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Bernstein-Nikol’skii-type inequalities for trigonometric
polynomials

Vlasyk H.M.}, Sobchuk V.V.2, Shkapa V.V.!, Zamrii L.V.1

We obtain order estimates for Bernstein-Nikol’skii-type inequalities for trigonometric polyno-
mials with an arbitrary choice of harmonics. It is established that in the case g = 00,1 < p < 2
these inequalities for trigonometric polynomials with arbitrary choice of harmonics and for ordi-
nary trigonometric polynomials has different order of estimates.

Key words and phrases: (1, p)-derivative, Bernstein-Nikol’skii inequality.

1 State University of Telecommunications, 7 Solomyanska str., Kyiv, Ukraine

2 Taras Shevchenko National University, 4 Glushkov ave., Kyiv, Ukraine

E-mail: annawlasik@gmail.com(Vlasyk HM.), v.v.sobchuk@gmail.com (Sobchuk V.V.),
vshkapa@ukr.net (Shkapa V.V.), irinafraktal@gmail.com (ZamriiL.V.)

Introduction

In numerous problems of approximation theory of one variable periodic functions, an im-
portant role is played by inequalities connecting the norms of polynomials and their deriva-
tives in different metrics (see, e.g., [9, Chap I, Sec. 2]), namely,

for any trigonometric polynomial t € T(m) = {t D H(x) = g cpelt } and any
r >0, B € R the following inequality is true:

Itgllq < m PV, 1< p < g <o

Relations of this form are called Bernstein-Nikol’skii inequalities because they combine
Bernstein inequalities for p = g and Nikol’skii “inequalities of different metrics” for r = 0.

In connection with Bernstein-Nikol’skii inequalities, V.E. Maiorov [3,4] considered a more
general statement of the problem for trigonometric polynomials from the set T(1), namely, he
studied the quantity

o _inf £l
m(r,q,p) =inf sup ;
K teL(Ky) £l

where the derivative of the order » > 0 is treated in Weyl’s sense, i.e. B =7, Ky = {j1,--+, jm}
is an arbitrary collection of m different integers and

L(Ky) = {t: Hx) = % cjeffx}.
j€Km
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1 Definition of classes of functions and approximative characteristics

Let L, be a space of 27t-periodic functions, that are summable to a power g, 1 < g < o0
(resp., essentially bounded for g = o0), on the segment [—7, 7r]. The norm in this space is
defined as follows

£, = 1l = (5 [ 1F1x) s 1<q <o

IflliLe = lIflleo = esssup [f(x)

x&[—m,m]
For a function f € L, we consider its Fourier series
Z ],’-‘( k) eikx,
kez

R 1 7 .
where f(k) = - / f(x)e~™dx are the Fourier coefficients of the function f. In what
—7T

follows, we always assume that the function f € L; satisfies the condition

/ f(x)dx = 0.

—7T

Further, let ¢ # 0 be an arbitrary function of a natural argument and let 3 be an arbitrary
fixed real number. If a series .
f(k) ol (kx+p7 signk)
o WD

is the Fourier series of a summable function, then, following A L Stepanets [6, Vol. 1, p. 132], we
introduce the (1, B)-derivative of the function f and denote it by fg) CIEp(lk]) = k|77, r >0,
k € Z\ {0}, then the (¢, B)-derivative of the function f coincides with its (r, f)-derivative
(denoted by fE) in the Weyl-Nady sense.

By ¥ we denote the set of functions ¢(7), T € N, satisfying the following conditions:

1) ¥ are positive and nonincreasing;

2) there exists a constant C > 0 such that

In"(t+1)
—l—r

It is easy to check that the functions %, r>0,7€N; , Y€ R, r>07eN,and
some other functions belong to the set ¥.

