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Bernstein-Nikol’skii-type inequalities for trigonometric
polynomials
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We obtain order estimates for Bernstein-Nikol’skii-type inequalities for trigonometric polyno-

mials with an arbitrary choice of harmonics. It is established that in the case q = ∞, 1 < p ≤ 2

these inequalities for trigonometric polynomials with arbitrary choice of harmonics and for ordi-

nary trigonometric polynomials has different order of estimates.
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Introduction

In numerous problems of approximation theory of one variable periodic functions, an im-

portant role is played by inequalities connecting the norms of polynomials and their deriva-

tives in different metrics (see, e.g., [9, Chap I, Sec. 2]), namely,

for any trigonometric polynomial t ∈ T(m) =
{

t : t(x) =
m

∑
k=−m

ckeikx
}

and any

r > 0, β ∈ R the following inequality is true:

‖tr
β‖q ≪ mr+1/p−1/q‖t‖p, 1 ≤ p ≤ q ≤ ∞.

Relations of this form are called Bernstein-Nikol’skii inequalities because they combine

Bernstein inequalities for p = q and Nikol’skii “inequalities of different metrics” for r = 0.

In connection with Bernstein-Nikol’skii inequalities, V.E. Maiorov [3, 4] considered a more

general statement of the problem for trigonometric polynomials from the set T(m), namely, he

studied the quantity

Tm(r, q, p) = inf
Km

sup
t∈L(Km)

‖t(r)‖q

‖t‖p
, 1 ≤ p, q ≤ ∞,

where the derivative of the order r ≥ 0 is treated in Weyl’s sense, i.e. β = r, Km = {j1, . . . , jm}

is an arbitrary collection of m different integers and

L(Km) =
{

t : t(x) = ∑
j∈Km

cje
ijx
}

.
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1 Definition of classes of functions and approximative characteristics

Let Lq be a space of 2π-periodic functions, that are summable to a power q, 1 ≤ q < ∞

(resp., essentially bounded for q = ∞), on the segment [−π, π]. The norm in this space is

defined as follows

‖ f‖Lq = ‖ f‖q =

(

1

2π

π
∫

−π

| f (x)|qdx

)
1
q

, 1 ≤ q < ∞,

‖ f‖L∞
= ‖ f‖∞ = ess sup

x∈[−π,π]

| f (x)|.

For a function f ∈ L1, we consider its Fourier series

∑
k∈Z

f̂ (k)eikx ,

where f̂ (k) =
1

2π

∫ π

−π
f (x)e−ikxdx are the Fourier coefficients of the function f . In what

follows, we always assume that the function f ∈ L1 satisfies the condition

π
∫

−π

f (x)dx = 0.

Further, let ψ 6= 0 be an arbitrary function of a natural argument and let β be an arbitrary

fixed real number. If a series

∑
k∈Z\{0}

f̂ (k)

ψ(|k|)
ei(kx+β π

2 sign k)

is the Fourier series of a summable function, then, following A.I. Stepanets [6, Vol. 1, p. 132], we

introduce the (ψ, β)-derivative of the function f and denote it by f
ψ
β . If ψ(|k|) = |k|−r , r > 0,

k ∈ Z \ {0}, then the (ψ, β)-derivative of the function f coincides with its (r, β)-derivative

(denoted by f r
β) in the Weyl-Nady sense.

By Ψ we denote the set of functions ψ(τ), τ ∈ N, satisfying the following conditions:

1) ψ are positive and nonincreasing;

2) there exists a constant C > 0 such that

ψ(τ)

ψ(2τ)
≤ C, τ ∈ N.

It is easy to check that the functions 1
τr , r > 0, τ ∈ N; lnγ(τ+1)

τr , γ ∈ R, r > 0, τ ∈ N, and

some other functions belong to the set Ψ.

In what follows, we formulate the obtained results in terms of order relations. For two

nonnegative sequences {a(n)}∞
n=1 and {b(n)}∞

n=1 the relation (order inequality) a(n) ≪ b(n)

means that there exists a constant C1 > 0 such that a(n) ≤ C1b(n). The relation a(n) ≍ b(n)

is equivalent to a(n) ≪ b(n) and b(n) ≪ a(n). Note that the constants Ci, i = 1, 2, 3, . . . , in

the order relations may depend on the some parameters. These parameters will sometimes be

indicated, in other cases they will be clear from the context.
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The main aim of the present paper is to establish order estimates for quantities of the form

Tm(ψ, β, ∞, p) = inf
Km

sup
t∈L(Km)

‖t
ψ
β‖∞

‖t‖p
(1)

under certain conditions imposed on ψ, β ∈ R.

