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On the approximation of fixed points for the class of mappings
satisfying (CSC)-condition in Hadamard spaces

ahin A.1, Alagéz O.2
g

In this paper, we consider the class of mappings satisfying (CSC)-condition. Further, we prove
the strong and A-convergence theorems of the JF-iteration process for this class of mappings in
Hadamard spaces. In the end, we provide a numerical example to show that the | F-iteration process
is faster than some well known iterative processes. Our results improve and extend the correspond-
ing recent results of the current literature.
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1 Introduction

Let (X, d) be a metric space, Y be a non-empty subset of X, and T : Y — Y be a mapping.
A point p € Y is called a fixed point of T if Tp = p. We denote by F(T) the set of all fixed
points of T. The mapping T is called nonexpansive if d(Tu, Tv) < d(u,v) for all u,v € Y, and
quasi-nonexpansive if d(Tu, p) < d(u, p) for all u € Y and for each p € F(T).

In 1973, G.E. Hardy and T.D. Rogers [1] introduced the concept of generalized nonexpansive
mappings which is defined as follows.

Definition 1. Let T be a self mapping on a non-empty subset Y of a metric space (X, d). Then
T is called generalized nonexpansive mapping if for all u,v € Y we have

d(Tu, Tv) < ad(u,v) 4+ b[d(u, Tu) + d(v, Tv)] + c[d(u, Tv) + d(v, Tu)], (1)
where a, b, ¢ are non-negative real numbers such thata + 2b +2c < 1.

In 2008, T. Suzuki [2] introduced a new condition on the mappings, called (C)-condition.
Such mappings are also known Suzuki generalized nonexpansive mappings.

Definition 2. A self mapping T on a non-empty subset Y of a metric space (X,d) is said to
satisfy (C)-condition if

%d(u, Tu) <d(u,v) implies d(Tu,Tv) <d(u,v)

forallu,ve.
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Now we list some properties of generalized nonexpansive mappings due to G.E. Hardy,
T.D. Rogers and T. Suzuki which can be found in [3].

Proposition1. (i) The classes of generalized nonexpansive mappings satisfying (1) and
Suzuki generalized nonexpansive mappings are independent.

(ii) If T is a generalized nonexpansive mapping satisfying (1) and it has a fixed point, then
T is quasi-nonexpansive.

(iii) If T is a generalized nonexpansive mapping satisfying (1), then

1+b+c

< -7
d(u, To) < d(u,v) + TR —

d(u, Tu)

holds for allu,v € Y.

In 2011, E. Karapinar and K. Tas [4] suggested (CSC)-condition which is a modification of
Suzuki’s (C)-condition.

Definition 3. Let (X, d) be a metric space and Y be a non-empty subset of X. Then a mapping
T :Y — Y is said to satisfy (CSC)-condition if

%d(u, Tu) < d(u,v) implies d(Tu,Tv) < =[d(Tu,v) +d(u, Tv)]

N[~

forallu,vey.

Moreover, E. Karapinar and K. Tas [4] gave some basic properties for a mapping satisfying
(CSC)-condition as follows.

Proposition 2. (i) If a mapping T satisfies (CSC)-condition and has a fixed point, then it is
a quasi-nonexpansive mapping.

(ii) If T is a mapping satisfying (CSC)-condition, then
d(u, Tv) < 5d(u, Tu) +d(u,v)
holds for allu,v € Y.
(iii) If T is a mapping satisfying (CSC)-condition, then the set F(T) is closed.

Recently, F. Ali et al. [3] introduced a new iteration process, called ]F-iteration process, in
Banach spaces, defined as follows

Wy =T((1—5n)pn +52TpPn),
qGn = Twy, (2)
Pn+1 = T((l - rn)Qn +7’nTQn); VneN,

where {r,} and {s,} are real sequences in [0,1]. They showed numerically that this iteration
process is faster than the Mann, Ishikawa, Noor, S, Picard-S and Thakur-New iteration pro-
cesses (see [5-10]) for generalized nonexpansive mappings due to G.E. Hardy and T.D. Rogers,
and proved some convergence results of JF-iteration process (2) for this class of mappings
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in uniformly convex Banach spaces. Very recently, M. Jubair et al. [11] proved some conver-
gence results for Suzuki generalized nonexpansive mappings via JF-iteration process (2) in
uniformly convex Banach spaces.
Motivated by the above results, we modify the JF-iteration process into CAT(0) spaces as
follows
Wy =T((1—54)pn ®5nTpn),
qn = Twy, 3)
pni1=T((1=ru)gn ®1raTqn), VneN,

where Y is a non-empty convex subset of a CAT(0) space, p1 € Y, {rn} and {s,} are real
sequences in [0, 1].

