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On Wick calculus and its relationship with stochastic
integration on spaces of regular test functions in the Lévy
white noise analysis

Kachanovsky N.A.

We deal with spaces of regular test functions in the Lévy white noise analysis, which are con-
structed using Lytvynov’s generalization of a chaotic representation property. Our aim is to study
properties of Wick multiplication and of Wick versions of holomorphic functions, and to describe a
relationship between Wick multiplication and integration, on these spaces. More exactly, we estab-
lish that a Wick product of regular test functions is a regular test function; under some conditions a
Wick version of a holomorphic function with an argument from the space of regular test functions
is a regular test function; show that when employing the Wick multiplication, it is possible to take
a time-independent multiplier out of the sign of an extended stochastic integral with respect to a
Lévy process; establish an analog of this result for a Pettis integral (a weak integral); obtain a rep-
resentation of the extended stochastic integral via formal Pettis integral from the Wick product of
the original integrand by a Lévy white noise. As an example of an application of our results, we
consider an integral stochastic equation with Wick multiplication.
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Introduction

A theory of test and generalized functions with arguments belonging to infinite-dimen-
sional spaces has many applications in different areas of modern mathematics and physics.
There are various approaches to building of such a theory. One of the most successful of
them consists in introduction of spaces of the above-mentioned functions in a way that the
pairing between test and generalized functions is generated by integration with respect to
some probability measure on a dual nuclear space. First it was the Gaussian measure, the
corresponding theory is called the Gaussian white noise analysis (e.g., [2,17,30, 31]), then it were
realized numerous generalizations. In particular, important results were obtained when the
above-mentioned probability measure is the generalized Meixner measure ( [35]), and the Lévy
white noise measure (e.g., [7,8,32]), the corresponding theories are called the Miexner- and Lévy
white noise analysis, respectively.

A very important role in the Gaussian analysis belongs to a so-called chaotic representation
property (CRP): roughly speaking, any square integrable (with respect to the Gaussian mea-
sure) random variable can be decomposed in a series of repeated It6’s stochastic integrals with
nonrandom integrands (see, e.g., [33] for details). Using CRP, one can construct diverse spaces
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of test and generalized functions, introduce and study stochastic integrals and derivatives on
these spaces, etc. Unfortunately, in the Meixner and Lévy white noise analysis there is no
CRP, generally speaking [39]; nevertheless, there are various generalizations of this property.
For example, in the Meixner analysis one can decompose square integrable random variables
in series of generalized Meixner polynomials [35]; in the Lévy analysis there are decomposi-
tions connected with a Lévy-Khintchine representation of a Lévy process (Itd’s approach [19],
see also [6]), decompositions by repeated stochastic integrals from nonrandom integrands
with respect to so-called orthogonalized centered power jump processes (Nualart-Schoutens’
approach [34], see also [36]), decompositions by special orthogonal functions (Lytvynov’s
approach [32], see also [5]), special orthogonal decompositions with numeric coefficients
(Uksendal’s approach [8], see also [7]), etc. The relationships between these generalizations
of CRP are described in, e.g., [1,7,8,24, 32,38, 40].

In the present paper we deal with one of the most useful and challenging generalizations
of CRP in the Lévy white noise analysis, which is proposed by E. W. Lytvynov [32]. The
idea of this generalization is to decompose random variables, square integrable with respect
to the Lévy white noise measure, in series of special orthogonal functions with nonrandom
kernels, by analogy with decompositions of random variables, square integrable with respect
to the Gaussian measure, by Hermite polynomials (remind that the last decompositions are
equivalent to the decompositions by repeated Itd’s stochastic integrals). Like using CRP in
the Gaussian analysis, one can use Lytvynov’s generalization of CRP, in particular, in order
to construct and study spaces of regular and nonregular test and generalized functions [20],
introduce and investigate various operators and operations on these spaces, etc. Note that the
extended stochastic integral and the Hida stochastic derivative on the spaces of regular test and
generalized functions are introduced and studied in [11,20], operators of stochastic differen-
tiation — in [9, 10, 14], some elements of a Wick calculus and its relationship with operators
of stochastic differentiation and integration on the spaces of regular generalized functions —
in [12,13]. As for the spaces of nonregular test and generalized functions — the corresponding
results are presented in [20,26-29]. The paper [25] is a survey of some author’s results related
to the development of the Lévy white noise analysis in terms of Lytvynov’s generalization of
CRP.

