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On Wick calculus and its relationship with stochastic
integration on spaces of regular test functions in the Lévy

white noise analysis

Kachanovsky N.A.

We deal with spaces of regular test functions in the Lévy white noise analysis, which are con-

structed using Lytvynov’s generalization of a chaotic representation property. Our aim is to study

properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a

relationship between Wick multiplication and integration, on these spaces. More exactly, we estab-

lish that a Wick product of regular test functions is a regular test function; under some conditions a

Wick version of a holomorphic function with an argument from the space of regular test functions

is a regular test function; show that when employing the Wick multiplication, it is possible to take

a time-independent multiplier out of the sign of an extended stochastic integral with respect to a

Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a rep-

resentation of the extended stochastic integral via formal Pettis integral from the Wick product of

the original integrand by a Lévy white noise. As an example of an application of our results, we

consider an integral stochastic equation with Wick multiplication.
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Introduction

A theory of test and generalized functions with arguments belonging to infinite-dimen-

sional spaces has many applications in different areas of modern mathematics and physics.

There are various approaches to building of such a theory. One of the most successful of

them consists in introduction of spaces of the above-mentioned functions in a way that the

pairing between test and generalized functions is generated by integration with respect to

some probability measure on a dual nuclear space. First it was the Gaussian measure, the

corresponding theory is called the Gaussian white noise analysis (e.g., [2, 17, 30, 31]), then it were

realized numerous generalizations. In particular, important results were obtained when the

above-mentioned probability measure is the generalized Meixner measure ( [35]), and the Lévy

white noise measure (e.g., [7,8,32]), the corresponding theories are called the Miexner- and Lévy

white noise analysis, respectively.

A very important role in the Gaussian analysis belongs to a so-called chaotic representation

property (CRP): roughly speaking, any square integrable (with respect to the Gaussian mea-

sure) random variable can be decomposed in a series of repeated Itô’s stochastic integrals with

nonrandom integrands (see, e.g., [33] for details). Using CRP, one can construct diverse spaces
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of test and generalized functions, introduce and study stochastic integrals and derivatives on

these spaces, etc. Unfortunately, in the Meixner and Lévy white noise analysis there is no

CRP, generally speaking [39]; nevertheless, there are various generalizations of this property.

For example, in the Meixner analysis one can decompose square integrable random variables

in series of generalized Meixner polynomials [35]; in the Lévy analysis there are decomposi-

tions connected with a Lévy-Khintchine representation of a Lévy process (Itô’s approach [19],

see also [6]), decompositions by repeated stochastic integrals from nonrandom integrands

with respect to so-called orthogonalized centered power jump processes (Nualart-Schoutens’

approach [34], see also [36]), decompositions by special orthogonal functions (Lytvynov’s

approach [32], see also [5]), special orthogonal decompositions with numeric coefficients

(Øksendal’s approach [8], see also [7]), etc. The relationships between these generalizations

of CRP are described in, e.g., [1, 7, 8, 24, 32, 38, 40].

In the present paper we deal with one of the most useful and challenging generalizations

of CRP in the Lévy white noise analysis, which is proposed by E. W. Lytvynov [32]. The

idea of this generalization is to decompose random variables, square integrable with respect

to the Lévy white noise measure, in series of special orthogonal functions with nonrandom

kernels, by analogy with decompositions of random variables, square integrable with respect

to the Gaussian measure, by Hermite polynomials (remind that the last decompositions are

equivalent to the decompositions by repeated Itô’s stochastic integrals). Like using CRP in

the Gaussian analysis, one can use Lytvynov’s generalization of CRP, in particular, in order

to construct and study spaces of regular and nonregular test and generalized functions [20],

introduce and investigate various operators and operations on these spaces, etc. Note that the

extended stochastic integral and the Hida stochastic derivative on the spaces of regular test and

generalized functions are introduced and studied in [11, 20], operators of stochastic differen-

tiation — in [9, 10, 14], some elements of a Wick calculus and its relationship with operators

of stochastic differentiation and integration on the spaces of regular generalized functions —

in [12, 13]. As for the spaces of nonregular test and generalized functions — the corresponding

results are presented in [20, 26–29]. The paper [25] is a survey of some author’s results related

to the development of the Lévy white noise analysis in terms of Lytvynov’s generalization of

CRP.

As is known, in various versions of a white noise analysis a natural multiplication on spaces

of generalized functions is a so-called Wick multiplication. In particular, in many cases, using

the Wick multiplication, one can take a time-independent multiplier out of the sign of an

extended stochastic integral. Moreover, such a result holds true for a Pettis integral (a weak

integral). Also, the extended stochastic integral can be presented as a Pettis integral (or a formal

Pettis integral — depending on the concrete situation) from the Wick product of the original

integrand by the corresponding white noise. On the above-mentioned spaces of nonregular

generalized functions in the Lévy analysis such results were obtained in [29], on the spaces of

regular generalized functions — in [13].

The aim of the present paper is to introduce by analogy with [22] elements of the Wick

calculus on the spaces of regular test functions of the Lévy analysis; to transfer the results

of [13] to these spaces; and to consider some related topics (in particular, a Pettis integral over

a set of infinite Lebesgue measure and a Wick product under the sign of this integral).

The paper is organized in the following manner. In the first section we introduce a Lévy

process L and construct a probability triplet connected with L, convenient for our considera-
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tions; then we describe Lytvynov’s generalization of CRP; construct a regular rigging of the

space of square integrable random variables (the positive and negative spaces of this rigging

are the spaces of regular test and generalized functions respectively); describe the extended

stochastic integral with respect to L on the spaces of regular test and generalized functions;

and recall necessary notions of the Wick calculus on the spaces of regular generalized func-

tions. In the second section we introduce elements of the Wick calculus on the spaces of regular

test functions by analogy with the Meixner analysis [22]; show that when employing the Wick

multiplication, it is possible to take a time-independent multiplier out of the sign of the ex-

tended stochastic integral and of the Pettis integral; prove a theorem about a representation of

the extended stochastic integral via the formal Pettis integral; and consider an example of an

integral stochastic equation with Wick multiplication.

It is important to note that the spaces of regular test and generalized functions in the Lévy

analysis and in the Meixner analysis have similar structure, see Subsection 2.1 for details. This

allows us to reformulate some results of the Meixner analysis for the Lévy analysis and vice

versa. In the present paper we use this opportunity, when possible.

1 Preliminaries

In this paper we denote by ‖ · ‖H or | · |H the norm in a space H; by (·, ·)H the real (i.e. bi-

linear) scalar product in a space H; by 〈〈·, ·〉〉H the dual pairing generated by the scalar product

in a space H; by B the Borel σ-algebra; and by 1∆ the indicator of a set ∆. Further, we use a

designation pr lim (resp., ind lim) for a projective (resp., inductive) limit of a family of spaces,

this designation implies that the limit space is endowed with the projective (resp., inductive)

limit topology (see, e.g., [3] for a detailed description).