In this paper, we study the convergence of the JF-iteration process (3) to a fixed point for
the class of mappings satisfying (CSC)-condition in a CAT(0) space. Moreover, we provide a
numerical example to support our main results. This example also shows that the JF-iteration
process is faster than the Mann, Ishikawa, Noor, S, Picard-S, Thakur-New iteration processes
for the mappings satisfying (CSC)-condition. Our results can be viewed as a refinement and
generalization of some results in F. Ali et al. [3] and M. Jubair et al. [11].

2 Preliminaries and lemmas

Let (X, d) be a metric space and u,v € X with d(u,v) = I. A geodesic path from u to v is
an isometry ¢ : [0,/] — X such that ¢(0) = u and ¢(!) = v. The image of c is called a geodesic
segment joining u and v, which is denoted by [u, v] whenever it is unique. The space (X, d) is
said to be a geodesic space if every two points of X are joined by a geodesic path. Furthermore,
X is said to be a uniquely geodesic space if there is exactly one geodesic segment joining u and v
for each u,v € X. A subset Y of X is called convex if Y includes every geodesic segment joining
any two of its points. Let u,v € X and t € [0, 1], we write (1 — t)u & tv for the unique point w
in [u,v] such thatd (w, u) = td(u,v) and d (w,v) = (1 — t)d(u,v).

A geodesic triangle /\(uq,up,u3) in a geodesic metric space (X, d) consists of three points
uq,up,uz in X (called the vertices of AA) and a geodesic segment between each pair of ver-
tices (called the edges of A\). For any geodesic triangle, there is a comparison triangle A in the
Euclidean plane R? such that d(u;, u;) = dg. (i;, ;) for i,j € {1,2,3}.

Let A be a geodesic triangle in X and A be a comparison triangle for A, then A is said to
satisfy the CAT(0) inequality if

d(u,v) < dra2(1,0)

forallu,v € A andu,7 € A.
If u, v, v, are points in X and vy is the midpoint of the segment [v1, v;], then the CAT(0)
inequality implies

d? (u,vg) < %dz(u, v1) + %dz(u, vy) — idz(vl,vz),

which is known as the (CN) inequality of F. Bruhat and J. Tits [12].

Definition 4 ([13]). A geodesic space X is called a CAT(0) space if all geodesic triangles satisfy
the CAT(0) inequality. Equivalently, X is called a CAT(0) space if and only if it satisfies the
(CN) inequality.
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A complete CAT(0) space is called a Hadamard space. The class of Hadamard spaces
comprises Hilbert spaces, complete simply connected Riemannian manifolds of non-positive
sectional curvature (for instance classic hyperbolic spaces and the manifold of positive definite
matrices), Euclidean buildings, CAT(0) complexes, non-linear Lebesgue spaces, the Hilbert
ball and many other spaces.

We now collect some elementary facts about CAT(0) spaces which will be used in
the sequel.

Lemma 1 ((14, Lemma 2.4]). Let X be a CAT(0) space. Foru,v,w € X and t € [0,1], one has
d((1—tHu e tv,w) < (1—t)d(u, w) + td(v, w).

Lemma 2 ([15, Lemma 3.2]). Let X be a CAT(0) space, u € X be a given point and {t,} be a
sequence in [a,b] witha,b € (0,1) and 0 < a(1 —b) < . Let {p.} and {q.} be any sequences
in X such that

limsup d (py,u) <c, limsupd(gu,u) <c, Lm d((1—ty)pn D tagn, u) = c

n—00 n—»00 n—o0

for some c > 0. Then r}gn d(pn,qn) = 0.

