.
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From the construction of 7 it follows that for every point x, x ¢ {1,2, p,d1}, we have 7t(x) ¢
{1,2,p,d1}. Therefore, (71 -5,)(x) = m(x) = 7(x) = (sp - T)(x). Hence, it is enough to show
that (77 -s,)(x) = (sp - T)(x) for every point x from {1,2, p,d; }.

Case x = 1. Note, that 71(1) = 7(2). As the result, we have the following table.

T Sp Sp T
—~ = — |~ —~ =
l=-p=p—=21]1-2=2—=1

Case x = 2. Note, that T(p) = p, because there are no p in the decomposition of 7. As the
result, we have the following table.

7T Sp 5p T

—~ = — =
2 50=25p |29 p=2007p
:T(

Case x = p. From dp = p it follows that 77(p)
table.

1). As the result, we have the following

N‘SP SP‘T
7T Sp Sp T

—— /T
p—n(p)=np) > nlp) | p—=>1=1—n(p)

Case x = di. Note, that d; has the unique representation in the decomposition of T on the
(m — 1)th position. It follows that there is the path of d; over the decomposition of T, namely

dq 2711 2. As the result, we have the following table.

N‘SP SP‘T
e Sp Sp T
—— —~ | ——
d—1=1—-2|d—>dy=d —2

ii) Let there is the non-trivial path of the point 1 over D such that

ty,x—2

R BN 1 G i W M N RN

where x is the last position of p in D and t;, t; are some natural numbers such that t, > t;.
Denote [dtl, ...,dy_1]s by o and note that ¢ satisfies conditions of the lemma. From the
induction assumption it follows that there exists the decomposition of some permutation y
with the length less or equal x — t; such that o - s, =5, - .
As the result, for the permutation 7 with the decomposition, which is transformed in cor-

responding way, the path of 1 will be trivial: 1 Lo p. This case is already considered.

3) Letdy # p,du—1 # p, m *(p) # 1. Denote 7~ !(p) by d. Similar to the previous case,
if Tr(d1) # (1,3, m), then there exists the transformation of the decomposition D into an-
other decomposition Y, which has length less or equal m. And in this decomposition the
equality Tr(dy, r,Y) = (1,3,m) holds. Without loosing the generality, we can assume that
Tr(dy, r, D) = (1,3, m).

Consider different cases.

i) Let d; = p. Construct T as follows

dpw, ifdi=p,

T=\t3,...,tmls, wWhere t; =
| d Z {dz-, otherwise.
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From the construction of 7 it follows that for every point x, x ¢ {1,2,p,dy,d}, we have
m(x) € {1,2,p,dy1,d}. Therefore, (77 -sp)(x) = 71(x) = T(x) = (sp - T)(x). Hence, it is enough
to show that (77 -5,)(x) = (sp - T)(x) for every point x from {1,2, p,dy,d}.

Case x = 1. Note, that there is the next path of the point 1 in D, namely 1 Lo dp 2
dy — ... — m(1), where x is the first position of p in D after 2. In the decomposition of T
we have the next path of the point 2, namely 2 EN d3 L g N 7(1), because of the
substitution p into d;;, = d3. As the result, we have the following table.

T Sp Sp T

A

1—-n(1)=n1)—->n(1) |1—-2=2— (1)

Case x = 2. Note, that T(p) = p, because there are no p in the decomposition of 7. As the
result, we have the following table.

7T'Sp Sp'T

T Sp Sp T
—~ = —~ =~ |~ —
222=2=p|2=>p=>p—p

Case x = p. From dy = p it follows that 77(p)
table.

1). As the result, we have the following

n'Sp Sp'T ‘
T Sp Sp T

p—nlp)=nlp) > nlp) | p—=>1=1—n(p)

Case x = d;. Note, that d; has the unique representation in the decomposition of T on the
(m — 1)th position. From this it follows that there is the path of d; over the decomposition of

T, namely d; 71 1 ™ 2. As the result, we have the following table.

n'Sp SP'T

T SP Sp T

—— —~ | — ——
d—>1=1—->2|d—-dy=d —2

Case x = d. Note, that there is the next pathof din 7r: d — ... EN dy = p, where x is
the last position of p in D. In case T, based on substitution p by d,,, we have the next path:
d— ... 5 d, = dyn 25 1. As the result, we have the following table.