1.1 A Lévy process and its probability space

Denote R+ := [0,+∞). Let L = (Lu)u∈R+ be a real-valued locally square integrable Lévy

process (i.e. a continuous in probability random process on R+ with stationary independent

increments and such that L0 = 0, see, e.g., [4] for details) without Gaussian part and drift. As

is well known (e.g., [8]), the characteristic function of L is

E[eiθLu ] = exp
[
u
∫

R

(eiθx − 1 − iθx)ν(dx)
]

, (1)

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here E denotes the expec-

tation. We assume that ν is a Radon measure whose support contains an infinite number of points,

ν({0}) = 0, there exists ε > 0 such that
∫

R
x2eε|x|ν(dx) < ∞, and

∫
R

x2ν(dx) = 1.

Define a measure of the white noise of L. Let D denote the set of all real-valued infinite-

differentiable functions on R+ with compact supports. As is well known, D can be endowed

by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]). Let D′ be

the set of linear continuous functionals on D. It is worth noting that D and D′ are the positive

and negative spaces of a chain

D′ ⊃ L2(R+) ⊃ D, (2)

where L2(R+) is the space of (classes of) real-valued functions on R+, square integrable with

respect to the Lebesgue measure (e.g., [3]). Denote by 〈·, ·〉 the dual pairing generated by the

scalar product in L2(R+), this notation will be preserved for dual pairings in tensor powers of

the complexification of chain (2).
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Definition 1. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical σ-

algebra, with the Fourier transform

∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫

R+×R

(eiϕ(u)x − 1 − iϕ(u)x)duν(dx)
]

, ϕ ∈ D, (3)

is called the measure of a Lévy white noise.

The existence of µ follows from the Bochner-Minlos theorem (e.g., [18]), see [32]. Below we

assume that the σ-algebra C(D′) is completed with respect to µ.

Denote by (L2) := L2(D′, C(D′), µ) the space of (classes of) complex-valued functions on

D′, square integrable with respect to µ (in what follows, this notation will be used very often).

Let f ∈ L2(R+) and a sequence (ϕk ∈ D)k∈N converge to f in L2(R+) as k → ∞ (remind

that D is a dense set in L2(R+)). One can show [7, 8, 24, 32] that 〈◦, f 〉 := (L2)−lim
k→∞

〈◦, ϕk〉 is a

well-defined element of (L2).

Put 1[0,0) ≡ 0. It follows from (1) and (3) that
(
〈◦, 1[0,u)〉

)
u∈R+

can be identified with a Lévy

process on the probability space (probability triplet) (D′, C(D′), µ), see, e.g., [7,8]. So, for each

u ∈ R+ we have Lu = 〈◦, 1[0,u)〉 ∈ (L2).

Note that the derivative in the sense of generalized functions of a Lévy process (a Lévy

white noise) is L̇·(ω) = 〈ω, δ·〉 ≡ ω(·), where δ is the Dirac delta-function. Therefore L̇ is

a generalized random process (in the sense of [15]) with trajectories from D′, and µ is the

measure of L̇ in the classical sense of this notion [16].

Remark 1. A Lévy process without Gaussian part and drift is a Poisson process if its Lévy

measure is a point mass at 1. This measure does not satisfy the assumptions accepted above (its

support does not contain an infinite number of points); nevertheless, all results of the present

paper have natural analogs in the Poissonian analysis. The reader can find more information

about peculiarities of the Poissonian case in [24, Subsection 1.2].

1.2 Lytvynov’s generalization of the chaotic representation property

Denote by ⊗̂ the symmetric tensor multiplication, by a subscript C — complexifications of

spaces. Set Z+ := N ∪ {0}. Denote by P the set of complex-valued polynomials on D′ that

consists of zero and elements of the form

f (ω) =

N f

∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, f (n) ∈ D⊗̂n
C

, N f ∈ Z+, f (N f ) 6= 0,

here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0
C

:= C. The measure µ

of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and

properties of the measure ν, see also [32]), therefore P is a dense set in (L2) [37]. Denote by

Pn, n ∈ Z+, the set of polynomials of power smaller than or equal to n, by Pn the closure of

Pn in (L2). Let for n ∈ N Pn := Pn ⊖Pn−1 (the orthogonal difference in (L2)); put P0 := P0.

It is clear that

(L2) =
∞
⊕

n=0
Pn. (4)

Let f (n) ∈ D⊗̂n
C

, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : ∈ (L2) the orthogonal projection of a

monomial 〈◦⊗n, f (n)〉 onto Pn. Let us define real (bilinear) scalar products (·, ·)ext on D⊗̂n
C

,
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n ∈ Z+, by setting for f (n), g(n) ∈ D⊗̂n
C

( f (n) , g(n))ext :=
1

n!

∫

D′
: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω). (5)

The proof of the well-posedness of this definition coincides up to obvious modifications with

the proof of the corresponding statement in [32].

Denote by | · |ext the norms corresponding to scalar products (5), i.e. | · |ext :=
√
(·, ·)ext.

Let H
(n)
ext , n ∈ Z+, be the completions of D⊗̂n

C
with respect to these norms. For F(n) ∈ H

(n)
ext

define a Wick monomial : 〈◦⊗n, F(n)〉 :
def
= (L2)−lim

k→∞
: 〈◦⊗n, f

(n)
k 〉 :, where D⊗̂n

C
∋ f

(n)
k → F(n) as

k → ∞ in H
(n)
ext . The well-posedness of this definition can be proved by the method of “mixed

sequences”. It is easy to show that : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and : 〈◦, F(1)〉 : = 〈◦, F(1)〉

(cf. [32]).

In the next statement, which follows from (4) and the fact that for each n ∈ Z+ the set

{: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n
C

} is dense in Pn, Lytvynov’s generalization of the chaotic representa-

tion property (CRP) is described.

Theorem 1 (cf. [32]). A random variable F ∈ (L2) if and only if there exists a unique sequence

of kernels F(n) ∈ H
(n)
ext , n ∈ Z+, such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (6)

(the series converges in (L2)) and

‖F‖2
(L2) =

∫

D′
|F(ω)|2µ(dω) = E|F|2 =

∞

∑
n=0

n!|F(n)|2ext < ∞.

Remark 2. In the present paper we do not use directly an explicit formula for the scalar prod-

ucts (·, ·)ext, and therefore we prefer not to write it down. But for the interested reader we note

that such a formula is calculated in [32]; in another record form (more convenient for some

calculations) it is given in, e.g., [12, 14, 20, 24, 25]. Also we note that for each n ∈ N the space

H
(n)
ext is the symmetric subspace of the space of (classes of) complex-valued functions on Rn

+,

square integrable with respect to a certain Radon measure.