In what follows, we formulate the obtained results in terms of order relations. For two
nonnegative sequences {a(n)}> ; and {b(n)}$_; the relation (order inequality) a(n) < b(n)
means that there exists a constant C; > 0 such that a(n) < Cyb(n). The relation a(n) =< b(n)
is equivalent to a(n) < b(n) and b(n) < a(n). Note that the constants C;, i = 1,2,3,..., in
the order relations may depend on the some parameters. These parameters will sometimes be

indicated, in other cases they will be clear from the context.
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The main aim of the present paper is to establish order estimates for quantities of the form

£/ 0
Tm(lp,ﬁ,oo,p):il?f sup ﬁ
mteL(Ky) IEllp

(1)

under certain conditions imposed on ¢, B € R.

Note that the value of T, (7, o0, p) (respectively Ty, (¢, B, o0, p)) is a constant in inequalities of
Bernstein-Nykol'skii-type for the polynomials of the set L(Kj;,), and the harmonics are chosen
in this way to make this value the smallest.

2 Auxiliary Statements

Consider a trigonometric polynomial
_ a(k, x,
t(x) = Z M’ 2)

where

a(k,x, ) = cos (kx - ﬁ%) + cos <(k +1)x — ﬁ%)
— COS <2kx — ﬁ%) — Cos ((Zk +1)x — ﬁ%)

The trigonometric polynomial a(k, x, B) has an order is not higher than 2k + 1, respectively
t(x) has an order not higher than 2m + 1, therefore f(x) € T(m).

Lemma A ([7]). For the trigonometric polynomial ¥(x) of the form (2) the estimate ||f||c < 1
is true.

Theorem A (see, e.g., [5, p. 159]). Let t € T(m), m > 0. Then, for 1 < g < p < oo, the
inequality ||t||, < m'/9=1/P||t||, is true.

Proposition A (see, e.g., [6, Vol. 2, p. 115]). Suppose that 1 < g < oo and  is an arbitrary
nonincreasing sequence of nonnegative numbers. Then, for any polynomial t € T(m), the
estimate Htqu < P~ (m)||t||, is true.

Theorem B (Marcinkiewicz theorem, see, e.g., [11, Vol. 2, p. 346]). Suppose that {\, },cz is a
given sequence satistying the following conditions:

1) M| <Cp,neZ;

+2v—1
2 Y, A=A <G, veN.
p==+2v-1
If
+oo )
fx)=Y fke*eLl, 1<g<oo,
k=—o00
then

F(x) = JFXO:O A f(k)e™ e L,

k=—o00

and there exists a constant C3(q) such that

IFlly < C3(q)Cz| fllg-
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Theorem C (Hausdorff-Young theorem, see, e.g., [11, Vol. 2, p. 154]). Suppose that 1 < g < 2
and % + % = 1. Then for any function f € L, we have

A ! 1/q/
T ( Y \f(k)\q) |

keZ

If a sequence {cy } is such that Y iz |ck|7 < oo, then there exists a function f € Ly for which
f(k) = ¢ and

1/q
Ifly < ( > |f<k>|‘f) .

keZ

Denote

E(m) ={e=(er,...,em) & = £1,j =1,m}.

Lemma B ([2]). Suppose that 0 < g < o and p; € R",i = 1,m. Then there exist positive
constants C4(q) and Cs(q), such that the inequality
g\ 1/2 m 1/2
) <c@(Link)
i=1

cw(Eme) <(z ¥

ec&(m)

m

Z €ipi

i=1

is true.

3 Main results

We first prove the auxiliary proposition.

Lemma 1. Supposep € ¥ and p € R. Then the estimate

(A
sup
ter(m) It

> ¢ (m) (3)

is true.

Proof. We consider the trigonometric polynomial (2). By using Lemma A for the estimate (3),
we can write

T (S ‘o v
Sup > = > ”tﬁ”oo == Z a(k/ x/,B) : k Z Z a(k107ﬁ> - k ’
tet(m) |l 1]l oo < 8 o |i<m 8
where
I(\¥ Y -1
t(x)l3 =) (a(k,x,ﬁ)) -k
k<m B
and

(a(k, X, ))Z =4~ (k) cos <kx — %”) + ¢~ (k+1) cos <(k +1)x - %”)

— ¢~ 1(2k) cos <2kx — ﬁ%) — ¢ 12k + 1) cos <(2k+ 1)x — ﬁ%)
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[
Since the sign of (a(k, 0, ,3)) for all k is the same, then