As is known, in various versions of a white noise analysis a natural multiplication on spaces
of generalized functions is a so-called Wick multiplication. In particular, in many cases, using
the Wick multiplication, one can take a time-independent multiplier out of the sign of an
extended stochastic integral. Moreover, such a result holds true for a Pettis integral (a weak
integral). Also, the extended stochastic integral can be presented as a Pettis integral (or a formal
Pettis integral — depending on the concrete situation) from the Wick product of the original
integrand by the corresponding white noise. On the above-mentioned spaces of nonregular
generalized functions in the Lévy analysis such results were obtained in [29], on the spaces of
regular generalized functions — in [13].

The aim of the present paper is to introduce by analogy with [22] elements of the Wick
calculus on the spaces of regqular test functions of the Lévy analysis; to transfer the results
of [13] to these spaces; and to consider some related topics (in particular, a Pettis integral over
a set of infinite Lebesgue measure and a Wick product under the sign of this integral).

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a probability triplet connected with L, convenient for our considera-
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tions; then we describe Lytvynov’s generalization of CRP; construct a regular rigging of the
space of square integrable random variables (the positive and negative spaces of this rigging
are the spaces of regular test and generalized functions respectively); describe the extended
stochastic integral with respect to L on the spaces of regular test and generalized functions;
and recall necessary notions of the Wick calculus on the spaces of regular generalized func-
tions. In the second section we introduce elements of the Wick calculus on the spaces of regular
test functions by analogy with the Meixner analysis [22]; show that when employing the Wick
multiplication, it is possible to take a time-independent multiplier out of the sign of the ex-
tended stochastic integral and of the Pettis integral; prove a theorem about a representation of
the extended stochastic integral via the formal Pettis integral; and consider an example of an
integral stochastic equation with Wick multiplication.

It is important to note that the spaces of regular test and generalized functions in the Lévy
analysis and in the Meixner analysis have similar structure, see Subsection 2.1 for details. This
allows us to reformulate some results of the Meixner analysis for the Lévy analysis and vice
versa. In the present paper we use this opportunity, when possible.

1 Preliminaries

In this paper we denote by || - || or | - | the norm in a space H; by (-, )y the real (i.e. bi-
linear) scalar product in a space H; by ((-, -)) i the dual pairing generated by the scalar product
in a space H; by B the Borel c-algebra; and by 1, the indicator of a set A. Further, we use a
designation pr lim (resp., ind lim) for a projective (resp., inductive) limit of a family of spaces,
this designation implies that the limit space is endowed with the projective (resp., inductive)
limit topology (see, e.g., [3] for a detailed description).

1.1 A Lévy process and its probability space

Denote R := [0, +00). Let L = (Ly)uecRr, be a real-valued locally square integrable Lévy
process (i.e. a continuous in probability random process on IR with stationary independent
increments and such that Ly = 0, see, e.g., [4] for details) without Gaussian part and drift. As
is well known (e.g., [8]), the characteristic function of L is

E[el1] = exp {u /]R(e’px -1- iex)v(dx)] , (1)

where v is the Lévy measure of L, which is a measure on (R, B(RR)), here E denotes the expec-
tation. We assume that v is a Radon measure whose support contains an infinite number of points,
v({0}) = 0, there exists e > 0 such that [, x%¢¢¥lv(dx) < oo, and [ x?v(dx) = 1.

Define a measure of the white noise of L. Let D denote the set of all real-valued infinite-
differentiable functions on R} with compact supports. As is well known, D can be endowed
by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]). Let D’ be
the set of linear continuous functionals on D. It is worth noting that D and D’ are the positive
and negative spaces of a chain

D' 5 L*(R;) DD, 2)

where L?(R ) is the space of (classes of) real-valued functions on R, square integrable with
respect to the Lebesgue measure (e.g., [3]). Denote by (-, -) the dual pairing generated by the
scalar product in L2(IR; ), this notation will be preserved for dual pairings in tensor powers of
the complexification of chain (2).
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Definition 1. A probability measure u on (D’,C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

/D/ Py (dw) = exp [/]R+X]R(ei9”(”)x —-1- iq)(u)x)duv(dx)] , ¢9€D, 3)

is called the measure of a Lévy white noise.

The existence of u follows from the Bochner-Minlos theorem (e.g., [18]), see [32]. Below we
assume that the o-algebra C(D’) is completed with respect to .

