References
- Burdak Z. On decomposition of pairs of commuting isometries.
Ann. Polon. Math. 2004, 84 (2), 121–135.
doi:10.4064/ap84-2-3
- Catepillán X., Szymański W. A model of a family of power partial
isometries. Far East J. Math. Sci. 1996, 4,
117–124.
- Halmos P.R., Wallen L.J. Powers of partial isometries.
Indiana Univ. Math. J. 1970, 19 (8), 657–663.
- Huef A., Raeburn I., Tolich I. Structure theorems for
star-commuting power partial isometries. Linear Algebra Appl. 2015,
481, 107–114. doi:10.1016/j.laa.2015.04.024
- de Jeu M., Pinto P.R. The structure of doubly non-commuting
isometries. Adv. Math. 2020, 368, 107–149.
doi:10.1016/j.aim.2020.107149
- Popescu G. Doubly \(\Lambda\)-commuting row isometries,
universal models, and classification. J. Funct. Anal.
279 (12), 108798. doi:10.1016/j.jfa.2020.108798
- Proskurin D. Stability of a Special Class of qij-CCR and
Extensions of Higher-Dimensional Noncommutative Tori. Lett. Math.
Phys. 2000, 52, 165–175.
doi:10.1023/A:1007668304707
- Sarkar J. Wold decomposition for doubly commuting
isometries. Linear Algebra Appl. 2014, 445,
289–301. doi:10.1016/j.laa.2013.12.011
- Slociński W. On the Wold-type decomposition of a pair of
commuting isometries. Ann. Polon. Math. 1980, 37,
255–262.
- Weber M. On \(C^*\)-algebras
generated by isometries with twisted commutation relations. J.
Funct. Anal. 2013, 264 (8), 1975–2004.
doi:10.1016/j.jfa.2013.02.001