T Sp Sp T
—~ — | A~ —~
d—-p=p—1|d—=d=d—1

ii) Let dy # p. Construct T as follows

dm, ifd;i=p,

T =ty t3,...,tmls, where t; =
" 1 d;, otherwise.

From the construction of 7 it follows that for every point x, x ¢ {1,2,p,d1,d}, we have
m(x) € {1,2,p,dy1,d}. Therefore, (77 -sp)(x) = 1(x) = 7(x) = (sp - T)(x). Hence, it is enough
to show that (77 -5,)(x) = (sp - T)(x) for every point x from {1,2, p,dy,d}.



574 Olshevskyi M.S.

Case x = 1. Note, that 77(1) = 7(2). As the result, we have the following table.

7T'Sp SP'T
T Sp Sp T
1-n(1l)=n1)—-n(1) |1=-2=2— (1)

Case x = 2. Note, that T(p) = p, because there are no p in the decomposition of 7. As the
result, we have the following table.

T Sp Sp T
—~ = —~ =~ |~ —
2=2=2=p|2=p=>p—p

Case x = p. Note, that in the decomposition of 7, the path of the point 1 is the following

15223 ts 23 ty = ... = 1t(p), where x is the first position of p in the decomposition D.
As the result, we have the following table.

N‘SP SP‘T
T Sp Sp T
% — —
p—n(p)=n(p) =»np) | p—=1=1=na(p)

Case x = d;. Note, that d; has the unique representation in the decomposition of T on the
(m — 1)th position. It follows that there is the path of d; over the decomposition of 7, namely

dy 225 1 2 2. As the result, we have the following table.

N‘SP SP‘T

e Sp Sp T

—— —~ | ——
d—1=1—-2|d—>dy=d —2

Case x = d. Note, that we have the next path of d in 77, namely d — ... ER dy = p, where
x is the last position of p in D. In case 7, based on the substitution p by d,,;, we have the next
path of 4, namely d — ... Ny = dym 25 1. As the result, we have the following table.

T Sp Sp T
—~ — | —~
d—-p=p—1|ld—=d=d—1

Let d # 1. Then there exist natural numbers x, y and the path of d = d,, in 7t over D such
that

1 2 3 xXy—2 -2 -1
d1—>1—>2—>d3:>...£>dy,2y—>1y—>21>dy,

where y is the last position of d in D.

The above means that Tr(dy, 7w,D) = (t1,r1,...,tu, 74, y) for some natural numbers
t,r1, oo buty € 3,y—2,u > 0. Let me = [dy, ..., dy, dy, 1] for every k € 1,u. Note,
that 7ty satisfies assumptions of the lemma and the length of its decomposition is less than m.
So, based on the induction assumption, for every natural p, p > 3, we have 71} -5, = s -
for some 1 with the length of the decomposition less or equal to 1y — t; + 2. Let fix 74 for case

p=d.Letv=[dy,dy]sand yu = [dy(1,...,dm]s. Then

M=V T .. Ty S U=V -TT .. Ty 1S3 Ty W= =V-S3 T ... Ty}
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Note, that the transformation from 7, to 7 does not introduce points dy,d,,_1, because
they are unique represented in D and they are not represented in the decomposition of 7y,
k € 1, u; there are no d in the decomposition Y of 7r, which is the concatenation of considered
decompositions v, [d]s, 71, . . ., Tu, ft, 7T(d1) = d on the 3rd position in Y.

Applying Lemma 7 the statement follows. ]

3 Stability and strong growing
3.1 Stability of A

Proposition 3. Let 7t be a permutation from A, D = (dy,...,dy) be its decomposition over
S, p be a point from {dy,...,dn}, 7(p) # 1,2 and Tr(p,7,D) = (x,t1,71,...,tu, 7w, y) for
some natural u, where x is the first position of p in D, y is the last position of rt(p) in D,
t1,71, ..., tu, 7y € x + 2,y — 2. Then 7t has a decomposition

Y = (dlr . ~/dx71r ‘71/ s rqulr pr dyflldy/ s rdm)

of length < m such that p has trivial path in 7w over Y, i.e. Tr(p, ,Y) = (v — 2,v), where v is
the last position of d, in'Y.