Note that the value of Tm(r, ∞, p) (respectively Tm(ψ, β, ∞, p)) is a constant in inequalities of

Bernstein-Nykol’skii-type for the polynomials of the set L(Km), and the harmonics are chosen

in this way to make this value the smallest.

2 Auxiliary Statements

Consider a trigonometric polynomial

t̄(x) = ∑
k≤m

a(k, x, β)

k
, (2)

where

a(k, x, β) = cos

(

kx −
βπ

2

)

+ cos

(

(k + 1)x −
βπ

2

)

− cos

(

2kx −
βπ

2

)

− cos

(

(2k + 1)x −
βπ

2

)

.

The trigonometric polynomial a(k, x, β) has an order is not higher than 2k + 1, respectively

t̄(x) has an order not higher than 2m + 1, therefore t̄(x) ∈ T(m).

Lemma A ([7]). For the trigonometric polynomial t̄(x) of the form (2) the estimate ‖t̄‖∞ ≪ 1

is true.

Theorem A (see, e.g., [5, p. 159]). Let t ∈ T(m), m > 0. Then, for 1 ≤ q ≤ p ≤ ∞, the

inequality ‖t‖p ≪ m1/q−1/p‖t‖q is true.

Proposition A (see, e.g., [6, Vol. 2, p. 115]). Suppose that 1 < q < ∞ and ψ is an arbitrary

nonincreasing sequence of nonnegative numbers. Then, for any polynomial t ∈ T(m), the

estimate ‖t
ψ
β‖q ≪ ψ−1(m)‖t‖q is true.

Theorem B (Marcinkiewicz theorem, see, e.g., [11, Vol. 2, p. 346]). Suppose that {λn}n∈Z is a

given sequence satistying the following conditions:

1) |λn| ≤ C2, n ∈ Z;

2)
±2ν−1

∑
µ=±2ν−1

|λµ+1 − λµ| ≤ C2, ν ∈ N.

If

f (x) =
+∞

∑
k=−∞

f̂ (k)eikx ∈ Lq, 1 < q < ∞,

then

F(x) =
+∞

∑
k=−∞

λk f̂ (k)eikx ∈ Lq

and there exists a constant C3(q) such that

‖F‖q ≤ C3(q)C2‖ f‖q .
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Theorem C (Hausdorff-Young theorem, see, e.g., [11, Vol. 2, p. 154]). Suppose that 1 < q ≤ 2

and 1
q +

1
q′ = 1. Then for any function f ∈ Lq we have

‖ f‖q ≥

(

∑
k∈Z

| f̂ (k)|q
′
)1/q′

.

If a sequence {ck} is such that ∑k∈Z |ck|
q
< ∞, then there exists a function f ∈ Lq′ for which

f̂ (k) = ck and

‖ f‖q′ ≤

(

∑
k∈Z

| f̂ (k)|q
)1/q

.

Denote

E(m) = {ε = (ε1, . . . , εm), ε j = ±1, j = 1, m}.

Lemma B ([2]). Suppose that 0 < q < ∞ and pi ∈ R
n, i = 1, m. Then there exist positive

constants C4(q) and C5(q), such that the inequality

C4(q)

( m

∑
i=1

|pi|
2

)1/2

≤

(

2−m ∑
ε∈E (m)

∣

∣

∣

∣

m

∑
i=1

ε i pi

∣

∣

∣

∣

q)1/2

≤ C5(q)

( m

∑
i=1

|pi |
2

)1/2

,

is true.

3 Main results

We first prove the auxiliary proposition.

Lemma 1. Suppose ψ ∈ Ψ and β ∈ R. Then the estimate

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖∞
≫ ψ−1(m) (3)

is true.

Proof. We consider the trigonometric polynomial (2). By using Lemma A for the estimate (3),

we can write

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖∞
≫

‖t̄
ψ
β‖∞

‖t̄‖∞
≫ ‖t̄

ψ
β‖∞ =

∥

∥

∥

∥

∑
k≤m

(

a(k, x, β)

)ψ

β

· k−1

∥

∥

∥

∥

∞

≥

∣

∣

∣

∣

∑
k≤m

(

a(k, 0, β)

)ψ

β

· k−1

∣

∣

∣

∣

,

where

t̄(x)
ψ
β = ∑

k≤m

(

a(k, x, β)

)ψ

β

· k−1

and

(

a(k, x, β)

)ψ

β

=ψ−1(k) cos

(

kx −
βπ

2

)

+ ψ−1(k + 1) cos

(

(k + 1)x −
βπ

2

)

− ψ−1(2k) cos

(

2kx −
βπ

2

)

− ψ−1(2k + 1) cos

(

(2k + 1)x −
βπ

2

)

.
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Since the sign of

(

a(k, 0, β)

)ψ

β

for all k is the same, then

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖∞
≫ ∑

k≤m

∣

∣

∣

∣

(

a(k, 0, β)

)ψ

β

∣

∣

∣

∣

· k−1.

