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On fixed points of some multivalued mappings
under certain function classes

Karakaya V.1, Sekman D.2

It is well known that the Banach contraction principle implies the existence of fixed points of

single-valued mappings. On the other hand, S.B. Nadler has solved the problem that guarantees

the existence of fixed point for multivalued mapping. However, we have to emphasize that simi-

lar methods are not applied for nonexpansive multivalued mappings. The aim of this study is to

investigate the existence of a fixed point on nonexpansive multivalued mappings with the help of

function sequences and functions having shifting distance property. In addition, some hypothesis

of this work were explained with an interesting example.
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Introduction

It is a fact that multivalued mappings are more suitable for applying to real-life problems

than single-valued mappings. It was first noticed and studied by S.B. Nadler [20] because of

the suitability of multivalued mappings to real-life models. Nadler’s approach was to apply

the Banach contraction principle [4], which is valid for single-valued mappings, to multivalued

mappings with the help of Hausdorff metric. Hence, he showed the existence of fixed points of

multivalued mappings. Later, many authors examined some generalizations of the mappings

and developed these results (see [1–3, 8, 10, 12, 15, 16, 23, 24]).

Another important concept that we use in this study is functions and function sequences.

In fixed point theory, the existence of fixed point is studied by using some special function

classes. In this sense, M. Berzig [5] defined a contraction using shifting distance functions. In

addition, A. Samadi and M.B. Ghaemi [22] generalized the Darbo fixed point theorem [9] by

changing distance functions. Subsequently, they defined a new contraction using the defini-

tion given in [5]. Naturally, in the generalization of the above studies, some similar functions

were also used in different works. Consequently, using this new approach for multivalued

mappings, many researchers have made different generalizations of multivalued mappings

using function classes. We refer the reader to [6, 7, 19, 21].

The main purpose of the present paper is to obtain fixed point of nonexpansive multival-

ued mappings with relations between function classes and function sequences under certain

conditions. In the literature, W.A. Kirk [17], W.A. Kirk, H.K. Xu [18] and S.B. Nadler [11] used
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function sequences to determine fixed points of nonexpansive multivalued mappings. Quite

recently, V. Karakaya et al. [13, 14] studied on the function sequences, both to obtain new con-

traction and to show the existence of fixed points of mappings by using the uniform conver-

gence property of function sequences. In multivalued mappings, the Nadler’s sense constric-

tion mapping ensures the existence of the fixed point of multivalued mapping. However, when

the multivalued mapping type is a nonexpansive mapping, it is not possible to guarantee the

existence of the fixed point of the mapping. Our aim is to obtain fixed point in nonexpansive

multivalued mappings using both function classes and function sequences satisfying the con-

ditions such as uniform convergence of function sequences and shifting distance properties of

functions.

1 Preliminaries

Let N, R denote natural and real numbers, respectively. Let (X, d) be a metric space. We de-

note by P(X) the family of all nonempty subsets of X and by CB(X) the family of all nonempty

closed bounded subsets of X. We define the Hausdorff metric H on CB(X) by

H(A, B) := max
{

sup
a∈A

D(a, B), sup
b∈B

D(b, A)
}

,

for all A, B ∈ CB(X), where for x ∈ X and C ⊂ X, D(x, C) := inf
{

d(x, y) : y ∈ C
}

is the

distance from the point x to the subset C.

Definition 1 ([20]). A multivalued mapping T : X → CB(X) is said to be a contraction if there

exists a constant λ ∈ [0, 1) such that

H(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X.

A multivalued mapping T : X → CB(X) is said to be a nonexpansive if

H(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

Definition 2 ([20]). A point x0 ∈ X is called a fixed point of a multivalued mapping

T : X → CB(X) if x0 ∈ Tx0.

Theorem 1 ([20]). Let (X, d) be a complete metric space and let T : X → CB(X) satisfies

H(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X, where 0 ≤ λ < 1.

Then T has a fixed point.

Lemma 1 ([20]). Let (X, d) be a metric space and A, B ⊂ CB(X).Then for each a ∈ A and ǫ > 0

there exists b ∈ B such that

d (a, b) ≤ H (A, B) + ǫ.