We now give the concept of A-convergence. Let {p, } be a bounded sequence in a CAT(0)
space X. Then the asymptotic center A({pn}) of {pn} is the set

A({pn}) = {u € X: limsup d(u, py) = inf limsup d(%, pn)}.
n—soo ueX poeo
It is known (see, e.g., [16, Proposition 7]) that in a Hadamard space, A({ pn}) consists of
exactly one point.

Definition 5 ([17, 18]). A sequence {p,} in a CAT(0) space X is said to be A-convergent to
u € X if u is the unique asymptotic center of {x, } for every subsequence {x,} of {p,}. In this
case, we write A-lgn pn = u and call u the A-limit of {py} .

n—oo

The concept of A-convergence in metric spaces was first introduced and studied by
T.C. Lim [17]. Later, W.A. Kirk and B.A. Panyanak [18] introduced and studied this concept
in CAT(0) spaces and proved that it is very similar to the weak convergence in Banach space
setting.

The following lemma is very useful for proving our AA-convergence theorem.

Lemma 3. Let X be a Hadamard space.
(i) Every bounded sequence in X has a /\-convergent subsequence (see [18, p. 3690]).

(ii) If Y is a closed convex subset of X and {py, } is a bounded sequence in Y, then the asymp-
totic center of {p,} isinY (see [19, Proposition 2.1]).

(iii) If {pn} is a bounded sequence in X with A({p,}) = {u} and {x,} is a subsequence of
{pn} with A({x,}) = {v} and the sequence {d(p,,v)} converges, then u = v (see [14,
Lemma 2.8]).
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3 Main results

Now we prove two key lemmas which will play very fruitful roles throughout in
the sequel.

Lemma 4. Let Y be a non-empty convex subset of a CAT(0) space X and T : Y — Y be a
mapping satisfying (CSC)-condition such that F(T) # &. Let {p,} be an iterative sequence
generated by (3) with real sequences {r,} and {s,} in [0,1]. Then nh_r>ro10 d(pn, p) exists for all

p € F(T).

Proof. Let p € F(T). By the item (i) of Proposition 2 and Lemma 1, we have

d(pn+1,p) = d(T((l — T )qn Vann)rP) <d((1—rn)qn ® 12 Tqn, p)

< (1= 7)d(qu, p) + rud(Tqu, p) (4)
< (1 =rn)d(qn, p) +1d(qn, p) = d(qn, p),
d(qn, p) = d(Twn, p) < d(wy, p) (5)
and
d(w, p) = d(T((1=s0)pn ®uTpu), p) < d((1 = 50)pu © suTpn, p)

—5,)d(pn, p) + 52d(Tpn, p) (6)
—$n)d(Pn, p) + sud(pn, p) = d(pn, p)-

Using (4), (5) and (6), we obtain

d(puy1,p) < d(pn,p)-

This implies that the sequence {d(x,, p)} is non-increasing and bounded below. Hence the
limit lgn d(pn, p) exists for all p € F(T). O
n—oo

Lemma 5. Let Y be a non-empty closed convex subset of a Hadamard space X and T : Y — Y
be a mapping satisfying (CSC)-condition. Let {p,} be the iterative sequence (3) such that
{rn} is a real sequence in [0, 1] and {s,} is a real sequence in [a,b] for some a,b € (0,1) with
0 <a(l—b) <% ThenF(T) # @ ifand only if {p,} is bounded and lim. d(pn, Tpn) = 0.