Further, if ψ ∈ Ψ, then for

(

a(k, 0, β)

)ψ

β

we can write

(

a(k, 0, β)

)ψ

β

≥ ψ−1(k) + ψ−1(k + 1)− ψ−1(2k)− ψ−1(2k + 1)

= ψ−1(2k)

(

ψ−1(k)

ψ−1(2k)
− 1

)

+ ψ−1(2k + 1)

(

ψ−1(k + 1)

ψ−1(2k + 1)
− 1

)

≥ ψ−1(2k) + ψ−1(2k + 1) = ψ−1(2k + 1)

(

ψ−1(2k)

ψ−1(2k + 1)
+ 1

)

≥ ψ−1(k)

and respectively then

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖∞
≫ ∑

k≤m

ψ−1(k)

k
≥

m

∑
k=m

2

ψ−1(k)

k
≥ ψ−1

(

m

2

) m

∑
k=m

2

1

k
≥ ψ−1

(

m

2

)

ln 2 ≍ ψ−1(m).

Lemma 1 is proved.

Now we consider a special case of the quantity (1), namely, we establish order estimates for

the quantity

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖p
, 1 < p < ∞.

Theorem 1. Suppose that ψ is positive and nonincreasing sequence and β ∈ R. Then the

relation

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖p
≪ ψ−1(m)m1/p, 1 < p < ∞, (4)

is true.

In addition, if ψ ∈ Ψ, then

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖p
≍ ψ−1(m)m1/p, 1 < p < ∞. (5)

Proof. We now establish the upper bound in (4). By using Theorem A and Proposition A, we

can write

sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖p
≪ sup

t∈T(m)

m1/p‖t
ψ
β‖p

‖t‖p
≪ sup

t∈T(m)

ψ−1(m)m1/p‖t‖p

‖t‖p
= ψ−1(m)m1/p.

We now derive the corresponding lower bound in (5). To this end, we present an example

of a polynomial for which the lower bounds are realized.



152 Vlasyk H.M., Sobchuk V.V., Shkapa V.V., Zamrii I.V.

For given m we choose s̃ ∈ N such that 2s̃−1 ≤ m < 2s̃. Consider a polynomial

t̃(x) =
1

2 ∑
k∈ρ(s̃)

eikx,

where ρ(s̃) = {k : 2s̃−1 ≤ |k| < 2s̃}. Then, according to the definition of the (ψ, β)-derivative

for the polynomial t̃, we can write

t̃
ψ
β (x) =

1

2 ∑
k∈ρ(s̃)

ψ−1(|k|)eikx = ∑
k∈ρ+(s̃)

ψ−1(k) cos kx,

where ρ+(s̃) = {k : 2s̃−1 ≤ k < 2s̃}.

Further, by using the relation (see, e.g., [6, Vol. 2, p. 42])

∥

∥

∥

∥

l

∑
k=m

cos kt

∥

∥

∥

∥

p

≍ (l − m)1−1/p, m, l ∈ N, l > m and 1 < p < ∞,

we find
∥

∥

∥

∥

2s̃−1

∑
k=2s̃−1

cos kx

∥

∥

∥

∥

p

≍ 2(s̃−1)(1−1/p) ≍ 2s̃(1−1/p). (6)

Then, by using Lemma 1 and the relation (6) and stating that ψ(2s̃) ≍ ψ(m) (because ψ ∈ Ψ

and 2s̃−1 ≤ m < 2s̃), we get

‖(t̃)
ψ
β‖∞ ≥ ψ−1(2s̃)‖t̃‖∞ ≍ ψ−1(2s̃)2s̃2−s̃(1−1/p)

∥

∥

∥

∥

2s̃−1

∑
k=2s̃−1

cos kx

∥

∥

∥

∥

p

≍ ψ−1(m)m1/p

∥

∥

∥

∥

2s̃−1

∑
k=2s̃−1

cos kx

∥

∥

∥

∥

p

= ψ−1(m)m1/p‖t̃‖p.