Definition 3 ([5]). Let ψ, φ : [0, ∞) → R be two functions. The pair (ψ, φ) is said to be a pair of

shifting distance functions, if the following conditions hold:

(i) for u, v ∈ [0, ∞) if ψ(u) ≤ φ(v) then u ≤ v,

(ii) for {uk}, {vk} ⊂ [0, ∞) with lim
k→∞

uk = lim
k→∞

vk = w, if ψ(uk) ≤ φ(vk) for all k ∈ N

then w = 0.
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Definition 4 ([13]). Let ψn, φn : [0, ∞) → R be two function sequences. The pair (ψn, φn) is said

to be a pair of function sequences with shifting distance properties which satisfy the following

conditions:

(i) for u, v ∈ [0, ∞) if ψn(u) → ψ(u) and φn(v) → φ(v) uniformly in n and also

ψn(u) ≤ φn(v), then u ≤ v,

(ii) for {uk} , {vk} ⊂ [0, ∞) with lim
k→∞

uk = lim
k→∞

vk = w, if ψn(uk) → ψ(uk), φn(vk) → φ(vk)

uniformly in n and ψn(uk) ≤ φn(vk) for all k ∈ N, then w = 0.

Definition 5 ([13]). The pair (ψn, φn) is said to be having shifting distance property if

(ψn, φn) → (ψ, φ) uniformly in n and the pair (ψ, φ) is shifting distance functions.

Lemma 2 ([13]). Let ψn, φn : [0, ∞) → R be two function sequences. Assume that the following

conditions hold:

(i) if (ψn) upper semi-continuous function sequences and ψn ≤ ψn+1, then ψn → ψ is

uniform convergence according to n,

(ii) if (φn) lower semi-continuous function sequences and φn ≥ φn+1, then φn → φ is

uniform convergence according to n.

Then the pair (ψn, φn) is function sequences having shifting distance property.

2 Main Results

In this section, we discuss some properties of the multivalued mappings defined by both

functions and function sequences.

Theorem 2. Let (X, d) be a complete metric space and let T : X → CB(X) be a multivalued

mapping. Suppose that there exists a pair of shifting distance functions (ψ, φ) such that

ψ
(

H(Tx, Ty)
)

≤ φ
(

d(x, y)
)

for all x, y ∈ X. (1)

Then T has a fixed point in X.

Proof. Let α < 1 and let x0 ∈ X. Let us take x1 ∈ Tx0. Under the condition of Lemma 1, we can

consider the iteration process as follows:

∃ x2 ∈ Tx1 d (x1, x2) ≤ H (Tx0, Tx1) + α,

∃ x3 ∈ Tx2 d (x2, x3) ≤ H (Tx1, Tx2) + α2,

∃ x4 ∈ Tx3 d (x3, x4) ≤ H (Tx2, Tx3) + α3,

. . . . . .

∃ xk+1 ∈ Txk d (xk, xk+1) ≤ H (Txk−1, Txk) + αk

for all k ≥ 1. Firstly, if we choose x = xk and y = xk+1 in inequality (1), we get

ψ
(

H(Txk, Txk+1)
)

≤ φ
(

d(xk, xk+1)
)

for all k ≥ 1. From the condition (i) of Definition 3, we can write

ψ(uk) ≤ φ(vk) =⇒ uk ≤ vk, (2)
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where uk = H(Txk, Txk+1) and vk = d(xk , xk+1). If Lemma 1 and the inequality (2) are com-

bined, we have

d(xk, xk+1) ≤ H(Txk−1, Txk) + αk ≤ d(xk−1, xk) + αk,

d(xk, xk+1) ≤ d(xk−1, xk) + αk.
(3)

Considering the inequalities (3), let us do the following calculations

d(xk, xk+1) ≤ d(xk−1, xk) + αk,

d(xk−1, xk) ≤ d(xk−2, xk−1) + αk−1,

d(xk−2, xk−1) ≤ d(xk−3, xk−2) + αk−2,

. . .

d(x1, x2) ≤ d(x0, x1) + α.

Hence, we have for all k ∈ N

d(xk, xk+1) ≤ d(x0, x1) + α + α2 + · · ·+ αk ≤ d(x0, x1) + α

(

1 − αk

1 − α

)

.

Since 1 − αk < 1 for all k ∈ N, we can write

d(xk, xk+1) ≤ d(x0, x1) +
α

1 − α
.

