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On the index of special perfect polynomials

Gallardo L.H.

We give a lower bound of the degree and the number of distinct prime divisors of the index of
special perfect polynomials. More precisely, we prove that w(d) > 9, and deg(d) > 258, where
d := gcd(Q?,0(Q?)) is the index of the special perfect polynomial A := p?Q?, in which p; is
irreducible and has minimal degree. This means that ¢(A) = A in the polynomial ring F[x]. The
function ¢ is a natural analogue of the usual sums of divisors function over the integers. The index
considered is an analogue of the index of an odd perfect number, for which a lower bound of 135
is known. Our work use elementary properties of the polynomials as well as results of the paper
[J. Théor. Nombres Bordeaux 2007, 19 (1), 165-174].

Key words and phrases: cyclotomic polynomial, characteristic 2, special perfect polynomial, fac-
torization.
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Introduction

A perfect number is a positive integer n that the sum of all its divisors, say (1), equals 2n.
More generally, a multiperfect number is a positive integer m such that the quotient of o (m)
by m is still a positive integer. Namely

o(m)
— = cZ (1)

It is known that all perfect numbers 7, even or odd, have the following form
n=PQ?, 2)

where P is a prime number, and k, Q are positive integers such that P { Q. More precisely, if
niseven, k =1, P = 2V — 1, with p an odd prime number, and Q = 2’%1, while if # is odd,
k=1 (mod 4) and also P = 1 (mod 4). Besides n = 1 no other odd multiperfect number is
known.

Let n be a perfect number. Using (2), by the multiplicative property of o, one has

2PFQ* = o (P*) o (Q?).
One sees that this equality can be also written as

o(Q*) Pk
Q>  o(Pr)/2’

(3)
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and that the right hand side fraction in (3) is in lowest terms, i.e. ged (P¥, o (P¥)/2) = 1.
It is then natural to define the index d of n as

= ged (Q% 0(Q%)), (4)
so that from (3) one has
o(Q*)=d-P* and Q*=d-c(P")/2.

In 1937, R. Steuerwald [9] proved that there is no odd perfect numbers n of the form
n o= Pkp% ---p?2, where P = 1 (mod 4) and the p; are distinct odd prime numbers, and
k=1 (mod 4). In other words, when Q is square-free.

In this paper, we deal with an analogue of the index d in (4) for special perfect polynomials
in Fp[x], that has exactly the same form. More precisely, A in F[x] is special perfect if it is a
product of squares of irreducible (prime) polynomials, such that

T ¢ Fyl] ®)
the natural analogue of (1) in Z.
Since deg(A) = deg (0(A)) in F[x], (5) just says that A satisfies

c(A) = A.

Thus, a special perfect polynomial in IF;[x] is just a product of squares of prime polynomials
that is fixed by the function o : F[x] — F[x], the mutatis mutandi analogue, of the usual sums
of divisors function ¢.

The index d of a special perfect polynomial A € IF,[x]|, written as

A=pi-Q, (6)
where p; is a prime divisor of minimal degree of A, is defined by
d := ged (Q%, 0 (Q%)). (7)

We have no analogue on IF; [x] of the result of R. Steuerwald (see, however, [3]). This shows
that the particular problem of characterizing the special perfect polynomials appears (contrary
to R. Steuerwald’s result over the integers) difficult to resolve.

More details about the index follow.

First of all, we describe the binary perfect polynomials in IF;[x]. This ring is the polynomial
ring close to the ring of integers Z. In other words, we can do arithmetic in it, and generally,
the translated arithmetic problems in IF[x], that come from Z, are easier to work, since there
are more tools available for polynomials than for integers. For example, the formal derivation
(P — P’"), whose kernel in IF[x] are the squares, is a really useful tool, not available in Z.

In order to better understand the notion of index translated to IF»[x] (see (7)) we introduce
some definitions and a notation.
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A binary polynomial B is odd if B(0) = B(1) = 1, otherwise B is even. A minimal prime
of an odd polynomial A is a prime divisor P of A that has minimal degree. Analogously, a
maximal prime of an odd polynomial A is a prime divisor P of A that has maximal degree. A
prime divisor of A that is neither minimal, nor maximal is a medium prime [3]. We let w(A)
denote the number of distinct prime factors of A over FF,.

Consider the function o: Fy[x] — (x| defined over a polynomial A € [F;[x] by
0(A) = YpjaD € Falx], ie. by the sum of all divisors of A, including 1 and A. The func-
tion ¢ is multiplicative, i.e. for coprime binary polynomials X, Y one has, as over the integers Z,
0(XY) = o(X)o(Y). This function ¢ is more natural, but also more complex, than the usual
sum of divisor function 01 (A) = Yp|4 2deg(4) We consider this function o as the natural ana-
logue on IFp[x] of the usual sum of divisors function over the integers Z. For instance, some
divisors D of A can sum up to 0, while a sum over D of 248D is always greater than 0. We recall
that a binary perfect polynomial A is defined by the equality o(A) = A, i.e. ¢(A)/ A belongs to
the ring IF»[x]. We can also say that A is a fixed point of the function ¢ (see [1-7]). By our anal-
ogy between IF5[x] and Z, this corresponds to a multiperfect number 7 in the ring of integers,
i.e. a positive integer n with the property that o(n)/n belong to the ring Z (a slightly more
general property than the study of the perfect numbers, i.e. the usual case when o(n)/n = 2).
E.F. Canaday, the first PhD student of Leonard Carlitz, started the work [1] on binary perfect
polynomials in 1941. His paper resumes most of his PhD dissertation.