Denote H := L2(R+), then HC = L2(R+)C (in what follows, this notation will be used very

often). It follows from the explicit formula for (·, ·)ext that H
(1)
ext = HC, and for n ∈ N\{1} one

can identify H⊗̂n
C

with the proper subspace of H
(n)
ext that consists of “vanishing on diagonals”

elements (roughly speaking, such that F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n}: k 6= j,

but uk = uj). In this sense the space H
(n)
ext is an extension of H⊗̂n

C
, this explains why we use the

subscript “ext” in our designations.

1.3 A regular rigging of (L
2)

Denote PW :=
{

f = ∑
N f

n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n
C

, N f ∈ Z+
}
⊂ (L2). Accept on default

β ∈ [0, 1], q ∈ Z in the case β ∈ (0, 1] and q ∈ Z+ if β = 0. Define real (bilinear) scalar products
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(·, ·)q,β on PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)q,β :=

min(N f ,Ng)

∑
n=0

(n!)1+β2qn( f (n) , g(n))ext.

One can easily verify that the axioms of a scalar product are fulfilled (see [12]).

Denote by (L2)
β
q the completions of PW with respect to the norms generated by scalar prod-

ucts (·, ·)q,β; and set (L2)β := pr limq→+∞(L2)
β
q . As is easy to see, f ∈ (L2)

β
q if and only if f can

be uniquely presented as series (6) (with kernels f (n) ∈ H
(n)
ext ) that converges in (L2)

β
q , and

‖ f‖2

(L2)
β
q
=

∞

∑
n=0

(n!)1+β2qn| f (n)|2ext < ∞; (7)

and f ∈ (L2)β if and only if f can be uniquely presented in form (6) with convergent series (7)

for each q ∈ Z+.

Proposition 1 ([20]). For any β ∈ (0, 1] and any q ∈ Z, in the same way as for β = 0 and any

q ∈ Z+, the space (L2)
β
q is densely and continuously embedded into (L2) = (L2)0

0.

Taking into account this result, we can consider a chain

(L2)−β ⊃ (L2)
−β
−q ⊇ (L2) ⊇ (L2)

β
q ⊃ (L2)β, (8)

where (L2)
−β
−q and (L2)−β = ind limq→+∞(L2)

−β
−q are the spaces dual of (L2)

β
q and (L2)β respec-

tively.

Definition 2. Chain (8) is called a parametrized regular rigging of (L2). The spaces (L2)
β
q

and (L2)β are called parametrized Kondratiev-type spaces of regular test functions, and the

spaces (L2)
−β
−q and (L2)−β are called parametrized Kondratiev-type spaces of regular general-

ized functions.

The next statement follows from the definition of (L2)
−β
−q and the general duality theory.

Proposition 2. 1) Any regular generalized function F ∈ (L2)
−β
−q can be uniquely presented as

formal series (6) (with kernels F(n) ∈ H
(n)
ext ) that converges in (L2)

−β
−q , and

‖F‖2

(L2)
−β
−q

=
∞

∑
n=0

(n!)1−β2−qn|F(n)|2ext < ∞. (9)

Vice versa, any formal series (6) such that series (9) converges, is a regular generalized function

from (L2)
−β
−q (i.e. now series (6) converges in (L2)

−β
−q ).

2) The dual pairing between F ∈ (L2)
−β
−q and f ∈ (L2)

β
q that is generated by the scalar

product in (L2), has a form 〈〈F, f 〉〉(L2) = ∑
∞
n=0 n!(F(n), f (n))ext, where F(n), f (n) ∈ H

(n)
ext are the

kernels from decompositions (6) for F and f respectively.

3) F ∈ (L2)−β if and only if F can be uniquely presented in form (6) and norm (9) is finite

for some q ∈ Z+.

Note that the term “regular test and generalized functions” is connected with the fact that

the kernels from decompositions (6) for elements of all spaces of chain (8) belong to the same

spaces H
(n)
ext .
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1.4 The extended stochastic integral

In this subsection it will be convenient to denote the spaces (L2)
β
q , (L2) = (L2)0

0 and (L2)
−β
−q

from chain (8) by (L2)
β
q , β ∈ [−1, 1], q ∈ Z. The norms in these spaces are given, obviously, by

formula (7) (cf. (7) and (9)).

Let I : (L2)
β
q →

∞
⊕

n=0
(n!)1+β2qnH

(n)
ext be the generalized Wiener-Itô-Sigal isomorphism, gener-

ated by decomposition (6), 1 : HC → HC be the identity operator. For each f
(n)
· ∈ H

(n)
ext ⊗HC,

n ∈ Z+, define a Wick monomial

: 〈◦⊗n, f
(n)
· 〉 :

de f
= (I ⊗ 1)−1(0, . . . , 0︸ ︷︷ ︸

n

, f
(n)
· , 0, . . .) ∈ (L2)

β
q ⊗HC.

It is easy to show (see details in [12–14]) that such Wick monomials form orthogonal bases in

the spaces (L2)
β
q ⊗HC in the sense that any f ∈ (L2)

β
q ⊗HC can be uniquely presented as

f (·) =
∞

∑
n=0

: 〈◦⊗n, f
(n)
· 〉 :, f

(n)
· ∈ H

(n)
ext ⊗HC (10)

(the series converges in (L2)
β
q ⊗HC), with

‖ f‖2

(L2)
β
q⊗HC

=
∞

∑
n=0

(n!)1+β2qn| f
(n)
· |2

H
(n)
ext⊗HC

< ∞.

Now we describe the construction of an extended stochastic integral with respect to a Lévy

process L, that is based on decomposition (10) (a detailed presentation is given in [20, 24]). Let

f
(n)
· ∈ H

(n)
ext ⊗HC, n ∈ N. We select a representative (a function) ḟ

(n)
· ∈ f

(n)
· such that

ḟ
(n)
u (u1, . . . , un) = 0 if for some k ∈ {1, . . . , n} u = uk. (11)

Accept on default ∆ ∈ B(R+). Let f̂
(n)
∆

be the symmetrization of a function ḟ
(n)
· 1∆(·) by n + 1

variables. Define f̂
(n)
∆

∈ H
(n+1)
ext as the equivalence class in H

(n+1)
ext generated by f̂

(n)
∆

(i.e. f̂
(n)
∆

∈

f̂
(n)
∆

). It is proved in [20,24] that this definition is well-posed (in particular, f̂
(n)
∆

does not depend

on a choice of a representative ḟ
(n)
· ∈ f

(n)
· satisfying (11)) and | f̂

(n)
∆

|ext ≤ | f
(n)
· 1∆(·)|H(n)

ext⊗HC

.

Definition 3. We define the extended stochastic integral
∫

∆
◦(u)d̂Lu : (L2)

β
q ⊗HC → (L2)

β
q−1

as ∫

∆
f (u)d̂Lu :=

∞

∑
n=0

: 〈◦⊗n+1, f̂
(n)
∆

〉 :, (12)

where f̂
(0)
∆

:= f
(0)
· 1∆(·) ∈ HC = H

(1)
ext , and f̂

(n)
∆

∈ H
(n+1)
ext , n ∈ N, are constructed by the

kernels f
(n)
· ∈ H

(n)
ext ⊗HC from decomposition (10) for f .