Denote by (L?) := L*(D’,C(D'), i) the space of (classes of) complex-valued functions on
D', square integrable with respect to u (in what follows, this notation will be used very often).
Let f € L?(R) and a sequence (¢; € D)en converge to f in L>(Ry) as k — oo (remind
that D is a dense set in L?(R; )). One can show [7,8,24,32] that (o, f) := (Lz)—lgin;o<o, @x) is a

well-defined element of (L?).

Put 114y = 0. It follows from (1) and (3) that ({0, 1jg,))), R,
process on the probability space (probability triplet) (D’,C(D’), u), see, e.g., [7,8]. So, for each
u € Ry wehave L, = (o,1)9,,)) € (L?).

Note that the derivative in the sense of generalized functions of a Lévy process (a Lévy
white noise) is L.(w) = (w,8.) = w(-), where ¢ is the Dirac delta-function. Therefore L is
a generalized random process (in the sense of [15]) with trajectories from D’, and y is the
measure of L in the classical sense of this notion [16].

can be identified with a Lévy

Remark 1. A Lévy process without Gaussian part and drift is a Poisson process if its Lévy
measure is a point mass at 1. This measure does not satisfy the assumptions accepted above (its
support does not contain an infinite number of points); nevertheless, all results of the present
paper have natural analogs in the Poissonian analysis. The reader can find more information
about peculiarities of the Poissonian case in [24, Subsection 1.2].

1.2 Lytvynov’s generalization of the chaotic representation property

Denote by & the symmetric tensor multiplication, by a subscript C — complexifications of
spaces. Set Z, := N U {0}. Denote by P the set of complex-valued polynomials on D’ that
consists of zero and elements of the form

Ny -
flw) =Y (0™ fM), weD, fWepi" Npezy, fN) £0,
n=0

here Ny is called the power of a polynomial f; (w0, FO)) .= £(0) ¢ Dgo := C. The measure y
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure v, see also [32]), therefore P is a dense set in (LZ) [37]. Denote by
Py, n € Z, the set of polynomials of power smaller than or equal to 1, by P, the closure of
Py in (L?). Let for n € N P, := P, © P,,_1 (the orthogonal difference in (L?)); put Py := P.
It is clear that -

(L) = @ P,. (4)

Let f") ¢ D%", n € Z.. Denote by : (0®", f(1)): € (L?) the orthogonal projection of a
monomial (o®", f (”)> onto P,. Let us define real (bilinear) scalar products (-, -)ext on DE",
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n € Z., by setting for f(") D®”
1
(f(”),g(n))ext = . : <w®”,f(”)> : <w®n’g(n)> u(dw). )

The proof of the well-posedness of this definition coincides up to obvious modifications with
the proof of the corresponding statement in [32].

Denote by | - |ext the norms corresponding to scalar products (5), i.e. |- [ext := v/ (-, 7)ext-
Let 7" 8

ext’

define a Wick monomial : (o®", F(")) . def (L?) khm (o f ) :, where D%" > fk(n) — F() 4
%

n € Z., be the completions of D&" with respect to these norms. For F(") ¢ 7-[( ")

ext

k — coin H§x2 The well-posedness of this definition can be proved by the method of “mixed
sequences”. It is easy to show that : (0®0, F(0)): = (c®0, F(0)) = F(0) and : (o, FV)): = (o, F))
(cf. [32]).

In the next statement, which follows from (4) and the fact that for each n € Z, the set
{:(o®n, fmy:|f(n) ¢ DE"} is dense in Py, Lytvynov’s generalization of the chaotic representa-
tion property (CRP) is described.

Theorem 1 (cf. [32]). A random variable F € (L?) if and only if there exists a unique sequence
of kernels F(") ¢ 7-[( ) n € Z,, such that

ext’

F=) (0% Fm) (6)
n=0
(the series converges in (L?)) and
IFIy = [ IF(@)Pplde) = BIFP = 3 mF) R, < oo
n=0

Remark 2. In the present paper we do not use directly an explicit formula for the scalar prod-
ucts (-, -)ext, and therefore we prefer not to write it down. But for the interested reader we note
that such a formula is calculated in [32]; in another record form (more convenient for some
calculations) it is given in, e.g., [12, 14, 20, 24, 25]. Also we note that for each n € IN the space
’ngt) is the symmetric subspace of the space of (classes of) complex-valued functions on R’ ,
square integrable with respect to a certain Radon measure.