Proof. Set rty = [dy,—1,dy,, ..., dr]s, k € 1, u. Lemma 5 implies that Sp - T = Ti - §p for some T
with a decomposition, whose length is less or equal to 7, — t; 4 2 and that does not contain p.
Letv = [dl, .. -/dx—l]S and U= [dy—ll .. -;dm]S- Then

M=V 8y T e Ty = .. =V Ty ... Ty Sp-

Let Y be a decomposition of 7, obtained as the concatenation of decompositions of permu-
tations v, 7, . .., Ty, Sp, . Then the length of the decomposition Y is not greater than m and p
has trivial path in 7t over Y. The proof is complete. O

Corollary 1. Let 7t be a permutation from A, D = (dy,...,dy) be its decomposition over S,
p be a point from {dy,...,dn}, n(p) € {1,2} and Tr(p, 7,D) = (x,t1,71,...,tu, 1u) for some
natural u, where x is the first position of p in D, t,11,...,ty, 1y € x+2,m—2. Then 7 has a
decomposition

1,
2

Y — {(dll"'rdx1/qlr'~~/qzlrp)r If n(p)
(dll‘ . -/dx—lr ‘hz---;‘]z—ll P/dm); if 77(}7)

of length < m such that p has trivial path in 7w over Y, i.e. Tr(p,m,Y) = (v), where v =
x+z—1.

Proof. The statement directly follows from Proposition 3. O

Proposition 4. Let 7w be a permutation from A, D = (dy, ..., dy) be its decomposition over S
such that there exists a point p € {dy,...,dn}, not contained in supp(r). Then the decompo-
sition D can be transformed to another decomposition of 7 with the length, which is shorter
at least by 1.

Proof. Note that p & supp(m) implies that t(p) = p # 1,2. Using Proposition 3, we can
assume that the point p has trivial path in 77 over D. Hence, there exists y € 1, m — 2 such that

Tr(p,m, D) = (y — 2,y).
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Consider different cases depending on the value of d;, 1.
1)1fd, 1 = p, thens,-d, 1-s, = e. As the result, we have

T = [dlr~ . ~rdy—3r pr pr prdy+1r' . ~/dm]5 — [dlr~ . '/dy—3rdy+1/' . rdm]S

Hence, Y = (dy,...,dy3,dy1,...,dm) is the decomposition of 7 with the length less than

mby3and p ¢ {dy,...,dy-3,dy1,...,dm}
2)Iftd, 1 # p,thens,-d, 1-sp=dy, 1-d, 1,and

= [dll N rdy—3/ p, dyfll p, dy+1r s /dm]S = [dlr s /dy—3r dyflldyflrdy%»l/ N rdm]S

Hence, Y = (dy,...,dy3,dy 1,dy 1,dy1,...,dm) is the decomposition of 7 with the
length less thanm by 1and p ¢ {dy,...,dy_1,dy13,...,dum}. d

Proposition 5. Let 7t be a permutation from A and D be its decomposition over S, p be a
point from D, p ¢ supp(m) and the last two occurrences of p in D are beside. Then the
decomposition D can be transformed to another decomposition of 7t with the length, which is
shorter at least by 3.

Proof. 1t follows from proof of Proposition 4 with d, 1 = p. O

Proposition 6. Let 7t be a permutation from A, D = (dy,...,dn) be its decomposition over
S, p be a point from {dy,...,dy}, n(p) # 1,2 and Tr(p, r,D) = (x,t1,71,...,tu, Tu,y) for
some natural u, where x is the first position of p in D, y is the last position of t(p) in D,
t, 71, by, Ty € X+ 2,y — 2.

Then 7t has decomposition

Y = (dll' . -rprqlldqu3r~ . '/qudy+1/- . rdm)
of length < m such that p has trivial path in 7w over Y, i.e. Tr(p, T, Y) = (x,x + 2).

Proof. Let ity = [dy,,...,dy,, dr 41]s forevery k € luandd = dy. From Lemma 8 it follows that
Ttk -S4 = S4 - Ty for some T with decomposition, whose length is less or equal to ry — t; 4+ 2 and
that does not include d.

Letv = [dy,..., dxj1]s and p = [dy 41, ..., dm]s. Then

M=V T ...y "S- U=. =V -Sg-T ... Ty-H.
Then required decomposition Y is the concatenation of decompositions v,s;, 11, ..., Tu, 4.