One can show quite analogously to [20, 24] that this integral is a linear continuous operator,

and if f is integrable by Itô then
∫

∆
f (u)d̂Lu coincides with the corresponding Itô stochastic

integral.

It is clear that the extended stochastic integral can be defined by (12) as a linear continuous

operator acting from (L2)β ⊗HC := pr limq→+∞(L2)
β
q ⊗HC to (L2)β, or from (L2)−β ⊗HC :=

ind limq→+∞(L2)
−β
−q ⊗HC to (L2)−β, here β ∈ [0, 1].



On Wick calculus and its relationship with stochastic integration . . . 201

Remark 3. As appears from the above,
∫

∆
f (u)d̂Lu =

∫

R+

f (u)1∆(u)d̂Lu. (13)

This representation can be used for an important generalization. Let a function f : R+ → (L2)
β
q

be such that f (·) 6∈ (L2)
β
q ⊗HC, but for some Θ ∈ B(R+) (for example, such that the Lebesgue

measure of Θ is finite) f (·)1Θ(·) ∈ (L2)
β
q ⊗HC (such functions often arise in problems). Now

for any measurable ∆ ⊆ Θ one can define
∫

∆
f (u)d̂Lu by formula (13). It is clear that similar

generalization is possible for f : R+ → (L2)β and F : R+ → (L2)−β, here β ∈ [0, 1].

Remark 4. The operator adjoint to the extended stochastic integral is called the Hida stochastic

derivative. This derivative is closely connected with so-called operators of stochastic differen-

tiation [10, 14]; all the above-mentioned operators play an important role in the Lévy white

noise analysis.

1.5 Wick product and Wick versions of holomorphic functions on (L
2)−β

Remind that we assume β ∈ [0, 1]. For each F ∈ (L2)−β define an S-transform as a formal

series

(SF)(λ) :=
∞

∑
m=0

(F(m), λ⊗m)ext ≡ F(0) +
∞

∑
m=1

(F(m), λ⊗m)ext, (14)

where F(m) ∈ H
(m)
ext , m ∈ Z+, are the kernels from decomposition (6) for F, λ ∈ DC (each term

in series (14) is well-defined, but the series can diverge). In particular, (SF)(0) = F(0), S1 ≡ 1.

Definition 4. For F, G ∈ (L2)−β and a holomorphic at (SF)(0) function h : C → C we define a

Wick product F♦G and a Wick version h♦(F) by setting formally

F♦G := S−1(SF · SG), h♦(F) := S−1h(SF).

It is clear that the Wick multiplication ♦ is commutative, associative, distributive, and for

any α ∈ C (αF)♦G = F♦(αG) = α(F♦G) ≡ αF♦G.

Remark 5. A function h from Definition 4 can be decomposed in a Taylor series

h(u) =
∞

∑
m=0

hm
(
u − (SF)(0)

)m
. (15)

Using this decomposition, it is easy to calculate that

h♦(F) =
∞

∑
m=0

hm

(
F − (SF)(0)

)♦m
,

where F♦m := F♦ · · ·♦F︸ ︷︷ ︸
m times

, F♦0 := 1.

It is proved in [12] that for F1, . . . , Fn ∈ (L2)−β F1♦ · · ·♦Fn ∈ (L2)−β, n ∈ N\{1} (moreover,

the Wick multiplication is continuous on (L2)−β); for F ∈ (L2)−1 and a function h : C → C

holomorphic at (SF)(0) h♦(F) ∈ (L2)−1; but if β < 1 then for F ∈ (L2)−β h♦(F) 6∈ (L2)−β, gen-

erally speaking. The proof consists in direct calculation with use of “coordinate formulas” for a
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Wick product and Wick versions of holomorphic functions (i.e. representations of F1♦ · · ·♦Fn

and h♦(F) via kernels from decompositions (6) for F1, . . . , Fn, F and coefficients from decompo-

sition (15) for h). In the present paper we do not use these formulas directly and therefore we

prefer do not write it down (the interested reader can look into the papers [12, 13]), except im-

portant and necessary for further presentation particular case — the “coordinate formula” for

F♦G, F, G ∈ (L2)−β. In order to write out this formula, we need a preparation: it is necessary

to introduce an analog of the symmetric tensor product on the spaces H
(n)
ext , n ∈ Z+.

Let n, m ∈ Z+. Consider a function r : R
n+m
+ → C. Denote

r̃(u1, . . . , un; un+1, . . . , un+m)

:=

{
r(u1, . . . , un+m), if ∀i ∈ {1, . . . , n}, ∀j ∈ {n + 1, . . . , n + m} ui 6= uj

0, in other cases

(16)

Let F(n) ∈ H
(n)
ext , G(m) ∈ H

(m)
ext . We select representatives (functions) ḟ (n) ∈ F(n) and

ġ(m) ∈ G(m). Set r(u1, . . . , un+m) := ḟ (n)(u1, . . . , un) · ġ(m)(un+1, . . . , un+m). Let ̂f (n)g(m) be the

symmetrization of r̃ by all variables, F(n) ⋄ G(m) ∈ H
(n+m)
ext be the equivalence class in H

(n+m)
ext

that is generated by ̂f (n)g(m) (i.e. ̂f (n)g(m) ∈ F(n) ⋄ G(m)). It is proved in [10] that this definition

is well-posed (in particular, F(n) ⋄ G(m) does not depend on a choice of representatives from

F(n) and G(m)) and

|F(n) ⋄ G(m)|ext ≤ |F(n)|ext|G
(m)|ext. (17)

Proposition 3 ([12]). For F, G ∈ (L2)−β

F♦G =
∞

∑
m=0

: 〈◦⊗m,
m

∑
k=0

F(k) ⋄ G(m−k)〉 :, (18)

where F(k) ∈ H
(k)
ext, G(m−k) ∈ H

(m−k)
ext are the kernels from decompositions (6) for F and G

respectively.

Remark 6. The proof of this proposition (in the same way as the proof of general “coordinate

formulas”) consists in direct calculation with use (14) and the equality

(F(n), λ⊗n)ext(G
(m), λ⊗m)ext = (F(n) ⋄ G(m), λ⊗n+m)ext,

F(n) ∈ H
(n)
ext , G(m) ∈ H

(m)
ext , n, m ∈ Z+, λ ∈ DC, which is proved in [28].