Proof. First, we assume that F(T) # @. Let p € F(T). Then, by Lemma 4, nh_r}n d(pn, p) exists

and {p,} is bounded. Let
lim d(pn,p) =c¢ > 0. (7)

n—oo

By the item (i) of Proposition 2, we have

limsup d(Tpy, p) < limsup d(pn, p) = c. (8)

n—oo n—oo

On the other hand, it follows from (6) that

limsup d(wy, p) < c. 9)

n—o0
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By using (4) and (5), we get d(p,+1, p) < d(wy, p), which yields that
¢ < liminf d(wy, p). (10)
n—oo

Combining (9) and (10), we obtain lgn d(wy, p) = c. Now using the latter, we have
n—o00

¢ = lim d(wy, p) = lim d(T((l — $n)Pn @snTpn),p> < r}gl;od((l —51)Pn D 5uTPu, p)

n—o0 n—oo
< lim [(1 = sn)d(pn, p) +5ud(Tpn, p)]
< nlg{}o [(1 —sn)d(pn, p) + Snd(PnzP)] = ,}E%od(Pmp) =cC
This implies that
1211 d((1—su)pn ®snTpn, p) =c. (11)

From (7), (8), (11) and Lemma 2, we get r}gl;o d(pn, Tpn) = 0.
Conversely, we assume that {p,} is bounded and nh_r>r010 d(pn, Tpn) = 0. Letu € A({pn}).

By the item (ii) of Proposition 2, we have

r(Tu, {pn} ) = limsup d(Tu, p,) < limsup [5d(pn, Tpn) + d(pn, u)]

n—oo n—oo

< limsup d(u, pp) = r(u,{pa}).

n—oo

It follows that Tu € A({p,}). Since A({pn}) is singleton set, we get Tu = u. Thus, we obtain
F(T) # @. O

We prove the A-convergence theorem of the JF-iteration process for a mapping satisfying
(CSC)-condition in a Hadamard space.

Theorem 1. Let Y be a non-empty closed convex subset of a Hadamard space X and
T : Y — Y be a mapping satisfying (CSC)-condition such that F(T) # @. Let {p,} be the
iterative sequence (3) such that {r,} is a real sequence in [0,1] and {s,} is a real sequence in
[a,b] for some a,b € (0,1) with0 < a(1 —b) < 1. Then the sequence {p,} is /\-convergent to
a fixed point of T..

Proof. In order to show that the sequence {p,} is A-convergent to a fixed point of T, we prove
that

Walpa) = U A({m}) S F(T)

and W (pn) consists of exactly one point. Let u € W (py). Then there exists a subsequence
{xn} of {pn} such that A({x,}) = {u}. By the items (i) and (ii) of Lemma 3, there exists a
subsequence {y, } of {x,} such that A- lgn Yn = v € Y. By Lemma 5, we have

n—oo

lim d(ys, Tya) = 0.
It follows similarly from the proof of Lemma 5 that v is a fixed point of T. By Lemma 4,
nh_r>r010 d(pn,v) exists. Hence, by the item (iii) of Lemma 3, we have u = v. This implies that
Wa(pn) < E(T).
Now, we prove that W (p,) consists of exactly one point. Let {x,} be a subsequence of
{pn} with A({x,}) = {u} and let A({p,}) = {p}. We have already seen that u = v and

v € F(T). From Lemma 4, we know that {d(p,, 1)} is convergent. In view of the item (iii) of
Lemma 3, we have p = u € F(T). This shows that Wa (pn) = {p}. O
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Next we prove the following strong convergence theorems.

Theorem 2. Under the same assumptions of Theorem 1, if Y is a compact subset of X, then
{pn} converges strongly to a fixed point of T.

Proof. By Lemma 5, we have lgn d(pn, Tpn) = 0. By the compactness of Y, we can find a
n—oo

subsequence {py, } of {p,} such that {p,, } converges strongly to p for some p € Y. By the
item (ii) of Proposition 2, we have

d(pn, Tp) < 5d(pu, TPn) +d(pry, p)- (12)

Letting k — oo, we get p,, — Tp, which implies Tp = p. By Lemma 4, lgn d(pn, p) exists.
n—oo

Hence the sequence {p, } converges strongly to p which is the element of F(T). O

Theorem 3. Let X, Y, T and {p,} be the same as in Theorem 1. Then the sequence {p,} con-
verges strongly to a fixed point of T if and only if

liminf d(p,, F(T)) =0 or limsupd(ps, F(T)) =0,

where d(py, F(T)) = inf {d(pn, p) : p € F(T)}.