Therefore, we infer that {vk} is a bounded sequence. According to the Bolzano-Weierstrass

Theorem, {vk} has at least a convergent subsequence {vkr
} such that lim

r→∞

vkr
= ℓ. That is,

lim
r→∞

d(xkr
, xkr+1

) = ℓ. According to (3), it is easy to see that lim
r→∞

H(Txkr
, Txkr+1

) = ℓ. So, by

condition (ii) of Definition 3, we have

lim
r→∞

d(xkr
, xkr+1

) = 0. (4)

Let us prove that {xkr
} is a Cauchy sequence. Assume that {xkr

} is not a Cauchy sequence.

Then there exists ε > 0 and subsequences
{

xkr(p)

}

and
{

xkm(p)

}

of {xkr
} with kr(p) > km(p) > p

such that for all p ∈ N

d
(

xkr(p)
, xkm(p)

)

≥ ε and d
(

xkr(p)−1
, xkm(p)

)

< ε.

Under the condition above, we get

ε ≤ d
(

xkr(p)
, xkm(p)

)

≤ d
(

xkr(p),
xkr(p)−1

)

+ d
(

xkr(p)−1
, xkm(p)

)

≤ ε + d
(

xkr(p),
xkr(p)−1

)

(5)

for all p ∈ N. If we apply limit to both sides for p → ∞, we get

lim
p→∞

d
(

xkr(p)
, xkm(p)

)

= ε. (6)

Then, we have
∣

∣d
(

xkr(p)
, xkm(p)

)

− d
(

xkr(p)
, xkm(p)−1

)∣

∣ ≤ d
(

xkm(p)
, xkm(p)−1

)

∣

∣d
(

xkr(p)
, xkm(p)−1

)

− d
(

xkr(p)−1
, xkm(p)−1

)
∣

∣ ≤ d
(

xkr(p),
xkr(p)−1

)

.
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Considering together with (4) and (5), we have

lim
p→∞

d
(

xkr(p)−1
, xkm(p)−1

)

= ε. (7)

From Lemma 1, there exists p0 ∈ N such that

0 <
ε

2
< d

(

xkr(p)
, xkm(p)

)

≤ H
(

Txkr(p)−1
, Txkm(p)−1

)

+ αkr(p) ≤ d
(

xkr(p)−1
, xkm(p)−1

)

+ αkr(p)

for all p > p0. Letting p → ∞ in the above inequality, we get

lim
p→∞

H
(

Txkr(p)−1
, Txkm(p)−1

)

= ε, (8)

where lim
p→∞

αkr(p) = 0 for α < 1. By taking x = xkr(p)−1
and y = xkm(p)−1

in the inequality (1), we

obtain

ψ (gkr
) ≤ φ (hkr

) , (9)

where gkr
= H

(

Txkr(p)−1
, Txkm(p)−1

)

and hkr
= d

(

xkr(p)−1
, xkm(p)−1

)

. Therefore, if considering (9)

together with (7) and (8), the condition (ii) of Definition 3, we get ε = 0. Hence, this is a

contradiction. It follows that {xkr
} is a Cauchy sequence in X.

Since (X, d) is a complete metric space, then {xkr
} converges to a point x∗ ∈ X, that is,

lim
r→∞

d (xkr
, x∗) = 0. Taking x = xkr

and y = x∗ in inequality (1), we have

ψ
(

H(Txkr
, Tx∗)

)

≤ φ(d(xkr
, x∗)).

By using the condition (i) of Definition 3, we have

H(Txkr
, Tx∗) ≤ d(xkr

, x∗).

Since xkr+1
∈ Txkr

, we can write that

D(xkr+1
, Tx∗) ≤ d(xkr

, x∗).

Passing to limit as r → ∞, we obtain

D(x∗, Tx∗) ≤ d(x∗, x∗).

We conclude that D(x∗, Tx∗) = 0, hence x∗ ∈ Tx∗. Therefore, x∗ is a fixed point of T.