2 Main results

2.1 On Wick calculus on (L
2)β

As we noted in the Introduction, the parametrized Kondratiev-type spaces of regular test

and generalized functions in the Lévy analysis and in the Meixner analysis have similar struc-

ture. More exactly, by decomposition (6) the spaces (L2)
β
q with β ∈ [−1, 1] and q ∈ Z are iso-

metrically isomorphic to the extended Fock spaces
∞
⊕

n=0
(n!)1+β2qnH

(n)
ext (remind that the norm in

(L2)
β
q is given by (7)), whereas the corresponding spaces in the Meixner analysis (e.g., [21]) are

isometrically isomorphic to the spaces
∞
⊕

n=0
(n!)1+β2qnH

(n)
µ,ext, where Hilbert spaces H

(n)
µ,ext do not
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coincide with H
(n)
ext , generally speaking, but have similar to H

(n)
ext structure and properties. This

gives reason to expect that in the Lévy- and Meixner analysis many properties of the spaces

of regular test and generalized functions, and of similar operators and operations on them

(e.g., of stochastic integrals and derivatives, of Wick multiplication, etc.), are quite similar. In

particular, this applies to properties of Wick products and of Wick versions of holomorphic

functions on the spaces of regular test functions. And indeed, as it turned out, not only theo-

rems about the mentioned properties, but even proofs of these theorems coincide in the Lévy-

and Meixner analysis up to simple modifications.

Now we will formulate some of the mentioned theorems and explain the above in detail.

Remind that by default β ∈ [0, 1], q ∈ Z in the case β ∈ (0, 1] and q ∈ Z+ if β = 0. Since

the spaces of test functions (L2)β are embedded into the space (L2)−1, for f , g ∈ (L2)β and a

holomorphic at (S f )(0) function h : C → C the Wick product f♦g and the Wick version h♦( f )

are well defined as elements of (L2)−1 [12]. We will be interested in the question of whether

f♦g and h♦( f ) belong to the spaces of test functions.

Theorem 2 (cf. [22]). Let f , g ∈ (L2)β ⊂ (L2)−β. Then the Wick product f♦g ∈ (L2)β. More-

over, the Wick multiplication is continuous in the sense that for f1, . . . , fn ∈ (L2)β, n ∈ N \ {1},

and q ∈ Z+

‖ f1♦ · · ·♦ fn‖(L2)
β
q
≤

√
max
m∈Z+

[2−m(m + 1)n−1]‖ f1‖(L2)
β
q1

· · · ‖ fn‖(L2)
β
q1

, (19)

where q1 ≥ q + (1 + β) log2 n + 1.

Proof. It is clear that in order to prove the theorem it is sufficient to establish estimate (19). One

can make this by direct calculation with use the “coordinate formula” for f1♦ · · ·♦ fn [12], (6),

(7) and (17), cf. [22].

Remark 7. In the case n = 2 estimate (19) reduces to

‖ f1♦ f2‖(L2)
β
q
≤ ‖ f1‖(L2)

β
q1

‖ f2‖(L2)
β
q1

, (20)

q1 ≥ q + 2 + β. Using this result and the associativity of the Wick multiplication, one can

prove by the mathematical induction method that for f1, . . . , fn ∈ (L2)β, n ∈ N, and q ∈ Z+

‖ f1♦ · · ·♦ fn‖(L2)
β
q
≤ ‖ f1‖(L2)

β
q1

‖ f2‖(L2)
β
q2

· · · ‖ fn−1‖(L2)
β
qn−1

‖ fn‖(L2)
β
qn−1

,

where ql ≥ ql−1 + 2 + β, l ∈ {1, . . . , n − 1}, q0 := q.

It follows from Theorem 2 and Remark 5 that for a polynomial h and a test function f ∈

(L2)β we have h♦( f ) ∈ (L2)β. But, unfortunately, a general (holomorphic at (S f )(0)) function

h : C → C has no such a property: for f ∈ (L2)β h♦( f ) 6∈ (L2)β, generally speaking. More

exactly, we have the following statement.

Proposition 4 (cf. [22]). Let h : C → C be a holomorphic at u0 ∈ C function such that all

coefficients hm from the decomposition

h(u) =
∞

∑
m=0

hm(u − u0)
m (21)

are non-negative and for some K > 0 the series ∑
∞
m=1(m!)1+βh2

mKm diverges. Then there exists

f ∈ (L2)β with (S f )(0) = u0 such that h♦( f ) 6∈ (L2)β (and, moreover, h♦( f ) 6∈ (L2)
β
0 ).
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Proof. The proof consists in building of a relevant example of a test function — now it can be

f = u0 +
∞

∑
n=1

: 〈◦⊗n,
ϕ⋄n

(n!)
2+β

2

〉 :, 0 6= ϕ ∈ HC, where ϕ⋄n := ϕ ⋄ · · · ⋄ ϕ︸ ︷︷ ︸
n times

. By analogy with [22]

one can verify by direct calculation with use (7) that for any q ∈ Z+ ‖ f‖
(L2)

β
q
< ∞, therefore

f ∈ (L2)β; but ‖h♦( f )‖
(L2)

β
0
= ∞, so, h♦( f ) 6∈ (L2)

β
0 and therefore h♦( f ) 6∈ (L2)β ⊂ (L2)

β
0 .

Remark 8. By analogy with the Meixner white noise analysis one can prove the following

statement (cf. [22]). Let h : C → C be a holomorphic at u0 ∈ C function such that all coefficients

hm from decomposition (21) are non-negative. Then for each q ∈ Z+ there exists f ∈ (L2)
β
q

with (S f )(0) = u0 such that h♦( f ) 6∈ (L2)
β
0 .

The next statement refers to cases where for a test function f h♦( f ) is a test function.

Theorem 3 (cf. [22]). 1) Let f ∈ (L2)β. Then for each q ∈ Z+ there exists a holomorphic at

(S f )(0) not polynomial function h : C → C such that h♦( f ) ∈ (L2)
β
q .

2) Let f = ∑
N
n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ H

(n)
ext , and coefficients hm from the decomposition

h(u) = ∑
∞
m=0 hm(u − f (0))m for a holomorphic at f (0) function h : C → C satisfy estimates

|hm| ≤

Km min
n∈{m,...,Nm}

αn

(
(Nm)!

) 1+β
2

(22)

with some K > 0, where (αn > 0)∞
n=0 — a numerical sequence such that for each C > 0

∑
∞
n=0 Cnαn < ∞. Then h♦( f ) ∈ (L2)β.

Proof. Again, the proof consists in direct calculation of ‖h♦( f )‖
(L2)

β
q
, by analogy with [22].

Remark 9. Let h(u) = exp(u), i.e. for each m ∈ Z+ we have hm = 1
m! . It is shown in

[22] that now estimate (22) is fulfilled if there exists ε > 0 such that N
( 1+β

2 + ε
)
≤ 1, i.e.

exp♦
(

∑
N
n=0 : 〈◦⊗n, f (n)〉 :

)
∈ (L2)β if β < 1 and N = 1 (the case N = 0 is trivial).