Proof. First partis trivial. So, we prove the converse part. Suppose that lirg inf d ( pn, F (T)) =0.
n o0
It follows from Lemma 4 that lgn d(pn, F(T)) exists and hence 1131 d(pn, F(T)) = 0. There-
n [e ] n [ee]

fore, for a given A > 0, there exists ny € IN such that for all n > ny we have

d(pn, F(T)) = inf {d(pn,p) : p € F(T)} < %

In particular, inf {d(ps, p) : p € F(T)} < % . Hence, there exists p € F(T) such that

A(pny, p) < % Now, for m,n > ny we have

d(pn+m, Pn) < A(Pntm, p) +d(p, pn) < d(Png, p) +d(Prg, p) = 2d(png, p) < A

Thus {p, } is a Cauchy sequence in Y. Since Y is a closed subset of complete space X, then there

exists a point g € Y such that lim p, = q. Now lim d(pn, F(T)) = 0implies d(q, F(T)) =0,
n—o00 n—o00

hence we get g € F(T). O

Now we prove a strong convergence theorem of the JF-iteration process under the condi-
tion (I). Before this, we give the complete definition of condition (I).

Definition 6 (|20, p. 375]). A mapping T : Y — Y is said to satisfy condition (I) if there exists a
non-decreasing function f : [0,00) — [0,00) with f(0) = 0 and f(r) > 0 forallr € (0,c0) such
that

f(d(u,F(T))) < d(u, Tu) (13)

foralluey.



502 Sahin A., Alagéz O.

Theorem 4. Under the same assumptions of Theorem 1, if T satisfies the condition (I), then
{pn} converges strongly to a fixed point of T.

Proof. By Lemma 5, we have lgn d(pn, Tpn) = 0. Thus, from (13) we get
n—oo

0 < lim f(d(pn, F(T))) < Ji_ﬁrgod(PanPn) = 0.

n—oo

This implies that nh_r}n f(d(pn, F(T))) = 0. Since the function f is non-decreasing and satisfies

f(0) = 0and f(r) > 0 forall r € (0,00), then we have lim d(pn, F(T)) = 0. The conclusion
now follows from the proof of Theorem 3. O

Since the calculations in the following result are similar those in the above theorems with
the help of the items (ii) and (iii) of Proposition 1, we omit its proof.

Theorem 5. Let Y be a non-empty closed convex subset of a Hadamard space X and T : Y — Y
be a generalized nonexpansive mapping satisfying (1) such that F(T) # &. Let {p,} be the
iterative sequence (3) such that {r,} is a real sequence in [0,1] and {s,} is a real sequence in
[a,b] for somea,b € (0,1) with0 < a(1 —b) < . Then the followings hold.

(i) The sequence {p,} is /\-convergent to a fixed point of T.

(ii) If Y is a compact subset of X or T satisfies the condition (I), then {p, } converges strongly
to a fixed point of T.

(iii) The sequence {p,} converges strongly to a fixed point of T if and only if

liiﬁglfd(pn,F(T)) =0 or limsupd(p,, F(T)) =0.

n—o0

4 An illuminate numerical example

In this section, we present a numerical example to compare the rate of convergence for a
mapping satisfying (CSC)-condition.

Example 1. Let X = (R?,|| - ||2) and Y = [0,2] x [0,2] C X. A mapping T : Y — Y is defined
by

(731) @veb2xo),
Toy) =93 11
(73) v e

Now, forall x = (x1,y1),y = (x2,2) in Y, we consider the following cases.
Case 1. If 0 < x1,x2,11,Y2 < 2, then

zH an) = (34, = 2V 6+ 160
\/ +y1<\/x1—x2 —y2)? =[x -yl

1
> [x = Tx||, =
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1 1
holds when x1 < 16 andy; < — 6 This implies that

11 11°
(1mx =+ e = 1v1) = 5 (| G %) = G|, + e - (2.2)],)

=G -5 %)

L B - x4 - )

> -
-2
51 1
>V =2 -2 2 1y (- )2+ (- )2
C[(FL ) (2 [y
=G 3) - @9, = 17l

Case 2. If 0 < x1,y1 <2 and xp = yp = 2, then

%”’C_TXHZZ%H (1, y1) = <X1 yl)” % it 96y1
=SB <\ -2+ n - 27 = Jx -yl

1? This implies that

(1T =yl+ e = 1yl) = 5 ([ (3 4) - @2+

=) - (33)

1
holds when x1 < 1—? andy; <

Case 3. If x; = y1 = xp = yp = 2, then we have
1

Hea-(32) ;N(g)i(g)zznx-yuz:o.