We know that a perfect polynomial A must have an even number of minimal primes (see
[3, Lemma 2.3]). No analogue result is known for the parity of the number of medium or
maximal primes dividing a perfect polynomial. No odd perfect polynomial A is known besides
the trivial perfect A = 1. The only general result known about odd perfect polynomials A is
that A must be a square [1] (this explains why the divisor P¥ of # in (2) has no analogue in
(6)). More generally, R. Lidl and H. Niederreiter [8], and R.G. Swan [10], give the most classic
results about polynomials over finite fields. We recall that the third cyclotomic polynomial is
defined by

®3(x) = x* +x+ 1.

Our main result is as follows.
Theorem 1. Let A = p3---p2, € Fx] be a special perfect polynomial, i.e. 7(A) = A,
with w(A) = m, dy := deg(py) forallk = 1,...,manddy < --- < dy. In particular, p; is
minimal, and p,, is maximal. Put Q := p3-- - p2,, and letd := gcd (Q?, 0(Q?)) be the index of
A. Let mj, my and m3 be the number of minimal, medium and maximal prime divisors of A,

respectively.
Then the following hold.

(a) We have thatd is not a square in IF5|[x].
(b) We have that d is not square-free.

(c) There exist two divisors a, b of A such thatgcd(a,b) = 1, Q = ab, and d = a?b. Moreover,
a=gcd (0(Q%)/Q,Q),a# landb # 1.

(d) We have w(d) > 9 and deg(d) > 258.
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1 Tools

The following lemma is useful.

Lemma 1 ([3, Lemma 2.3]). Let q be a power of 2. Let A € F;[x] be a perfect polynomial. Let
p1, ..., pr be the list of all monic minimal primes of A. Then the integer r is even.

Parts (a) and (b) of the following lemma follow from [3, Lemma 4.2], while part (c) is
[3, Corollary 4.4].

Lemma 2. Let P € Fy[x] be a maximal prime of a special perfect polynomial A = p? - - - p3, €
Fy[x], with w(A) = m, dy := deg(px), forallk =1,...,m,and dy < --- < dy,. In particular,
p1 is minimal, and p,, is maximal. Then there exists a unique pair (i,]), i,j € {1,...,m}, such
that the following hold.

(a) We have p; # P, di < d; < d; = deg(p;) = deg(P) = dy. In other words, p; is maximal
while p; is medium.

(b) We have P | p? + p;+1 and P | pjz +pj+1, so that P = p; + p; + 1. In particular, P
cannot divide ®3(Q1) and ®3(Q>) for any two distinct maximal divisors Q1, Qy of A.

(c) Let my be the number of medium primes that divide A, and m3 the number of maximal
primes that divide A. Then
my > m3z > 3.

The following lemma is useful for the proof of part (d) of the Theorem 1. It also appears,
without proof, in [1, Theorem 21].

Lemma 3 ([3, Lemma 5.3 (b)]). Let A € F;[x] be a special perfect polynomial. Let P € TF,[x] be
a prime divisor of A. Then deg(P) is even.

The most important numerical result [3, Theorem 5.5], known about these special perfect
polynomials, follows.

Lemma4. (a) Any special perfect polynomial A have w(A) > 10.

(b) For any prime divisor P of A we have deg(P) > 30.

2 Proof of Theorem 1

Observe that A = p?Q?. Since A = ¢(A) and ¢ is multiplicative, one has

Q> = o(A) = (pi+p1+1)0(Q%) = P3(p1)o(Q7).
Thus
o(Q*) _ n
Q? D3(p1)’

Clearly, ged(p?, ®3(p1)) = 1, i.e. the fraction in the right hand side of the above equality is in
lower terms.




On the index of special perfect polynomials 511

By definition of the index d, we have
c(Q%) = dpi,
and

Q* = dds(p1). (8)

Let us differentiate both sides of (8) relative to x, we obtain
0 =d'®3(p1) +dP3(p1) = d'P3(p1) +dpy,

since both Q% and p? + 1 = (p; + 1)? are squares in Fy[x].
In other words we have
d'®3(p1) = dpy. )

In order to prove (a), it follows from (9), and from d’ = 0 that
0 =dp},

i.e. one has p; = 0. Thus, the prime p; is also a square, what is impossible. This proves

part (a).
In order to prove (b), assume, to the contrary, that d is square-free. In other words,
we have

ged (d,d') = 1.
From (9) we obtain that
d | @3(p1)- (10)
In particular deg(d) < 2d;. This implies that w(d) < 2, since any possible prime divisor of d
has degree > d;.
Therefore, either d = py for some k or d = p;p; for some i # j.