Finally we note that, as in the Meixner white noise analysis, if f ∈ (L2)β then under some

conditions h♦( f ) ∈ (L2)β1 , where β1 < β. The interested reader can formulate and prove the

corresponding statements by analogy with [22], Propositions 2.5 and 2.6.

2.2 The relationship between the Wick calculus and integration on (L
2)β

As is known, some properties of extended stochastic integrals are quite unusual. For exam-

ple, for f ∈ (L2)β and h(1) ∈ HC

∫

R+

( f ⊗ h(1))(u)d̂Lu ≡
∫

R+

f · h(1)(u)d̂Lu 6= f ·
∫

R+

h(1)(u)d̂Lu,

generally speaking, although f does not depend on u. Moreover, in general, the product

f ·
∫

R+
h(1)(u)d̂Lu is undefined. But if one uses the Wick multiplication instead of the point-

wise multiplication, it becomes possible to take a time-independent (i.e. independent on u)

multiplier out of the sign of the extended stochastic integral, as in the Lebesgue integration

theory. Now we will explain this in detail.
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Let us begin with a preparation (we need to introduce a Wick product of elements of (L2)β

and (L2)β ⊗HC). Let n, m ∈ Z+. Consider a function r : R
n+m+1
+ → C. By analogy with (16)

denote

r̃u(u1, . . . , un; un+1, . . . , un+m)

:=

{
ru(u1, . . . , un+m), if ∀i ∈ {1, . . . , n}, ∀j ∈ {n + 1, . . . , n + m} ui 6= uj,

0, in other cases.

Let f (n) ∈ H
(n)
ext , g

(m)
· ∈ H

(m)
ext ⊗ HC. We select representatives (functions) ḟ (n) ∈ f (n)

and ġ
(m)
· ∈ g

(m)
· . Set ru(u1, . . . , un+m) := ḟ (n)(u1, . . . , un) · ġ

(m)
u (un+1, . . . , un+m). Denote by

̂
f (n)g

(m)
u (u1, . . . , un+m) the symmetrization of r̃u(u1, . . . , un; un+1, . . . , un+m) by variables

u1, . . . , un+m. Let f (n)⋄g
(m)
· ∈ H

(n+m)
ext ⊗ HC be the equivalence class in H

(n+m)
ext ⊗ HC that

is generated by
̂

f (n)g
(m)
· (i.e.

̂
f (n)g

(m)
· ∈ f (n)⋄g

(m)
· ). It is proved in [14] that this definition is

well-posed (in particular, f (n)⋄g
(m)
· does not depend on a choice of representatives from f (n)

and g
(m)
· ),

| f (n)⋄g
(m)
· |

H
(n+m)
ext ⊗HC

≤ | f (n) |
H

(n)
ext

|g
(m)
· |

H
(m)
ext ⊗HC

, (23)

and for f (n) ∈ H
(n)
ext , g(m) ∈ H

(m)
ext and h(1) ∈ HC

f (n)⋄
(
g(m) ⊗ h(1)(·)

)
=

(
f (n) ⋄ g(m)

)
⊗ h(1)(·) ∈ H

(n+m)
ext ⊗HC. (24)

Now we can accept the following natural definition based on “coordinate formula” (18).

Definition 5. Let f ∈ (L2)β, g ∈ (L2)β ⊗HC. We define a Wick product f♦g ∈ (L2)β ⊗HC,

setting

f♦g(·) :=
∞

∑
m=0

: 〈◦⊗m,
m

∑
k=0

f (k)⋄g
(m−k)
· 〉 :, (25)

where f (k) ∈ H
(k)
ext and g

(m−k)
· ∈ H

(m−k)
ext ⊗HC are the kernels from decompositions (6) and

(10) for f and g respectively.

Using estimate (23), one can prove by analogy with [22] that this definition is well-posed

and the Wick multiplication♦ is continuous in the sense that for all f ∈ (L2)β, g ∈ (L2)β ⊗HC,

q, q1 ∈ Z+, q1 ≥ q + 2 + β, ‖ f♦g‖
(L2)

β
q⊗HC

≤ ‖ f‖
(L2)

β
q1

‖g‖
(L2)

β
q1
⊗HC

.

Remark 10. Let f , g ∈ (L2)β, h(1) ∈ HC. Using (25), (18) and (24), one can show that

f♦(g ⊗ h(1)) = ( f♦g) ⊗ h(1) ∈ (L2)β ⊗HC. (26)

It is important to note that, like the Wick multiplication ♦, the Wick multiplication ♦ is the

restriction to the spaces of test functions of the Wick multiplication for elements of (L2)−β and

(L2)−β ⊗HC, introduced and studied in [13].
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Theorem 4. Let ∆ ∈ B(R+), f ∈ (L2)β and g ∈ (L2)β ⊗HC. Then
∫

∆
( f♦g)(u)d̂Lu = f♦

∫

∆
g(u)d̂Lu ∈ (L2)β. (27)

Proof. It is proved in [13] that for ∆ ∈ B(R+), f ∈ (L2)β ⊂ (L2)−β and g ∈ (L2)β ⊗ HC ⊂

(L2)−β ⊗HC ∫

∆
( f♦g)(u)d̂Lu = f♦

∫

∆
g(u)d̂Lu ∈ (L2)−β. (28)

But it follows from properties of the Wick multiplications ♦ and ♦, and from properties of the

extended stochastic integral that under the conditions of the Theorem both parts of (28) are

elements of (L2)β.

Remark 11. One can interpret g as a function on R+ with values in (L2)β and, taking into ac-

count the construction of the Wick multiplications ♦ and ♦, rewrite equality (27) in a classical

form
∫

∆
f♦g(u)d̂Lu = f♦

∫
∆

g(u)d̂Lu.

Let us obtain an analog of property (27) for a Pettis integral (i.e. for a weak integral) on the

spaces of regular test functions. Denote by ρ the Lebesgue measure on R+.

Definition 6. For all ∆ ∈ B(R+) with ρ(∆) < ∞ and g ∈ (L2)β ⊗HC we define a Pettis integral∫
∆

g(u)du ∈ (L2)β as a unique element of (L2)β such that for each F ∈ (L2)−β

〈〈F,
∫

∆
g(u)du〉〉(L2) = 〈〈F ⊗ 1∆, g〉〉(L2)⊗HC

. (29)

Since by the generalized Cauchy-Bunyakovsky inequality for any q ∈ Z+ such that F ∈

(L2)
−β
−q

|〈〈F ⊗ 1∆, g〉〉(L2)⊗HC
| ≤ ‖F‖

(L2)
−β
−q

√
ρ(∆)‖g‖

(L2)
β
q⊗HC

,

this definition is well-posed and a Pettis integral
∫

∆
◦(u)du : (L2)β ⊗HC → (L2)β (30)

is a linear continuous operator.