Its length is less or equal to the length of D. Finally, Tr(p, 7T, Y) = (x, x + 2). O

Corollary 2. Let 7t be a permutation from A, D = (dy,...,dy) be its decomposition over S,
p € {1,2} be a point, n(p) € {dy,...,dw} and Tr(p, t,D) = (t1,71,...,tu, Ty, y) for some
natural u, where y is the last position of 7t(p) in D, t1,71,...,t,, 7y € x+2,y — 2. Then 7t has
decomposition

Y: {(dlldy;‘h/---;q,z;dy—i-l/---;dm); przll
(dyrqll'--qu/dy+lr~~~/dm>l przz

of length < m such that p has trivial path in 7w over Y, i.e. Tr(p,,Y) = (1) or Tr(p, 7, Y) = (2)
based onp =1,2.

Proof. The statement directly follows from from Proposition 6. O
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Proposition 7. Let 7t be a permutation from A and D be its decomposition over S, p be a
point from D, p ¢ supp(m) and the first two occurrences of p in D are beside. Then the
decomposition D can be transformed to another decomposition of 7t with the length, which is
shorter at least by 3.

Proof. From p & supp(r) it follows that 7t(p) = p # 1,2. By Proposition 3 we can assume that
there exists x € 1,m — 2 such that Tr(p, r, D) = (x,x +2). Then d, 1 = p. From Proposition 1
we have

[dlr .. ~/dxflr p, P, P, dx+3r .. ~/dm]5 = [dlr .. ~/dx71rdx+3/ v rdm]

Hence, Y = (dy,...,dx_1,dx13,...,dn) is the decomposition of 7r, whose length is less than
mby3and p & {dy,...,dy_1,dx13,...,dm}. d

Theorem 1. The series A is stable.

Proof. Suppose that the series A is not stable. Then there are some natural numbers Ny, Ny,
Nj > N, and there is a permutation 7r € Alt(Ny) such that [a[s,c(ny) > [a]soc(n,) = M-

Let D be the minimal decomposition of 7t over SoG(N,). Note, that D contains at least
one generator from SoG(N;)\SoG(Ny). Otherwise, 7t can be decomposed over D in Alt(Ny),
with the length < |‘1|SoG(N1)- Then there is at least one point from Nj + 1, Np, which is in
D and not in supp(m), as m € Alt(Ny). Then the decomposition D can be transformed into
shorter decomposition T with length [ by removing all points {N; +1,..., N>} | D based on
Proposition 4. Note, that the decomposition T, obtained by this way, is over SoG(Nj). As the
result, we have

|alsoc(ny) > D] =m >1=[T| = |a|soc(ny)-

This leads to a contradiction, which complete the proof. O

3.2 Strong growing of systems of generators SoG(n), n > 3

Lemma 9. Leta be some element of Alt(n) with the minimal decomposition D = (dy, ..., dy)
over SoG(n). Then for a - s, the decomposition Y = (dy,...,dy,n+ 1) will be the minimal
decomposition over SoG(n + 1).

Proof. Suppose that there exists the minimal decomposition Y = (y1,...,y;) of a - 5,41 over
SoG(n + 1) such that I < m + 1. Then the decomposition R = (y,...,y;,n+1,n+ 1) will be
the decomposition of a - ;41 - Sy+1 - Sy+1 = 4 over SoG(n + 1). Note, that the decomposition R
can be transformed to the decomposition W, which length is shorter at least 3 to R and without
point n + 1, according to Proposition 5. So, the decomposition W will be the decomposition of
a over SoG(n) with length <142 —3 =1 — 1. As the result, we have the following inequality

m+1= |a|SoG(n) +1< |W| +1<I= |ﬂ : Sn+1|SoG(n+1) <m+1.
This contradiction completes the proof. O

Lemma 10. Leta be an element from Alt(n) with the minimal decompositionD = (dy,...,dm)
over SoG(n). Then for s, - a the decompositionY = (n+1,dy,...,dy) is the minimal de-
composition over SoG(n + 1).

Proof. Proof is similar to Lemma 9 with using Proposition 7. O
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Theorem 2. The system of generators SoG(n) is strong growing for every natural numbern > 3.

Proof. Let 7t be a diameter element from Alt(n). Suppose that the element 7 is not full gen-
erated. Then there is some point p € 3,1 such that p & supp(7). So, based on Lemma 9 we
obtain the inequality

170 sp| = |alsogn) +1 > |alsocn) = Diams(Alt(n)).

This leads to a contradiction, which complete the proof. O

4 Computation of diameters

In this section we show that the groups-generators series A is C-constant, uniform and
homogeneous. These properties were introduced in [8]. It gives us an opportunity to apply
the homogeneous down search algorithm to obtain exact values for the diameter of Alt(n)
over SoG(n) for n < 43.