B
( k05>:'-k1.
v

Hf¢ oo
Further, if p € ¥, then for <a(k, 0, 5)) we can write

et e ™ 55,

sup > Z
p

(a(k,o,m)z > Fp k1) — g2k — (2K 1)

RN

% 12k +1)
-1
> (2k) + 2k +1) =1 (2k+1) <7¢ﬂ(2§{2§>1) + 1) > (k)

and respectively then

11| co "o m\ 1
o i > DIz DI e (5) Dz e (5) mee o
teT(m) oo k<m k=1 k=22
Lemma 1 is proved. 0

Now we consider a special case of the quantity (1), namely, we establish order estimates for
the quantity
It} 11
sup 1<p<oo
teT(m Ht”ﬁ
Theorem 1. Suppose that ¢ is positive and nonincreasing sequence and B € R. Then the

relation v
1£4 ]l

p <Y ' mym'P, 1< p <o, (4)

e T(m) Hfllp

is true.
In addition, if € ¥, then

¥

tg oo
sup M =~ {m)ymP, 1< p <o )
rerom NEllp

Proof. We now establish the upper bound in (4). By using Theorem A and Proposition A, we
can write
15 lco ml/P e, P (m)m P[],

sup L sup —— K su
teT(m ”f”p reremy Il teT(m) 1£]]

= ¢~ (m)m'/?.

We now derive the corresponding lower bound in (5). To this end, we present an example
of a polynomial for which the lower bounds are realized.
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For given m we choose § € IN such that 25~1 < m < 2°. Consider a polynomial

Z ez’kx’

kep(3)

-+
~—~
=
~—
I
N —

where p(8) = {k : 2571 < |k| < 25}. Then, according to the definition of the (¢, B)-derivative
for the polynomial f, we can write

- 1 _ ; _
B)=5 ¥ ¢ (k)ek = Y ik cosky,
kep(s) kept(5)
where p"(3) = {k: 2571 <k < 25}
Further, by using the relation (see, e.g., [6, Vol. 2, p. 42])

I
Zcoskt x(l—m)lfl/p, mleN, I >mand 1 <p < oo,
k=m p

we find )
21

Z cos kx

k=251

~ 2(6=1)(1-1/p) — 95(1-1/p) (6)
p

Then, by using Lemma 1 and the relation (6) and stating that (2°) < ¢(m) (because ¢ € ¥
and 2571 < m < 25), we get

251
1E) o = 9 @) [Fleo = 972927201 Y coskx
k=251 P
251
xglfl(m)ml/p Z coskx zzp’l(m)ml/prHp.
k=251 p
Theorem 1 proved. O

In what follows, we formulate and prove the assertions concerning order estimates for the
quantity 7, (¢, B, 00, p) with 1 < p < 0.

Theorem 2. Suppose that 2 < p < oo, ¢ is a positive and nonincreasing sequence and € R.
Then the following estimate is true

T (9, B, 00, p) < ¢~ (m)ym*/P.

Ifp € ¥ and, in addition, there exists ¢ > 0 such that the sequence ¢ (7)71%, T € IN, does not
increase, then

T (9, B, 00, p) < 9~ (m)m*/P.

Proof. The upper bound follows from Theorem 1, namely

152 1l
ﬁn(lplﬁroolp) S Sup
serim) 11

< P (m)m'/P.

We prove the lower bound. Let Ky, = {j1,...,jm}, 0 < j1 < -+ < ju, be an arbitrary
collection of m different integers and let ms = |K,, N p(s)| be the number of elements of this
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collection from the set p(s), s € Z,. In what follows, we consider only s € Z. for which
Ky Np(s) # @. Hence, the number of these s is finite.
Denote

K = Kn N ((Z\{0})\K),
where K = {p(s) : s < u}, the quantity u is chosen from the condition

K| = 225<— m =< 2F,

s<u

where | K] is the number of elements of the set K. Then |K| =< m.
Since

Z ms > C6_ ()

s>

we have |K,,| < m.
For each s € Z such that K, # &, we consider a polynomial YkeK,, ¢’** and show that the

relation
Z lp(k)eikx Z eikx

k€K, k€K

> p(2°)
p

p

is true. To this end, for s € Z_ we consider a sequence {A;} given by the relation

(= {5} kK

We now show that the sequence {A;} satisfies conditions 1) and 2) of Theorem B. For
this purpose, it suffices to check the validity of these conditions for positive k such that
k € Ky Np(s).