First let us show that for arbitrary f ∈ (L2)β and h(1) ∈ HC∫

∆
( f ⊗ h(1))(u)du ≡

∫

∆
f · h(1)(u)du = f ·

∫

∆
h(1)(u)du. (31)

In fact, for each F ∈ (L2)−β by (29) we have

〈〈F,
∫

∆
f · h(1)(u)du〉〉(L2) = 〈〈F ⊗ 1∆, f ⊗ h(1)〉〉(L2)⊗HC

= 〈〈F, f 〉〉(L2 )

∫

∆
h(1)(u)du = 〈〈F, f ·

∫

∆
h(1)(u)du〉〉(L2).

Let now f , g ∈ (L2)β and h(1) ∈ HC. Using (26) and (31) we obtain
∫

∆

(
f♦(g ⊗ h(1))

)
(u)du =

∫

∆

(
( f♦g) ⊗ h(1)

)
(u)du ≡

∫

∆
( f♦g) · h(1)(u)du

= ( f♦g) ·
∫

∆
h(1)(u)du = f♦

(
g ·

∫

∆
h(1)(u)du

)

= f♦
∫

∆
g · h(1)(u)du ≡ f♦

∫

∆
(g ⊗ h(1))(u)du.

From here, by virtue of continuity of the Wick multiplications♦ and ♦, and continuity of Pettis

integral (30), we obtain the following statement.
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Theorem 5 (cf. Theorem 4). Let ∆ ∈ B(R+) be such that ρ(∆) < ∞, f ∈ (L2)β and g ∈

(L2)β ⊗HC. Then ∫

∆
( f♦g)(u)du = f♦

∫

∆
g(u)du ∈ (L2)β. (32)

Note that, as in the case of the extended stochastic integral, now one can interpret g as a

function acting from R+ to (L2)β, and rewrite equality (32) in a classical form
∫

∆
f♦g(u)du =

f♦
∫

∆
g(u)du.

Now we will introduce a Pettis integral over a set of infinite Lebesgue measure and obtain

an analog of Theorem 5 for this integral.

Definition 7 (cf. Definition 6). Let ∆ ∈ B(R+) be such that ρ(∆) = ∞, and g ∈ (L2)β ⊗HC

satisfies the condition

∀q ∈ Z+

∫

∆
‖g(u)‖

(L2)
β
q
du < ∞ (33)

(here we interpret g as a function acting from R+ to (L2)β). Define a Pettis integral
∫

∆
g(u)du ∈

(L2)β as a unique element of (L2)β such that for each F ∈ (L2)−β equality (29) is fulfilled.

The well-posedness of this definition follows from the estimate (see (29))

|〈〈F ⊗ 1∆, g〉〉(L2)⊗HC
| =

∣∣∣
∫

∆
〈〈F, g(u)〉〉(L2 )du

∣∣∣

≤
∫

∆
|〈〈F, g(u)〉〉(L2 )|du ≤ ‖F‖

(L2)
−β
−q

∫

∆
‖g(u)‖

(L2)
β
q
du,

(34)

where q ∈ Z+ is such that F ∈ (L2)
−β
−q . Moreover, it follows from (34) that

∥∥∥
∫

∆
g(u)du

∥∥∥
(L2)

β
q

≤
∫

∆
‖g(u)‖

(L2)
β
q
du. (35)

Note that the Lebesgue integral
∫

∆
‖g(u)‖

(L2)
β
q
du = lim

∆n↑∆

∫
∆n

‖g(u)‖
(L2)

β
q
du, where for each

n ∈ N ∆n ∈ B(R+), ∆n ⊆ ∆n+1, ρ(∆n) < ∞, and
∞
∪

n=1
∆n = ∆ (see, e.g., [3] for details). Let us

show that ∫

∆
g(u)du = lim

∆n↑∆

∫

∆n

g(u)du (36)

in (L2)β. In fact, by (29) for each F ∈ (L2)−β we have

〈〈F,
∫

∆
g(u)du −

∫

∆n

g(u)du〉〉(L2) = 〈〈F,
∫

∆
g(u)du〉〉(L2) − 〈〈F,

∫

∆n

g(u)du〉〉(L2)

=〈〈F ⊗ 1∆, g〉〉(L2)⊗HC
− 〈〈F ⊗ 1∆n

, g〉〉(L2)⊗HC
= 〈〈F ⊗ 1∆ − F ⊗ 1∆n

, g〉〉(L2)⊗HC

=〈〈F ⊗ (1∆ − 1∆n
), g〉〉(L2)⊗HC

= 〈〈F ⊗ 1∆\∆n
, g〉〉(L2)⊗HC

= 〈〈F,
∫

∆\∆n

g(u)du〉〉(L2 ),

therefore
∫

∆
g(u)du −

∫
∆n

g(u)du =
∫

∆\∆n
g(u)du and by (35) for each q ∈ Z+

∥∥∥
∫

∆
g(u)du −

∫

∆n

g(u)du
∥∥∥
(L2)

β
q

=
∥∥∥
∫

∆\∆n

g(u)du
∥∥∥
(L2)

β
q

≤
∫

∆\∆n

‖g(u)‖
(L2)

β
q
du

=
∣∣∣
∫

∆
‖g(u)‖

(L2)
β
q
du −

∫

∆n

‖g(u)‖
(L2)

β
q
du

∣∣∣ →
∆n↑∆

0,
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which is what had to be proved.

Let now f ∈ (L2)β, g ∈ (L2)β ⊗HC and satisfy condition (33) (with ∆ as in Definition 7).

Then by construction of Wick multiplications ♦ and ♦ for ρ-almost all u ∈ R+ g(u) ∈ (L2)β

and ( f♦g)(u) = f♦(g(u)), hence by (20) the Wick product f♦g ∈ (L2)β ⊗HC also satisfies

(33). Therefore all said above about g holds true for f♦g. Since for each n ∈ N ρ(∆n) < ∞, by

(32) we have ∫

∆n

( f♦g)(u)du = f♦
∫

∆n

g(u)du. (37)

But by (36) ∫

∆n

( f♦g)(u)du →
∆n↑∆

∫

∆
( f♦g)(u)du, (38)

and by (20) and (36) for each q ∈ Z+ and q1 ≥ q + 2 + β

∥∥∥ f♦
∫

∆
g(u)du − f♦

∫

∆n

g(u)du
∥∥∥
(L2)

β
q

=
∥∥∥ f♦

( ∫

∆
g(u)du −

∫

∆n

g(u)du
)∥∥∥

(L2)
β
q

≤ ‖ f‖
(L2)

β
q1

∥∥∥
∫

∆
g(u)du −

∫

∆n

g(u)du
∥∥∥
(L2)

β
q1

→
∆n↑∆

0,

therefore

f♦
∫

∆n

g(u)du →
∆n↑∆

f♦
∫

∆
g(u)du (39)

in (L2)β. Hence, by (38), (39) and (37) representation (32) holds true in the case of integration

over a measurable set ∆ of infinite Lebesgue measure. Let us formulate the proved statement

as a theorem.