Denote H := L?(R), then Hc = L?(IR)c (in what follows, this notation will be used very
often). It follows from the explicit formula for (-, -)ext that HSC% = Hc, and for n € N\{1} one
(n)

can identify H®” with the proper subspace of H,,; that consists of “vanishing on diagonals”
elements (roughly speaking, such that F (n )(ul, .., up) = Oif thereexistk,j € {1,...,n}: k #j,
but uy = u;). In this sense the space ngt) is an extension of 7—[%”, this explains why we use the
subscript “ext” in our designations.

1.3 A regular rigging of (L?)

Denote Py := {f = ZnNio'< an fmy., fn) ¢ D®” Ny € Z1} C (L?). Accept on default
Be€[0,1],9g€ Zinthecase g € (0,1] and g € Z if ﬁ = 0. Define real (bilinear) scalar products
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(-, ')qlﬁ on Py by setting for

Ng
f= Z o, f1):, g =Y 1 (0¥, gM): € Py
n=0
min(Ny,Ng)
(frg)q,ﬁ = Z (n!)1+52qn(f(n)rg(n))ext~
n=0

One can easily verify that the axioms of a scalar product are fulfilled (see [12]).
Denote by (Lz)g the completions of Py with respect to the norms generated by scalar prod-

ucts (-, +)o,p; and set (L2)P := pr lim (Lz)g. Asis easy to see, f € (Lz)ﬁ if and only if f can

q—r—+00

be uniquely presented as series (6) (with kernels f(") € ext) that converges in (Lz)g ,and
£ = 2o (o) P20 f0 2 < o )
n=0

and f € (L?)P if and only if f can be uniquely presented in form (6) with convergent series (7)
foreachq € Z.

Proposition 1 ([20]). For any p € (0,1] and any q € Z, in the same way as for § = 0 and any
q € Z, the space (Lz)ﬁ is densely and continuously embedded into (L?) = (L?)).

Taking into account this result, we can consider a chain
(I3)7F 5 (13)2) 2 (1%) 2 (12)5 > (1), ®)

where (L2)" 5 and (L?)"F = ind hmq%Jroo(Lz),g are the spaces dual of (Lz)é3 and (L?)P respec-
tively.

Definition 2. Chain (8) is called a parametrized regular rigging of (L?). The spaces (Lz)é3
and (L?)P are called parametrized Kondratiev-type spaces of regular test functions, and the
spaces (L?)_ g

ized functions.

and (L?)~P are called parametrized Kondratiev-type spaces of regular general-

p

The next statement follows from the definition of (LZ) and the general duality theory.

Proposition 2. 1) Any regular generahzed function F € (L?)_ g can be uniquely presented as
formal series (6) (with kernels F(") e ) that converges in (L?)_ g, and
1ENa)-s = H;Om!)lﬁzq"m") B < 00, ©)

Vice versa, any formal series (6) such that series (9) converges, is a regular generalized function
from (LZ):g (i.e. now series (6) converges in (LZ):g ).

2) The dual pairing between F € (LZ):Q3 and f € (Lz)g that is generated by the scalar

product in (L?), has a form (F, )12y = Xnzo n!(FM, £, where F(, f(1) ¢ %éﬁjﬁ are the
kernels from decompositions (6) for F and f respectively.

3)F ¢ (L?)~P ifand only if F can be uniquely presented in form (6) and norm (9) is finite
for someq € Z .

Note that the term “reqular test and generalized functions” is connected with the fact that
the kernels from decompositions (6) for elements of all spaces of chain (8) belong to the same

(n)

ext-*

spaces ‘H
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1.4 The extended stochastic integral

In this subsection it will be convenient to denote the spaces (L?) 5 ,(L*) = (L*)} and (LZ):g

from chain (8) by (Lz)g ,B € [—1,1],q € Z. The norms in these spaces are given, obviously, by
formula (7) (cf. (7) and (9)).