Since ¢ € ¥, we get

$2)| o »(2)
A s| — < =1,
o =| §@)
and
_ P p2)| ( 1 >
Mes1s — Mes| = _
kEZKm| k15— Akl kEZK pk+1) k) ZK k+1) k) ©
sy( 1 1 ¥(2°)
< y(2 — =1- .
<@ (57 g ) <3 (1 96) "1 5o
Last difference is equal to zero, or less than 1. Since
Z Mk—o—l,s _)\k,s| < Z |Ak+1,s| + Z |Ak,s| <2, (9)

kEKm kEKm kEKm

comparing (8) and (9), we arrive at the estimate

Z Mk+1,s - Ak,s‘ <3.
keK,,

Accordingly, if C; = 3, then for the sequence {Ay;} conditions of Theorem B will be fulfilled.
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We now act by a multiplicator Ay, specified by the sequence {Ay s} upon the polynomial
Y (k)e**. As a result, we obtain

keKy,
ikx Y (25) ikx s
s 1 R = ) rswlet = () )
keK, keK, k€K,
This yields
HAk,s Z eikx 1[1(25) eikx
keK p keK p
On the other hand, by Theorem B, we get
‘ Aks Z e 25) Z eikx < Cg Z l[)(k)eikx
keKy p keKy, p keKy P
We arrive at the required relation
Z P (k) ptkx > ¢ (25) Z ptkx (10)
keKi p keKi p

Since p > 2, by using Theorem C for (10), we can write

< (£ rww’)w < <¢,,/(251>m5>”ﬁ’

keKy, (11)
! 1/17/ /
= <¢P (25)m5> = p(2°)mi’7 .

Z lp(k)eikx

keK,,

Further, denote
L(Ky) = {t t(x) =) eikx}.

Thus, according to (10) and (11), we get

¥ ¥ B
s ltg oo . p 1£5 oo 129 |t]|oo
teL(Kn) Il teL(K Ht”ﬁ teL(Ky) £ 1)
> sup 7HSHOO > sup M 77 = Sup 1[)‘1(25)71151,/’7.
teL(Ky) P(2 )”tHP seZ P(25)mg P sez,
Denote
I=sup ¢ 1(2°)m)’?, (13)
seZ

where mg < 2and Y. ms = m.
seZ

We choose y > 0 such that 21 < < 21 and

Yome < s <2t < G2t <

s<pu
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In this case, the following relation
m
Z ms > ClOE

s>

is true. Moreover, the relation (13) immediately implies that
ms < IPpP(2°) (14)

foranys € Z, Ky # @.
Since the sequence ¥ (7)71%, T € IN, is nonincrreasing, in view of (7) and (14), we obtain
m < Z mg < Z 1?71/,;7(2S) = JP Z 1/1’7(25) — P Z lpp(25)2sps2—spe
2 S>u s>u s>u s>

< IPP(2H)21PE YT 27SPE o [PypP (2H)2MPEQTHPE = [PyP (21,
s>

(15)

By using (15), we get I >> ¢~ 1(2#)m!/? and, in view of the inequality 2+~ 1 < m < 2¥, we
obtain
> ¢ Y(m)m/?. (16)

Comparing (12), (13) and (16), we arrive at the required lower bound

Tm (lI)/ ﬁ/ o, p) > lI]_l (m)ml/p
Theorem 2 is proved. O

Theorem 3. Suppose that 1 < p < 2, 9 is a positive and nonincreasing sequence and € R.
Then the estimate

Ton(W, B, 00, p) < ¢~ (m)m'/?
is true.