If d = pg, put @3(p1) = dR. Putting this into equation (8), we get that R is a square, say,
R = S%. We have then

P3(p1) = piS>. (11)
Taking degrees in (11), we obtain
2d; = dy +2deg(S). (12)

We have dj. > d;. It follows then from (12) that deg(S) < dj /2. This is impossible since the
degree of any divisor of A is > d;. Thus d is not prime.

We consider now the other possible case, i.e. we take d = p;p; for some i # j. Since both d;
and d; are at least equal to dy, we conclude that p; and p; are minimal primes. In particular,

deg(d) = 24, = deg (P3(p1))-
But, as observed in (10), d divides ®3(p1). It follows that d = ®3(p;). Thus, (8) implies that

d= Q. (13)
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But w(Q) = w (Q?) = w(A) — 1, since A = p?Q?. It is known [3], that w(A) > 10 (see also
Lemma 4). Therefore, it follows from (13) that

w(d) >9.

But this is impossible since d = p;p;. This proves part (b).

In order to prove (c), write d = a®b with b square-free, or b = 1. Since d is not a square, we
have b # 1. Since d is not square-free, we have that a # 1. Since d divides A, the exponents of
the primes dividing d are in {1,2}, thus ged(a,b) = 1. Indeed if ged(a,b) # 1 then we must
have p;’\ |A for some j, and this is impossible.

Observe that K := ®3(p;) has degree 241, so that either K is a prime or K is a product of
two (minimal) primes. Write (8) as follows

2
<9> — bK. (14)

a

Since b and K are square-free, it follows from (14) that K = b. Thus, we obtain Q = ab from
(14) again. From d = a?b and Q = ab we have then

d =aQ. (15)
But, by definition of d, and since Q divides d, we have
@b = d = ged (Q%,0(Q%)) = Qeed (Q,0(Q?)/Q) = abged (Q,0(Q%)/Q).

In other words, this means that a = gcd (Q, o (Q?) /Q). This finishes the proof of (c).

In order to prove (d), observe first that 77 > 2, since by Lemma 1, m; is even.

By Lemma 2 (c) we have that m; > m3 > 3. By Lemma 4 (b) we have d; > 30. Since by
Lemma 3, all d; are even, by definition of medium prime, we have d; > 32 for any medium
prime p;, and d; > 34 for any maximal prime p;. This implies that

deg(A) > 2(mydy + mpdy 4+ mads) > 2(2dy + 3dy + 3d3),

Thus
deg(A) > 2(60 4 96 + 102) = 516.

Now, from A = p?Q? we have deg(Q) = deg(A)/2 — deg(p1) > 258 — d;. But by (15)
d = aQ and g, as a divisor of A, has degree deg(a) > dj. Therefore

deg(d) = deg(a) + deg(Q) > dy + (258 — dq) = 258.

Still from A = p?Q?* we have w(Q) = w(A) — 1. From (15) d = aQ, so that w(d) > w(Q).
But w(A) > 10 by Lemma 4 (a). Thus

w(d) > wQ) >w(A)—1>10-1=09.

This finishes the proof of the theorem.
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Y cTaTTi MM IOAQEMO HVDKHIO OIHKY CTeIeHs Ta KiAbKOCTI Pi3HMX IIPOCTMX AIABHUMKIB iHAEKCY
CIeriaABHIX AOCKOHAAMX MOAIHOMIB. TouHimre, Mu A0BoAMMO, o w(d) > 9 Ta deg(d) > 258, ae
d := ged(Q?% 0(Q?)) e iHAEKCOM CIeLiaABHOTO AOCKOHAAOrO MoAiHOMa A := p?(Q?, B sKomy p;
€ He3BIAHMM Ta Mae MiHiMaAbHWIT cTeminb. Lle o3Hadae, wo 0(A) = A y moAiHOMIaABHOMY KiAbI
IFp[x]. DyHKLSI 0 € IPUPOAHNM aHAAOTOM (PYHKIIIL, IIO OOUMCAIOE CYMY AABHUKIB HaA TIOAEM LIAMX
unce. PO3rAsIHYTIIT iHAEKC € aHAAOTOM iHAEKCa HeIIAPHOTO AOCKOHAAOIO UMCAQ, AAS SIKOTO HVDKHSI
Mexa 135 e BiaoMoro. Y Hamili poboTi BMKOPWMCTaHO eAeMeHTapHi BAACTMBOCTI TOAIHOMIB, a TaKoX
pesyabratu craTTi [J. Théor. Nombres Bordeaux 2007, 19 (1), 165-174].

Kontouosi cnoea i ¢ppasu: MHOTOUAEH ITOAIAY KOAQ, XapaKTePUCTHKa 2, CTIeTiaAbHIMI AOCKOHAAVI
MHOTOYAEH, (paKTOpM3aLisl.