LetI: (Lz)é3 — ’éo(n!)lﬂzﬂ "H EZZ be the generalized Wiener-It6-Sigal isomorphism, gener-

ated by decomposition (6), 1 : Hc — H¢ be the identity operator. For each f.(n) € %§Z2 ®He,
n € Z., define a Wick monomial

def
(0@ fy 1@ 1)71(0 ,...,o,fﬂ”),o,...) e (1P @ He.
i’l
It is easy to show (see details in [12-14]) that such Wick monomials form orthogonal bases in
the spaces (L?) 5 ® Hc in the sense that any f € (L?) 5 ® He can be uniquely presented as

(e 9]

£ =Y @ £y £ e n) @ He (10)

n=0

(the series converges in (Lz)g ® Hc), with

g, = 0042 £,

Now we describe the construction of an extended stochastic mtegral with respect to a Lévy
process L, that is based on decomposition (10) (a detailed presentation is given in [20,24]). Let

f,(”) S H(") ® He, n € IN. We select a representative (a function) f,(”) € f,(”) such that

ext

ext

f;g")(ul,...,un) =0 if forsome k€ {1,...,n} u = u. (11)

Accept on default A € B(R4). Let f A” be the symmetrization of a function f.(")l A(-) byn+1

7 ¢ g+ (n+1)

variables. Define o as the equivalence class in H,., ' generated by f én) (e f gn)

Aﬁn) ). Itis proved in [20,24] that this definition is well-posed (in particular, fgn) does not depend
on a choice of a representative f.(") € f.(") satisfying (11)) and \Aé") lext < ]f,(")lA(-) ’H(”)@)H .
ext C

Definition 3. We define the extended stochastic integral
[ o00dLy: (1] 0 He — (12

as

/f W)L, :Z_: o®n+1 fA . (12)

and fA € ’H(”H) n € N, are constructed by the

ext

where 10) = f,(o)lA(-) € Hce = 4

ext’

kernels f.(”) e H") ® Hc from decomposition (10) for f.

ext
One can show quite analogously to [20,24] that this integral is a linear continuous operator,
and if f is integrable by Ito then [, f 1)dL, coincides with the corresponding It6 stochastic
integral.
It is clear that the extended stochastic integral can be defined by (12) as a linear continuous
q%Jroo(Lz)g ® Hc to (L?)P, or from (L?) P @ Hc 1=
ind limq_>+oo(L2):g ® Hc to (L?)~F, here B € [0,1].

operator acting from (L?)f @ Hc := pr lim
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Remark 3. As appears from the above,
[ fwdL, = [ f1awdL,. (13)
A R
This representation can be used for an important generalization. Let a function f : R — (L?) 5
be such that f(-) ¢ (Lz)g ® Hc¢, but for some ©® € B(R ) (for example, such that the Lebesgue
measure of © is finite) f(-)1e(-) € (Lz)é3 ® Hc (such functions often arise in problems). Now

for any measurable A C © one can define [, f (u)dLy by formula (13). It is clear that similar
generalization is possible for f : Ry — (L2)P and F : Ry — (L?)~F, here B € [0, 1].

Remark 4. The operator adjoint to the extended stochastic integral is called the Hida stochastic
derivative. This derivative is closely connected with so-called operators of stochastic differen-
tiation [10, 14]; all the above-mentioned operators play an important role in the Lévy white
noise analysis.

1.5 Wick product and Wick versions of holomorphic functions on (L?) A

Remind that we assume 8 € [0,1]. For each F € (L2)~P define an S-transform as a formal

series
o0 [ee]

(SEYA) = Y (FI, A%}y = FO) 4 3 (F0) pomy,, (14)

m=0 m=1

where F(") ¢ %g,’f), m € Z., are the kernels from decomposition (6) for F, A € D¢ (each term

in series (14) is well-defined, but the series can diverge). In particular, (SF)(0) = F¥), 51 = 1.

Definition 4. For F, G € (L?)~f and a holomorphic at (SF)(0) functionh : C — C we define a
Wick product FOG and a Wick version h¥ (F) by setting formally

FOG := S~Y(SF-SG), hY(F) := S~ h(SF).

It is clear that the Wick multiplication ¢ is commutative, associative, distributive, and for
any « € C (aF)0G = FO(aG) = a(FOG) = aFQG.

Remark 5. A function h from Definition 4 can be decomposed in a Taylor series

(e 9]

h(u) = Y hw(u— (SF)(0))™. (15)