Ifp € ¥ and, in addition, there exists ¢ > 0, such that the sequence P(7)t¢, T € IN, does
not increase, then

Tn(W, B, 00, p) < ¢~ (m)m*/2.

Proof. We prove the upper bound. We consider a set K = {p(s) : s < u}, where the quantity u
is chosen from the condition

K=Y 2<Z, m=o
s<u 2

Then |K| =< m. By using Lemma B we get

p/
= 271K z /

2~ IK] Z Zekeikx Zske dx
E(IK[) " kek r (K7, 1 kek
p'/2 )
:/2 K| Z Y g™ dx/\/<2]e’kx\2> dx = mP' /2.
E(K|) | kek o \keK

Then in the set £(|K|) there is a set {¢; = £1,k € K} for which

Z Skeikx

kek

< m'/?. (17)
p/
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Let us divide the set of indexes K into two subsets:
Ky ={keK:g=1} and K_={keK:g =—1}.

If |[K| = |K4| + |[K-| < m, then from here we conclude that |K;.| =< m or |[K_| < m.
Let |[Ky| =< m. We consider a polynomial

t*(x) — Z eikx’

keK;

for which according to (17)
[E]] < m/2. (18)

Then, according to the definition of the quantity 7, (i, B, oo, p) we can write

1£4 Nl
Tu(y, B,00,p) < sup —o—

, (19)
o A

where L(K ) = {t:t(x): Y eka}.

keK;
Further, since f Y= f;gp * t*, by using the Holder’s inequality and the relation (18), we obtain

15 leo < IAE N IE L < LS Il pm 2. (20)
We now successively apply Proposition A for the estimate || f, ;f || » by using (20), we get

1L Nl < FE ™2 < 9 (m) | ™. @1

Finally, substituting (21) into (19), we obtain
yLmym 2,

Tu(p, B0, p) < i (mym!/2.
P
We prove lower bound. Since at 2 < p’, by virtue of the inequality || - ||2 < [ - [|,7, we have
T (, B,00,2) = Tu(1p, B, 00, p'). (22)

Then, using results of Theorem 2 and substituting them in (22), we obtain

Tu(, B,00,p) > Tu(, B,00,2) > ¢~ (m)m'/2.

Theorem 3 is proved. O

4 Conclusions

In the article, we studied Bernstein-Nikol’skii-type inequalities for trigonometric polyno-
mials with an arbitrary choice of harmonics and, in particular, for ordinary trigonometric poly-
nomials. Here are some comments on the result.

Remark 1. Fory(|k|) = |k|™", k € Z\ {0}, the corresponding result for Theorem 1 was estab-
lished by Temlyakov (see, e.g., [8, p. 23]).
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Remark 2. For y(|k|) = |k|™", k € Z\ {0}, the corresponding results for Theorems 2 and 3
were obtained in [1].

Note results of established theorems supplement the exact order estimates for quantities
Tu($,B,q,p) for2 < p < g < owand1l < g < p < oo obtained in [10] under different
conditions imposed on the sequence (1), T € IN.

Comparing Theorems 1 and 3, we conclude that under the conditions of Theorem 3
A

imposed on the sequence ¥(7), T € N, the quantity 7, (¢, B, o0, p) and the quantity sup T,
teT

€T (m)
for 1 < p < 2 have different orders.
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OTpumaHO IOPSIAKOBI OLIIHKM AASI HepiBHOCTelt Tumy beprinTeriHa-HiKoABCEKOTO AAS TpUTO-
HOMETPUYHMX MOAIHOMIB 3 AOBIABHMM BMO0OPOM TapMOHIK. BcTaHOBAEHO, IO Y BUIIAAKY § = ©0,
1 < p < 2 1i HepiBHOCTI AS TPUTOHOMETPMYHMX ITOAIHOMIB 3 AOBIABHMM BMOOPOM IapMOHIK i AAsT
3BMYAlHIX TPUTOHOMETPUUYHMX ITOAIHOMIB MalOTh Pi3HMI MOPSAOK OLIIHOK.

Kutouosi cosa i ppasu: (1, B)-moxiaHa, HepiBHicTb bepHiTeriHa-HikoAbCHKOTO.