Theorem 1 proved.

In what follows, we formulate and prove the assertions concerning order estimates for the

quantity Tm(ψ, β, ∞, p) with 1 < p < ∞.

Theorem 2. Suppose that 2 ≤ p < ∞, ψ is a positive and nonincreasing sequence and β ∈ R.

Then the following estimate is true

Tm(ψ, β, ∞, p) ≪ ψ−1(m)m1/p.

If ψ ∈ Ψ and, in addition, there exists ε > 0 such that the sequence ψ(τ)τε , τ ∈ N, does not

increase, then

Tm(ψ, β, ∞, p) ≍ ψ−1(m)m1/p.

Proof. The upper bound follows from Theorem 1, namely

Tm(ψ, β, ∞, p) ≤ sup
f∈T(m)

‖ f
ψ
β ‖∞

‖ f‖p
≪ ψ−1(m)m1/p.

We prove the lower bound. Let Km = {j1, . . . , jm}, 0 < j1 < · · · < jm, be an arbitrary

collection of m different integers and let ms = |Km ∩ ρ(s)| be the number of elements of this
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collection from the set ρ(s), s ∈ Z+. In what follows, we consider only s ∈ Z+ for which

Km ∩ ρ(s) 6= ∅. Hence, the number of these s is finite.

Denote

Km = Km ∩ ((Z\{0})\K),

where K = {ρ(s) : s ≤ µ}, the quantity µ is chosen from the condition

|K| = ∑
s≤µ

2s ≤
m

2
, m ≍ 2µ,

where |K| is the number of elements of the set K. Then |K| ≍ m.

Since

∑
s>µ

ms ≥ C6
m

2
, (7)

we have |Km| ≍ m.

For each s ∈ Z+ such that Km 6= ∅, we consider a polynomial ∑k∈Km
eikx and show that the

relation
∥

∥

∥

∥

∑
k∈Km

ψ(k)eikx

∥

∥

∥

∥

p

≫ ψ(2s)

∥

∥

∥

∥

∑
k∈Km

eikx

∥

∥

∥

∥

p

is true. To this end, for s ∈ Z+ we consider a sequence {λk,s} given by the relation

{λk,s} =

{

ψ(2s)

ψ(k)

}

, k ∈ Km.

We now show that the sequence {λk,s} satisfies conditions 1) and 2) of Theorem B. For

this purpose, it suffices to check the validity of these conditions for positive k such that

k ∈ Km ∩ ρ(s).

Since ψ ∈ Ψ, we get

|λk,s| =

∣

∣

∣

∣

ψ(2s)

ψ(k)

∣

∣

∣

∣

≤
ψ(2s)

ψ(2s)
= 1,

and

∑
k∈Km

|λk+1,s − λk,s| = ∑
k∈Km

∣

∣

∣

∣

ψ(2s)

ψ(k + 1)
−

ψ(2s)

ψ(k)

∣

∣

∣

∣

≤ ψ(2s) ∑
k∈Km

(

1

ψ(k + 1)
−

1

ψ(k)

)

≤ ψ(2s)

(

1

ψ(2s)
−

1

ψ(2s−1)

)

≤
ψ(2s)

ψ(2s)

(

1 −
ψ(2s)

ψ(2s−1)

)

= 1 −
ψ(2s)

ψ(2s−1)
.

(8)

Last difference is equal to zero, or less than 1. Since

∑
k∈Km

|λk+1,s − λk,s| ≤ ∑
k∈Km

|λk+1,s|+ ∑
k∈Km

|λk,s| ≤ 2, (9)

comparing (8) and (9), we arrive at the estimate

∑
k∈Km

|λk+1,s − λk,s| ≤ 3.

Accordingly, if C7 = 3, then for the sequence {λk,s} conditions of Theorem B will be fulfilled.
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We now act by a multiplicator Λk,s specified by the sequence {λk,s} upon the polynomial

∑
k∈Km

ψ(k)eikx. As a result, we obtain

Λk,s ∑
k∈Km

ψ(k)eikx = ∑
k∈Km

ψ(2s)

ψ(k)
ψ(k)eikx = ψ(2s) ∑

k∈Km

eikx.

This yields
∥

∥

∥

∥

Λk,s ∑
k∈Km

eikx

∥

∥

∥

∥

p

= ψ(2s)

∥

∥

∥

∥

∑
k∈Km

eikx

∥

∥

∥

∥

p

.