Case4. If x1 =y; =2and 0 < xp,y, < 2, then

e O R e

holds for x1 < g and yp < Z This implies that

(I =yl + lx—Tyll) = (H( ;) - G

1
EHX —Tx|2 =

e )L)

_1 /(9 5%\ (5 5y
, 2\ \4 4 2 4

J1(28) _ (52 5w
—2|\4"2 47 4

;

5 9 X2 2 1 2 2 1 X2 2 1 Y2 2
= _— — _ — — > _— — _ —
2\/(20 4) +<2 4) “\Vla 72) "\ %

= [ITx = Ty|l2.
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Therefore, the mapping T satisfies (CSC)-condition. The point (0,0) is the unique fixed
point of T. In the below table and graphics, it can be easily seen that the |F-iteration pro-
cess converges faster than the leading iteration processes. We choose the control sequences as
ry = 0.25, B, =045 ands, = 0.25,n € N.

Now, we examine the step numbers at which the iteration processes converge to the fixed
point for some different initial points.

Initial Points | Step number | Mann | Ishikawa | Noor | S | Thakur-New | Picard-S | JF
(1.5,1.6) n 148 131 130 |22 12 9 8
(2.0,2.0) n 149 132 131 | 23 12 9 8
(0.5,0.7) n 142 126 126 | 21 12 8 7
(0.1,1.9) n 159 132 131 | 22 12 9 8

Table 1. The step numbers of iterations converge to fixed point with different initial points

0,003

0,002+

0,001

0 " ; ;
5 10 15 20

[ Mann

Ishikawa Noor S JE Thakur Picard S]

Figure 1. Rate of convergences according to the first coordinates of JF-iteration
and other known iterations with the initial point (2.0,2.0)

0,05+

0,04;

0,03;

0,02;

0,01;
)

Noor S

JF —— Thakur New —— Pic; d§]

Figure 2. Rate of convergences according to the second coordinates of JF-iteration
and other known iterations with the initial point (2.0,2.0)
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5

Conclusions

In this paper, we prove some strong and /A-convergence results of the JF-iteration process

introduced by F. Ali et al. [3] in Hadamard spaces.

Theorems 1, 2, 3, 4 extend some results of M. Jubair et al. [11] in two ways:

(1) from the class of Suzuki generalized nonexpansive mappings to the class of mappings

satisfying (CSC)-condition,

(2) from a uniformly convex Banach space to a Hadamard space.

Theorem 5 generalizes the corresponding results of F. Ali et al. [3] from a uniformly convex

Banach space to a Hadamard space.
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V 1iit CTaTTi MU PO3TASIAAEMO BiAOOpaskeHHs], 110 3aA0BOABHSIIOTH (CSC)-yMOBY. Mu A0BOAMMO
TeOpeMU IPO CUABHY Ta A-361KHicTb |F-iTepalliifHOro mpotiecy AAS IIbOTO KAACy BiAObGpaXkeHb y
mpocropax AaaMapa. Hampuxieii HamMyu IOAAHO UMCAOBMI IIPUMKAAA, SIKMIA AEMOHCTPYE, IO
JF-iTepanilfHmii mpoliec € IIBMAIIMM 3a AesIKi A0b6pe BiaoMi iTepamiiHi nporecn. Harri pesyabra-
TV IOKPAIIyIOTh i pO3LIMPIOIOTH BiATIOBiAHI HeAABHI pe3yAbTaTH, IO € Y Cy4JacHill AiTepaTypi.

Kutouosi cnosa i gppasu: A\-36ixHicTh, CvAbHA 361KHICTB, HepyxoMa Touka, CAT(0) mpocrip,
JF-itepauiriamit mpouec, (CSC)-ymoBa.