Theorem 3. Let (X, d) be a complete metric space and let T : X → CB(X) be a multivalued

mapping. Suppose that there exists a pair (ψn, φn) of function sequences having shifting dis-

tance property such that

ψn

(

H(Tx, Ty)
)

≤ φn(d(x, y)) (10)

for all x, y ∈ X and for all n ∈ N, where ψn, φn : [0, ∞) → R are two function sequences. Then

T has a fixed point in X.
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Proof. We suppose that {xk} is a sequence such that x0 ∈ X and xk+1 ∈ Txk for k ≥ 1. Let

(ψn, φn) be a pair of function sequences with shifting distance property satisfied conditions

of Lemma 2. Let (ψn) be increasing function sequence bounded by ψ and (φn) be decreasing

function sequence bounded by φ for all n ∈ N. By using (1), we can write

ψ1

(

H(Txk, Txk+1)
)

< ψ2

(

H(Txk, Txk+1)
)

< · · ·

< ψn

(

H(Txk, Txk+1)
)

< ψ
(

H(Txk, Txk+1)
)

≤ φ
(

d(xk, xk+1)
)

< φn

(

d(xk, xk+1)
)

< · · ·

< φ2

(

d(xk , xk+1)
)

< φ1

(

d(xk , xk+1)
)

for all k, n ∈ N. It follows that

ψn

(

H(Txk, Txk+1)
)

≤ φn

(

d(xk, xk+1)
)

(11)

for all k, n ∈ N. From the condition (i) of Definition 4, we can write

ψn(uk) ≤ φn(vk) =⇒ uk ≤ vk,

where uk = H(Txk, Txk+1) and vk = d(xk, xk+1).

From Lemma 2, we know that ψn → ψ and φn → φ uniformly according to n. Hence, taking

limit on both sides of (11) as n → ∞, we get

ψ
(

H(Txk, Txk+1)
)

≤ φ
(

d(xk, xk+1)
)

(12)

for k ≥ 1. Since the inequality (12) proved in Theorem 2, we have to show that the mapping T

has a fixed point.

In (10), taking x = xkr
and y = x∗, we get

ψn(H
(

Txkr
, Tx∗)

)

≤ φn

(

d(xkr
, x∗)

)

.

Letting n → ∞ in the above inequality and by Lemma 2, we have

ψ
(

H(Txkr
, Tx∗)

)

≤ φ
(

d(xkr
, x∗)

)

.

By using condition (i) of Definition 3 and taken limit as r → ∞, it follows that

D(x∗, Tx∗) = 0.

Therefore, we obtain x∗ ∈ Tx∗, so we achieves the desired result.

Remark 1. While we examine the contraction of multivalued mappings according to Nadler’s

definition, we have to show that there exists λ ∈ [0, 1) to ensure the inequality

H(Tx, Ty) ≤ λd(x, y).

However, if λ = 1, the mapping that provides this inequality is called the nonexpansive map-

ping. All the same, it is known that nonexpansive mappings do not have to have a fixed point.

In this paper, the inequality u ≤ v obtained due to both (1) and (10) has a form of nonexpansive

mapping in the Nadler’s sense [20]. Therefore, the fixed point of mapping T has been obtained

with the help of function sequences and functions having shifting distance property.
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Example 1. Let T : X → CB(X). Also, let us give two function sequences according to the

conditions of Definition 4

ψn(u) =
2n(1 + u) + 3 (2u + 1)

n + 3
, φn(v) =

n2(1 + v) + n2 + 1

n2
.

It is clear that ψn(u) ≤ φn(v) for all n ∈ N and u, v ∈ [0, ∞). Besides, the pair (ψn, φn) → (ψ, φ)

are shifting distance functions. After that, it can be seen that

lim
n→∞

2n(1 + u) + 3 (2u + 1)

n + 3
= 2 + 2u ≤ 2 + v = lim

n→∞

n2(2 + v) + 1

n2
.

Therefore, the pair (ψ, φ) is shifting distance functions.

Now, we suppose that u = H(Tx, Ty) and v = d(x, y). Since

2n
(

1 + H(Tx, Ty)
)

+ 3
(

2H(Tx, Ty) + 1
)

n + 3
≤

n2
(

2 + d(x, y)
)

+ 1

n2
,

we have

2H(Tx, Ty)− d(x, y) ≤
3n2 + n + 3

n2(n + 3)
. (13)

If limit goes to infinity in (13), we obtain

2H(Tx, Ty)− d(x, y) ≤ 2H(Tx, Ty) ≤ d(x, y)H(Tx, Ty) ≤
1

2
d(x, y).