On the other hand, by Theorem B, we get

∥

∥

∥

∥

Λk,s ∑
k∈Km

eikx

∥

∥

∥

∥

p

= ψ(2s)

∥

∥

∥

∥

∑
k∈Km

eikx

∥

∥

∥

∥

p

≤ C8

∥

∥

∥

∥

∑
k∈Km

ψ(k)eikx

∥

∥

∥

∥

p

.

We arrive at the required relation

∥

∥

∥

∥

∑
k∈Km

ψ(k)eikx

∥

∥

∥

∥

p

≫ ψ(2s)

∥

∥

∥

∥

∑
k∈Km

eikx

∥

∥

∥

∥

p

. (10)

Since p ≥ 2, by using Theorem C for (10), we can write

∥

∥

∥

∥

∑
k∈Km

ψ(k)eikx

∥

∥

∥

∥

p

≤

(

∑
k∈Km

|ψ(k)|p
′
)1/p′

≤

(

ψp′(2s−1)ms

)1/p′

≍

(

ψp′(2s)ms

)1/p′

= ψ(2s)m
1/p′

s .

(11)

Further, denote

L(Km) =

{

t : t(x) = ∑
k∈Km

eikx

}

.

Thus, according to (10) and (11), we get

sup
t∈L(Km)

‖t
ψ
β‖∞

‖t‖p
≥ sup

t∈L(Km)

‖t
ψ
β‖∞

‖t‖p
≥ sup

t∈L(Km)

ψ−1(2s)‖t‖∞

‖t‖p

≥ sup
t∈L(Km)

‖t‖∞

ψ(2s)‖t‖p
≥ sup

s∈Z+

ms

ψ(2s)m
1/p′
s

= sup
s∈Z+

ψ−1(2s)m
1/p
s .

(12)

Denote

I = sup
s∈Z+

ψ−1(2s)m
1/p
s , (13)

where ms ≤ 2s and ∑
s∈Z+

ms = m.

We choose µ > 0 such that 2µ−1 ≤ m < 2µ and

∑
s≤µ

ms ≤ ∑ s ≤ µ2s ≤ C92µ ≤
m

2
.
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In this case, the following relation

∑
s>µ

ms ≥ C10
m

2

is true. Moreover, the relation (13) immediately implies that

ms ≤ I pψp(2s) (14)

for any s ∈ Z+, Km 6= ∅.

Since the sequence ψ(τ)τε, τ ∈ N, is nonincrreasing, in view of (7) and (14), we obtain

m

2
≪ ∑

s>µ

ms ≤ ∑
s>µ

I pψp(2s) = I p ∑
s>µ

ψp(2s) = I p ∑
s>µ

ψp(2s)2spε2−spε

≪ I pψp(2µ)2µpε ∑
s>µ

2−spε≪ I pψp(2µ)2µpε2−µpε = I pψp(2µ).
(15)

By using (15), we get I ≫ ψ−1(2µ)m1/p and, in view of the inequality 2µ−1 ≤ m ≤ 2µ, we

obtain

I ≫ ψ−1(m)m1/p. (16)

Comparing (12), (13) and (16), we arrive at the required lower bound

Tm(ψ, β, ∞, p) ≫ ψ−1(m)m1/p.

Theorem 2 is proved.

Theorem 3. Suppose that 1 < p ≤ 2, ψ is a positive and nonincreasing sequence and β ∈ R.

Then the estimate

Tm(ψ, β, ∞, p) ≪ ψ−1(m)m1/2

is true.

If ψ ∈ Ψ and, in addition, there exists ε > 0, such that the sequence ψ(τ)τε, τ ∈ N, does

not increase, then

Tm(ψ, β, ∞, p) ≍ ψ−1(m)m1/2.

Proof. We prove the upper bound. We consider a set K = {ρ(s) : s ≤ µ}, where the quantity µ

is chosen from the condition

|K| = ∑
s≤µ

2s ≤
m

2
, m ≍ 2µ.

Then |K| ≍ m. By using Lemma B we get

2−|K| ∑
E (|K|)

∥

∥

∥

∥

∑
k∈K

εkeikx

∥

∥

∥

∥

p′

p′
≍ 2−|K| ∑

E (|K|)

π
∫

−π

∣

∣

∣

∣

∑
k∈K

εkeikx

∣

∣

∣

∣

p′

dx

=

π
∫

−π

2−|K| ∑
E (|K|)

∣

∣

∣

∣

∑
k∈K

εkeikx

∣

∣

∣

∣

p′

dx ≍

π
∫

−π

(

∑
k∈K

|eikx|2
)p′/2

dx ≍ mp′/2.