4.1 Properties of groups-generators series

Let G be a groups-generators series. Let GDif f(n) be the set of generators, which appear
exactly on the nth, n > 1, i.e.

GDiff(1) = SoG(1), GDiff(n) = SoG(n)\SoG(n —1), n>2.

Definition 4. The groups-generators series G is called uniform if

(U GDiff(ix)) ~ G(t)
k=1

for every index tuple I = (i;, iy, - - - ,it) of cardinality t.
Let C be a natural number.
Definition 5. The groups-generators series G is called C-stable if |GDiff(t)| = C,t > 1.

Let the groups-generators series G be C-stable. Suppose that elements from |J SoG(n) are
n>1
enumerated, i.e.
J SoG(n) = {s; € G|i € N}

n>1
and the following conditions hold:
1) SoG(n) = {s1,82,...,Sc,Sc41,---,Sn.c}, 1 > 1,
2) GDiff(n) = {S(u_1).c4+1,5(n-1)-C12,+ -, Sn-c}, n > 1.
Let I = (iy,ip,---,it) be an index tuple. Define the mapping h? from 1,¢-C to
t

U (ix—1)-C+1,i; - Cby the rule
k=1

hIC(x) = (i[(xfl)/C}H — 1) -C + (x — 1) mod C + 1.
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Note, that the unique representation of x = (k—1)-C+r, k € 1,n,r € 1,C leads to the
equality
W(k=1)-C+r)=(ix—1)-C+r.

The last equality can be reinterpreted as follows: if x is the index of the rth generator of
GDiff(k), then h$(x) is the index of the rth generator of GDif f (i).

Now define the mapping y¢ : SoG(n) — G GDif f(ix) by the rule
k=1

9T (s1) = Syc -

I

We will use notations
n
1) SoGy(n) = kU1 GDif f(ix);

2) Gi(n) = (SoGjy(n)).
Note, that SoG;(n) is the image of SoG(n) under .

Definition 6. A uniform and C-stable groups-generators series G is called homogeneous if for
every natural t and every index tuple I of cardinality t the mapping ¢ can be extended to the
group isomorphism between G(t) and Gy(t).

We will omit the letter C in notations 1}7?, h? In this paper, we will use notations ¥, hj
instead, unless otherwise stated.

4.2 Homogeneity of A

It is straightforward that the groups-generators series A is 1-constant and GDiff(n) =
{(1,2,n)}, n > 3. We consider index tuples as tuples of natural numbers, which are greater
of equal 3. Note, that in case of alternating groups-generators series A for every index tuple
I=(i3,...,it) we have h$ (x) = iy_141 — 1+ 1= iy.

n J—
So, ¢} : SoG(n) — U GDiff(ix); ¥} (sx) = s;, for every k € 3,n.
k=1
We will use notation y; instead of i}

Theorem 3. The groups-generators series /A is homogeneous.

Proof. Let n be some natural number greater than 2 and I = (i3, ..., i,) be some index tuple of
cardinality n — 2. For uniform property, it is enough to show that

A= (O GDiff(ix)) =~ Alt(n).
k=3

Note, that for any natural k € 3, we have GDiff(ix) = {(1,2,i)}- So,

n

(U eDiff)) = (UL 20} = ({120 k €3},
k=3

k=3

Consider the mapping ¢: SoG(n) — SoGj(n) which maps the set {(1,2,k): k € 3,n} into
{(1,2,i): k € 3,n} as follows ¢;((1,2,k)) = (1,2,ir). Note, that the mapping j,
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which is bijection from SoG(n) to SoGj(n), is based on the bijection of natural numbers
¢$r:{1,2,3,...,n} = {1,2,i3,...,i}, defined by

1, ifx=1,
pr(x) =92, ifx=2,

iy, ifx €3, n.

From the last it follows that ¢; is isomorphism over groups G(n) and G(n). Based on defini-
tion, the groups-generators series A is uniform. Moreover, the mapping ¢, which is defined
from 1-constant property of A, has been extended to the group isomorphism. Hence, the
groups-generators series A is homogeneous. 0

4.3 Application of homogeneous down search algorithm

Theorem 3 implies that the homogeneous down search algorithm, which was introduced
in [8], can be applied to the alternating group Alt(n) and the system of generators SoG(n) for
every natural number n > 3.