m=0

Using this decomposition, it is easy to calculate that

WO(F) = Y h(F = (SF)(0)) ",
m=0
where FO™ := F( - - OF, F90 := 1.
m times

Itis proved in [12] that for Fy, ..., F, € (L?) P F;O -+ - OF, € (L?)~F,n € N\{1} (moreover,
the Wick multiplication is continuous on (L2)~P); for F € (L?)~! and a function h : C — C
holomorphic at (SF)(0) k¥ (F) € (L?)~'; butif 8 < 1 then for F € (L2)"P h®(F) ¢ (L2)~F, gen-
erally speaking. The proof consists in direct calculation with use of “coordinate formulas” for a
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Wick product and Wick versions of holomorphic functions (i.e. representations of F;{ - - - OF,
and h° (F) via kernels from decompositions (6) for Fy, .. ., F,, F and coefficients from decompo-
sition (15) for h). In the present paper we do not use these formulas directly and therefore we
prefer do not write it down (the interested reader can look into the papers [12,13]), except im-
portant and necessary for further presentation particular case — the “coordinate formula” for
FOG, F,G € (L?)~P. In order to write out this formula, we need a preparation: it is necessary
to introduce an analog of the symmetric tensor product on the spaces ’ngt) NneEZ,.
Let n,m € Z. Consider a function r : R""" — C. Denote

7(“1/ s Uy Uy, un+m)

Cr(u, e ung), Vi€ {1, n} Ve {n+1,.. n4m}u; # u; (16)
0, in other cases
Let F(") ¢ ’ngt), (m) ¢ ’ngt) We select representatives (functions) f(”) () and

g'(m) e Gm)_ Set r(uy, ..., Upem) = f( )(ul,...,un) -g'(m)(un+1,...,un+m) Letf/\ be the
(n+m)

symmetrization of 7 by all variables, F(") o G("™) € H gZ;L " be the equivalence class in H,,,

L —

that is generated by (") g(m) (i.e. f(M)g(m) € F(") o G™), Tt is proved in [10] that this definition
is well—posed (in particular, F®) o G("™) does not depend on a choice of representatives from

F") and G(")) and
‘P(n) <& G(m)’ext < ‘P(H)‘ext‘G(m)‘ext- (17)

Proposition 3 ([12]). For F,G € (L?)~F

(e 9]

FOG =Y : (o™ ZF ) o GUm=h)y (18)

Gm=k) ¢ ’ngt X are the kernels from decompositions (6) for F and G

where FK) ¢ ”ngg
respectively.

Remark 6. The proof of this proposition (in the same way as the proof of general “coordinate
formulas”) consists in direct calculation with use (14) and the equality

(F(n)r )\®n)ext(G(m)/ A®m)ext — (F(n) <& G(m)r )\®n+m)extr

F) ¢ ) Gm) ¢ 4m

ext” ext 7

n,m e Z, A € D¢, which is proved in [28].

2 Main results

2.1 On Wick calculus on (L?)8

As we noted in the Introduction, the parametrized Kondratiev-type spaces of regular test
and generalized functions in the Lévy analysis and in the Meixner analysis have similar struc-

ture. More exactly, by decomposition (6) the spaces (Lz)ﬁ with g € [ 1,1] and g € Z are iso-

metrically isomorphic to the extended Fock spaces & (n!)1+f 2‘7”7-1 (remmd that the norm in
n=0

(Lz)ﬁ is given by (7)), whereas the correspondmg spaces in the Meixner analysis (e.g., [21]) are
(n)

uext

isometrically isomorphic to the spaces EB (n')1+/32‘7”7-[( ") do not

,ext» Where Hilbert spaces 1
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coincide with Hgg , generally speaking, but have similar to H gzz structure and properties. This

gives reason to expect that in the Lévy- and Meixner analysis many properties of the spaces
of regular test and generalized functions, and of similar operators and operations on them
(e.g., of stochastic integrals and derivatives, of Wick multiplication, etc.), are quite similar. In
particular, this applies to properties of Wick products and of Wick versions of holomorphic
functions on the spaces of regular test functions. And indeed, as it turned out, not only theo-
rems about the mentioned properties, but even proofs of these theorems coincide in the Lévy-
and Meixner analysis up to simple modifications.

Now we will formulate some of the mentioned theorems and explain the above in detail.
Remind that by default € [0,1], ¢ € Z inthe case p € (0,1] and g € Z; if B = 0. Since
the spaces of test functions (L?)P are embedded into the space (L?)~!, for f,¢ € (L?)P and a
holomorphic at (Sf)(0) function i : C — C the Wick product f{g and the Wick version 1% (f)
are well defined as elements of (L?)~! [12]. We will be interested in the question of whether
fOg and 19 (f) belong to the spaces of test functions.

Theorem 2 (cf. [22]). Let f,g € (L?)P C (L2)~P. Then the Wick product fOg € (L?)P. More-
over, the Wick multiplication is continuous in the sense that for f1,. .., f, € (L*)f,n € N\ {1},
andq € Z,

R —m n—1 -
1A0 - Oful yayp < ﬁnl 27 (m+ 1" fel gayp Wl gy (19)

whereqy > q+ (14 B)log, n+ 1.