Then in the set E(|K|) there is a set {εk = ±1, k ∈ K} for which
∥

∥

∥

∥

∑
k∈K

εkeikx

∥

∥

∥

∥

p′
≪ m1/2. (17)
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Let us divide the set of indexes K into two subsets:

K+ = {k ∈ K : εk = 1} and K− = {k ∈ K : εk = −1}.

If |K| = |K+|+ |K−| ≍ m, then from here we conclude that |K+| ≍ m or |K−| ≍ m.

Let |K+| ≍ m. We consider a polynomial

t∗(x) = ∑
k∈K+

eikx,

for which according to (17)

‖t∗‖p′ ≪ m1/2. (18)

Then, according to the definition of the quantity Tm(ψ, β, ∞, p) we can write

Tm(ψ, β, ∞, p) ≪ sup
f∈L(K+)

‖ f
ψ
β ‖∞

‖ f‖p
, (19)

where L(K+) =

{

t : t(x) = ∑
k∈K+

eikx

}

.

Further, since f
ψ
β = f

ψ
β ∗ t∗, by using the Holder’s inequality and the relation (18), we obtain

‖ f
ψ
β ‖∞ ≤ ‖ f

ψ
β ‖p‖t∗‖p′ ≪ ‖ f

ψ
β ‖pm1/2. (20)

We now successively apply Proposition A for the estimate ‖ f
ψ
β ‖p by using (20), we get

‖ f
ψ
β ‖∞ ≪ ‖ f

ψ
β ‖pm1/2 ≪ ψ−1(m)‖ f‖p m1/2. (21)

Finally, substituting (21) into (19), we obtain

Tm(ψ, β, ∞, p) ≪
ψ−1(m)m1/2‖ f‖p

‖ f‖p
= ψ−1(m)m1/2.

We prove lower bound. Since at 2 ≤ p′, by virtue of the inequality ‖ · ‖2 ≤ ‖ · ‖p′ , we have

Tm(ψ, β, ∞, 2) ≥ Tm(ψ, β, ∞, p′). (22)

Then, using results of Theorem 2 and substituting them in (22), we obtain

Tm(ψ, β, ∞, p) ≥ Tm(ψ, β, ∞, 2) ≫ ψ−1(m)m1/2.

Theorem 3 is proved.

4 Conclusions

In the article, we studied Bernstein-Nikol’skii-type inequalities for trigonometric polyno-

mials with an arbitrary choice of harmonics and, in particular, for ordinary trigonometric poly-

nomials. Here are some comments on the result.

Remark 1. For ψ(|k|) = |k|−r , k ∈ Z \ {0}, the corresponding result for Theorem 1 was estab-

lished by Temlyakov (see, e.g., [8, p. 23]).
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Remark 2. For ψ(|k|) = |k|−r , k ∈ Z \ {0}, the corresponding results for Theorems 2 and 3

were obtained in [1].

Note results of established theorems supplement the exact order estimates for quantities

Tm(ψ, β, q, p) for 2 ≤ p ≤ q < ∞ and 1 < q ≤ p < ∞ obtained in [10] under different

conditions imposed on the sequence ψ(τ), τ ∈ N.

Comparing Theorems 1 and 3, we conclude that under the conditions of Theorem 3

imposed on the sequence ψ(τ), τ ∈ N, the quantity Tm(ψ, β, ∞, p) and the quantity sup
t∈T(m)

‖t
ψ
β‖∞

‖t‖p

for 1 < p ≤ 2 have different orders.
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Власик Г.М., Собчук В.В., Шкапа В.В., Замрiй I.В. Нерiвностi типу Бернштейна-Нiкольського для

тригонометричних полiномiв // Карпатськi матем. публ. — 2022. — Т.14, №1. — C. 147–157.

Отримано порядковi оцiнки для нерiвностей типу Бернштейна-Нiкольського для триго-

нометричних полiномiв з довiльним вибором гармонiк. Встановлено, що у випадку q = ∞,

1 < p ≤ 2 цi нерiвностi для тригонометричних полiномiв з довiльним вибором гармонiк i для

звичайних тригонометричних полiномiв мають рiзний порядок оцiнок.

Ключовi слова i фрази: (ψ, β)-похiдна, нерiвнiсть Бернштейна-Нiкольського.