As a result, according to condition of Nadler’s fixed point theorem [20], T has a fixed point

under continuous function sequences.

Let (In) be a unit function sequence. In Theorem 3, if we take (ψn) = (In) such that

lim
n→∞

In = I uniformly, we obtain the following result.

Corollary 1. Let (X, d) be a complete metric space. Suppose that T : X → CB(X) is a multi-

valued mapping such that

In
(

H(Tx, Ty)
)

≤ φn
(

d(x, y)
)

,

for all x, y ∈ X and n ∈ N, where φn : [0, ∞) → R is a function sequence such that

(a) for u, v ∈ [0, ∞) if In (u) ≤ φn(v), then u ≤ v,

(b) for {uk} , {vk} ⊂ [0, ∞) with lim
k→∞

uk = lim
k→∞

vk = w if In (uk) ≤ φn(vk) for all n, k ∈ N,

then w = 0.

Then T has a fixed point in X.

Theorem 4. Let (X, d) be a complete metric space. Suppose that T : X → CB(X) is a conti-

nuous mapping such that

ψn

(

H(Tx, Ty)
)

≤ ψn

(

d(x, y)
)

− φn

(

d(x, y)
)

(14)

for all x, y ∈ X and n ∈ N, where ψn, φn : [0, ∞) → R
+ is a pair having shifting distance

property. Also, let ψ, φ be two nondecreasing and continuous functions satisfying ψ(t) =

φ(t) = 0 if and only if t = 0. Then T has a fixed point in X.
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Proof. Suppose that (14) holds. In this inequality, if we take x = xk and y = xk+1, we get

ψn

(

H(Txk, Txk+1)
)

≤ ψn

(

d(xk, xk+1)
)

− φn

(

d(xk, xk+1)
)

for all k, n ∈ N.

By Lemma 2, taking limit as n → ∞, we have

ψ
(

H(Txk, Txk+1)
)

≤ ψ
(

d(xk, xk+1)
)

− φ
(

d(xk, xk+1)
)

. (15)

Besides, by using hypothesis in statement of Theorem 4, we assume that

ψ
(

d(xk, xk+1)
)

= φ
(

d(xk, xk+1)
)

.

If the above equation is substituted in inequality (15), it is clear that ψ
(

H(Txk, Txk+1)
)

= 0,

hence

H(Txk, Txk+1) = 0.

Since xk+1 ∈ Txk, we conclude that D
(

xk+1, Txk+1

)

= 0. Thus, xk+1 ∈ Txk+1.

Conversely, let d(xk, xk+1) = 0. If we evaluate together with the inequality (15), then we get

H(Txk, Txk+1) = 0 and xk+1 ∈ Txk+1. As a result, we have found that T has a fixed point.

In Theorem 3, if we take
(

ψn
)

= (In) and (φn) = λ (In) for λ ∈ [0, 1), such that In → I

uniformly according to n, we obtain the following corollary, known as Nadler’s fixed point

theorem [20].

Corollary 2 ([20]). Let (X, d) be a complete metric space and let T : X → CB(X) satisfies

H(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X,

where 0 ≤ λ < 1.

Then T has a fixed point.
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Каракая В., Секман Д. Про нерухомi точки деяких багатозначних вiдображень у певних функцiо-

нальних класах // Карпатськi матем. публ. — 2023. — Т.15, №1. — C. 128–136.

Добре вiдомо, що з теореми Банаха про нерухому точку випливає iснування нерухомих

точок однозначних вiдображень. З iншого боку, С.Б. Надлер довiв теорему, що гарантує iсну-

вання нерухомої точки для багатозначного вiдображення. Однак слiд вiдзначити, що подiбнi

методи не застосовнi для нерозширюючих багатозначних вiдображень. Метою цiєї статтi є

дослiдження iснування нерухомої точки нерозширюючих багатозначних вiдображень за до-

помогою функцiональних послiдовностей та функцiй, що мають властивiсть зсувної вiдстанi.

Додатково деякi гiпотези цiєї роботи були роз’ясненi на цiкавому прикладi.

Ключовi слова i фрази: нерухома точка, багатозначне вiдображення, функцiя зсувної вiдста-

нi, функцiональна послiдовнiсть.