Proof. 1Itis clear that in order to prove the theorem it is sufficient to establish estimate (19). One
can make this by direct calculation with use the “coordinate formula” for 10 - - - O f, [12], (6),
(7) and (17), cf. [22]. O

Remark 7. In the case n = 2 estimate (19) reduces to
AT TASA TS 0)
q1 > q+ 2+ B. Using this result and the associativity of the Wick multiplication, one can
prove by the mathematical induction method that for fi, ..., fn € (Lz)ﬁ, nelN,andq e Z
Hf1<> T <>fn”(L2)§ < ”fl”(Lz)gl ”fZH(LZ)gz T Hfﬂfl”(LZ)ﬁ 71”]:?1”@2)5"71/

In
whereq; > q; 1 +2+B,1€{1,...,n—1},q0 :=q.

It follows from Theorem 2 and Remark 5 that for a polynomial h and a test function f €
(L2)P we have h(f) € (L?)P. But, unfortunately, a general (holomorphic at (Sf)(0)) function
h : C — C has no such a property: for f € (L2)f h°(f) ¢ (L?)P, generally speaking. More
exactly, we have the following statement.

Proposition 4 (cf. [22]). Let h : C — C be a holomorphic at uy € C function such that all
coefficients hy, from the decomposition

(o]

h(u) =Y hy(u —up)" (21)

m=0
are non-negative and for some K > 0 the series Y ov_, (m!)1*Fh2 K™ diverges. Then there exists
f € (L2)P with (S£)(0) = ug such that h°(f) ¢ (L?)P (and, moreover, h°(f) ¢ (Lz)g).
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Proof. The proof consists in building of a relevant example of a test function — now it can be

f=u+ oZo: : (0%, (’)Zé):, 0 # ¢ € Hc, where ¢°" := ¢ o--- ¢ ¢. By analogy with [22]
n=1 ()72 —
n ames

one can verify by direct calculation with use (7) that for any g € Z ||f]| (12)f < therefore
q

f € (L3P but [1(F)]] 216 = 00,50, h0(f) ¢ (L2)F and therefore hO(f) & (12)P c (13)F. O
0
Remark 8. By analogy with the Meixner white noise analysis one can prove the following

statement (cf. [22]). Leth : C — C be a holomorphicatug € C function such that all coefficients

hy from decomposition (21) are non-negative. Then for each q € Z there exists f € (Lz)g

with (Sf)(0) = ug such that h°(f) & (L?)P.
The next statement refers to cases where for a test function f 1% (f) is a test function.

Theorem 3 (cf. [22]). 1) Let f € (L2?)P. Then for each q € Z. there exists a holomorphic at
(S£)(0) not polynomial function h : C — C such that h° (f) € (Lz)g.

2) Let f = YN :(o®n, fm)y., () ¢ 1" and coefficients hy, from the decomposition

ext’

h(u) = ¥°_ohy(u — fO)Y" for a holomorphic at f(°) functionh : C — C satisfy estimates

K™  min a,
ne{m,..,Nm}
1+8

((Nm)!) 2

with some K > 0, where (x, > 0);° , — a numerical sequence such that for each C > 0
Y% ,C'ay < co. Then h¥(f) € (L?)P.

|| < (22)

Proof. Again, the proof consists in direct calculation of |19 (f)]| (12)f by analogy with [22]. O
q
Remark 9. Let h(u) = exp(u), ie. for eachm € Z, we have hy, = ;. It is shown in

[22] that now estimate (22) is fulfilled if there exists ¢ > 0 such that N (# +¢) <1, ie
exp? (LN o1 (%", fMy:) € (L2)P if B < 1 and N = 1 (the case N = 0 is trivial).

Finally we note that, as in the Meixner white noise analysis, if f € (L?)? then under some
conditions 1 (f) € (L?)P1, where B; < B. The interested reader can formulate and prove the
corresponding statements by analogy with [22], Propositions 2.5 and 2.6.