Homogeneous down search algorithm was implemented on computer algebra system
SageMath. The solution was run with the system resources, stated in the following table.

oS cpu memory | SageMath | Python
Ubuntu 18.04 | i7-9750H | 16 gb 91 3.7.3

The results of the application of homogeneous down search to alternating groups Alt(n)
with systems of generators SoG(n) = ((1,2,3),...,(1,2,n)) for n € 3,43 are summirazied in
the following table, where D(n) denotes the diameter of Alt(n) over the system of generators
SoG(n).

D(n) | n |D(n)| n |D(n)| n |Dn)| n | D)
4 12| 16 |20 28 |28| 40 |36| 52
5 13| 17 |21 29 29| 41 |37| 53
6
8

14 18 |22 30 30| 42 |38| 54
15| 20 |23] 32 |31| 43 |39]| 56
10 |16 22 |24 34 |32| 44 |40 | 58
11 |17 23 |25] 35 |33| 47 |41 | 59
10 12 |18 24 |26 36 |34| 48 |42| 60
11| 14 |19 26 |27 38 |35| 50 |43 | 62
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AaHa poboTa pO3rASIAAETBCSI B KOHTEKCTi po3B’sI3Ky A0Dpe BiAOMOI 3apadi MOLIYKY AlaMeTpy
CKiHUYeHHOI Py IO 3ajaHili cucreMmi TBipEMX. Ha ocHOBI 3apaHOi rpymm Ta ii cuCTeMM TBipHMX
6yayernbcs rpadp Keai. Aast mporo rpadpa 3HaXOAMTBCS AlaMeTp, IO Ha3MBa€EThCSI AlaMeTpOM IPyIia
BiAHOCHO CHCTeMM TBipHMX.

Po3rasaaroThesl rpyny MapHMX IMIACTAaHOBOK 3 KAACMYHOIO HE3BIAHOIO CMCTEMOIO TBipHMX, IO
CKAAAA€ETHCSI 3 IMKAIB AoBXyHY Tpy BUAY (1,2, k). B po60Ti IpOBOAMTBCSI aHAAI3 BAACTUBOCTEN PO3-
KAaAIB IapHMX MiACTAHOBOK BiAHOCHO AQHOI CMCTeMM TBIpHMX i IHOCAIAOBHOCTI 3HAKO3MIHHMX TPy
3 BKa3aHVMMU CMCTeMaMM TBipHMX. BUBOAMTBCS eBHe IpaBMAO MepecyBaHHs TBIPHOTO eAeMeHTa B
PO3KAAAi I ACTAHOBKM, OKPEMO AASI PYXY 3AiBa HallpaBoO Ta CIPaBo HaAiBoO. Takum UMHOM BBeAeHe
IIPaBMAO AO3BOAsIE IPUOMpPATH 3 PO3KAAAY Ti TBipHI eAeMeHTH, IO BM3HAYAIOTh HEPYXOMi TOUKM
MiACTaHOBKM. AaHWII pe3yAbTaT Aa€ MOXKAMBICTb AOBECTH, IIIO CUCTeMa TBipHNX 36epirae MiHiManb-
HIiCTh PO3KAAAIB €AEMEHTIB IIPM 3pOCTaHHi. SIK HaCcAiAOK, MOKa3aHo, IO CUCTeMa TBIPHMX € CTPOro
3pOCTAOYOI0 CUCTEMOIO TBipHIIX.

B poboTi BUKOPMCTOBYETHCS TeOPist OAHOPIAHOCTI, BBeA€Ha Y TIOTIepeAHilt poboTi aBTopa. AAs
TIOCAIAOBHOCTI TPYI MapHMX IIACTAHOBOK 3 BKa3aHVMMM CUCTEMaMI TBipHMX AOBOAUTECS, IO BU-
KOHYIOThCSI BAQCTMBOCTI PiBHOMIpPHOCTI i oaAHOpiaHOCTI. Lle A03BOAsIE AASI 3HAXOAXKEHHS AlameTpa
3aCTOCOBYBATV OAHOPIAHIMI aATOPUTM THoITyKy BHU3. [1pu 3acTocysani 6yAm oTpumani TouHi 3Ha-
UeHHS AlaMeTpiB 3HAKO3MIHHMX IPYII AAsI IepImX 43 CTereHis.

Kntouosi cnosa i ppasu: rpadp Kenai, aiamerp rpadpa, crcrema TBipHNX, 3HaKO3MiHHA IpyTia.