Theorem 6 (cf. Theorem 5). Let ∆ ∈ B(R+) be such that ρ(∆) = ∞, f ∈ (L2)β and g ∈

(L2)β ⊗HC satisfy condition (33). Then representation (32) is fulfilled.

Remark 12. An analog of Theorem 6 is valed in the Lévy analysis on the spaces of regular

generalized functions [13]: for ∆ ∈ B(R+) with ρ(∆) = ∞, F ∈ (L2)−β and G ∈ (L2)−β ⊗HC

such that for some q ∈ Z+

∫
∆
‖G(u)‖

(L2)
−β
−q

du < ∞ we have
∫

∆
(F♦G)(u)du = F♦

∫
∆

G(u)du ∈

(L2)−β, one can prove this statement by analogy with the proof of Theorem 6.

As is known, in different versions of the infinite-dimensional white noise analysis an ex-

tended stochastic integral can be presented as a Pettis integral from a Wick product of the

original integrand by the corresponding white noise. In particular, in the Lévy analysis this

representation has a form

∫

∆
F(u)d̂Lu =

∫

∆
F(u)♦L̇udu, ∆ ∈ B(R+), (40)

where L̇ is a Lévy white noise. Depending on spaces in which integration is considered, equal-

ity (40) can be formal (e.g., on the spaces of regular generalized functions, see [13]) or can have

a rigorous sense (e.g., on the spaces of nonregular generalized functions, see [29]). In any case

this equality is very useful for applications, in particular, for study stochastic equations with

Wick type nonlinearities. Note that, in a sense, representation (40) is an analog of a formula

for replacement of a measure in the Lebesgue integration theory. In particular, L̇ is an analog

of a Radon-Nikodym derivative.
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As we just noted, representation (40) is valid for F ∈ (L2)−β ⊗HC. In this case the equality

is formal because L̇u = 〈◦, δu〉 (see Subsection 1.1) and δu 6∈ HC. Now the integral in the right

hand side of (40) is a formal Pettis integral in the sense that when integrate formally, we get [13]
∫

∆
F(u)♦L̇udu =

∞

∑
n=0

: 〈◦⊗n+1, F̂
(n)
∆

〉 : =
∫

∆
F(u)d̂Lu

for each ∆ ∈ B(R+) (see (12)), and, of course, for each f ∈ (L2)β

〈〈
∫

∆
F(u)♦L̇udu, f 〉〉(L2) = 〈〈F(·)♦〈◦, δ·〉, f ⊗ 1∆(·)〉〉(L2)⊗HC

= 〈〈
∫

∆
F(u)d̂Lu, f 〉〉(L2)

(cf. (29)). Since the extended stochastic integral and the Wick multiplication ♦ on the spaces

of regular test functions are the restrictions to these spaces of the corresponding stochastic

integral and Wick multiplication introduced on the spaces of regular generalized functions,

and for f ∈ (L2)β ⊗HC we have
∫

∆
f (u)d̂Lu ∈ (L2)β, from the above-described result of [13]

the next statement follows.

Theorem 7. For arbitrary f ∈ (L2)β ⊗HC and ∆ ∈ B(R+) the extended stochastic integral∫
∆

f (u)d̂Lu can be formally presented as
∫

∆
f (u)d̂Lu =

∫

∆
f (u)♦L̇udu ≡

∫

∆
f (u)♦〈◦, δu〉du ∈ (L2)β, (41)

where the integral in the right hand side is a formal Pettis integral.

Remark 13. It is easy to see that results of Theorems 4, 5, 6 and 7 hold true for integrands

described in Remark 3.

Now let us consider an example of an integral stochastic equation with Wick multiplication.

Example 1. Let

Xt = X0 +
∫

[0,t)
f♦Xudu + g

∫

[0,t)
Xud̂Lu, (42)

where X0 ∈ (L2)β, f = ∑
N
n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ H

(n)
ext , g ∈ C. Applying to this equation the

S-transform with regard to (41), solving the obtained nonstochastic equation, and applying the

inverse S-transform, one can show by analogy with [23] that the solution of (42) is

Xt = X0♦ exp♦
{

f t + gLt

}
∈ (L2)−1

(remind that Lt = 〈◦, 1[0,t)〉). But if N ≤ 1 and β ∈ [0, 1) then, as it follows from Remark 9 and

Theorem 2, Xt ∈ (L2)β.

Remark 14. As we mentioned above, together with stochastic integrals and derivatives one

can consider so-called operators of stochastic differentiation on the spaces of regular test and

generalized functions [10, 14]. It is proved in [12] that the operator of stochastic differentiation

of first order satisfies the Leibnitz rule with respect to the Wick multiplication on the space

(L2)−β. Now it follows from Theorem 2 that this property holds true on the space (L2)β.

Finally we will make the following observation. We noted above and repeatedly used the

fact that many results of the Meixner white noise analysis can be easily reformulated for the

Lévy analysis. The converse of this statement is also true: many results of the Lévy white noise

analysis, in particular, all results of Subsection 2.2, can be easily reformulated for the Meixner

analysis.
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Качановський М.О. Про вiкiвське числення та його зв’язок зi стохастичним iнтегруванням на про-

сторах регулярних основних функцiй в аналiзi бiлого шуму Левi // Карпатськi матем. публ. — 2022.

— Т.14, №1. — C. 194–212.

Ми працюємо з просторами регулярних основних функцiй в аналiзi бiлого шуму Левi, по-

будованими з використанням узагальнення властивостi хаотичного розкладу, запропонова-

ного Є.В. Литвиновим. Нашою метою є вивчення властивостей вiкiвського множення i вiкiв-

ських версiй голоморфних функцiй, а також опис зв’язку мiж вiкiвським множенням та iн-

тегруванням, на цих просторах. Бiльш точно, ми встановлюємо, що вiкiвський добуток регу-

лярних основних функцiй є регулярною основною функцiєю; за певних умов вiкiвська версiя

голоморфної функцiї з аргументом з простору регулярних основних функцiй є регулярною

основною функцiєю; показуємо, що, використовуючи вiкiвське множення, можна виносити

незалежний вiд часу множник з-пiд знаку розширеного стохастичного iнтеграла за проце-

сом Левi; встановлюємо аналог цього результату для iнтеграла Петтiса (слабкого iнтеграла);

отримуємо представлення розширеного стохастичного iнтеграла через формальний iнтеграл

Петтiса вiд вiкiвського добутку вихiдної пiдiнтегральної функцiї на бiлий шум Левi. Як при-

клад застосування наших результатiв ми розглядаємо iнтегральне стохастичне рiвняння з вi-

кiвським множенням.

Ключовi слова i фрази: процес Левi, розширений стохастичний iнтеграл, iнтеграл Петтiса,

вiкiвський добуток.