2.2 The relationship between the Wick calculus and integration on (L?)#

As is known, some properties of extended stochastic integrals are quite unusual. For exam-
ple, for f € (L?)P and hV) € Hc

o For L= [ f ROl £+ [ h @)L,

generally speaking, although f does not depend on u. Moreover, in general, the product
f- f]R+ h( (u)dL, is undefined. But if one uses the Wick multiplication instead of the point-
wise multiplication, it becomes possible to take a time-independent (i.e. independent on u)
multiplier out of the sign of the extended stochastic integral, as in the Lebesgue integration
theory. Now we will explain this in detail.
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Let us begin with a preparation (we need to introduce a Wick product of elements of (L?)f
and (L?)P @ Hc). Let n,m € Z... Consider a function r : R"""*! — C. By analogy with (16)
denote

714(”1/ cee U Uy, ey, ul’l—H’Vl)

ru(ur, ), Vi€ {1, g Vi e{n+ 1, n+m}u; # uj,
' 0, in other cases.

Let f ¢ ngf, g.(m) e H" & He. We select representatives (functions) f( ¢ f(")

ext
and g'.(m) g.( ), Set 1, (U1, ..., Upym) = f(”)(ul,...,un) -gim)(un+1,...,un+m). Denote by

f(”)gg,m)(ul,...,unm) the symmetrization of 7, (uy,..., Uy Upy1, ..., Untm) by variables
Uy, ..., Uyprm. Let f(”)Sg.(m) € Hg;’fm) ® Hc be the equivalence class in 7-[( m) ® Hc that

ext
is generated by f(") gFm) (i.e. f(1) .m e fln Sg. ). It is proved in [14] that this definition is
well-posed (in particular, f (”)5g,(m) does not depend on a choice of representatives from f("

and g.(m)),

8 e gy < 100185 Lo e (23)

ext

and for f") € H 7 gl ¢ 7-[( t) and KV € H¢

ext’
f5(5™ @M () = (F1 0 g™) @ hM () € He™ © He. (24)
Now we can accept the following natural definition based on “coordinate formula” (18).

Definition 5. Let f € (L?)P, ¢ € (L?)P ® Hc. We define a Wick product fOg € (L?)f @ He,
setting

e} m
ROESWEDW, T (25)
m=0 k=0
where f k) ¢ Hég and g,(mfk) € Héxt k) ® Hc are the kernels from decompositions (6) and

(10) for f and g respectively.

Using estimate (23), one can prove by analogy with [22] that this definition is well-posed
and the Wick multiplication ¢ is continuous in the sense that for all f € (L?)?, ¢ € (L?)f @ Hc,

901 € Zes g1 2 0+ 24 B 1FOGN 12y < 1N i2yp 81 2)8 e
Remark 10. Let f, g € (L), WY e He. Using (25), (18) and (24), one can show that
folgehtV) = (fog) @ € (12)F & He. (26)
It is important to note that, like the Wick multiplication ¢, the Wick multiplication ¢ is the

restriction to the spaces of test functions of the Wick multiplication for elements of (L?) " and
(L?)~F @ Hc, introduced and studied in [13].
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Theorem 4. LetA € B(R4), f € (L 2)/3 andg € (L?)P @ Hc. Then

[ (o) Ly = £0 [ gldLy € (L2)%. @)

Proof. Tt is proved in [13] that for A € B(R;), f € (L?)P C (I*)Pand g € (L2)P @ Hc C
(L2)"F @ Hc
[ (FOR) Ly = £0 [ glndL, € (12)7F. (28)

But it follows from properties of the Wick multiplications ¢ and ¢, and from properties of the
extended stochastic integral that under the conditions of the Theorem both parts of (28) are
elements of (L2)P. O

Remark 11. One can interpret g as a function on R with values in (L?)P and, taking into ac-
count the construction of the Wick multiplications ¢ and ¢, rewrite equality (27) in a classical

form [, fOg(u) dLu = fO [, 8(u) dLu

Let us obtain an analog of property (27) for a Pettis integral (i.e. for a weak integral) on the
spaces of regular test functions. Denote by p the Lebesgue measure on R,..

Definition 6. Forall A € B(R) withp(A) < co and g € (L?)P @ Hc we define a Pettis integral
[y 8(u)du € (L*)P as a unique element of (L*)P such that for each F € (L*)~F

(F, [ g0z = (F & 1a,8) 2y 29)
Since by the generalized Cauchy-Bunyakovsky inequality for any g4 € Z such that F €

(2]

[(F ®1a, 8D 12)0mc] < ”F”(Lz)IjMHg”(LZ)’S@@Hc’

this definition is well-posed and a Pettis integral
/A o(u)du : (L2)P @ He — (L2)P (30)

is a linear continuous operator.
First let us show that for arbitrary f € (L2)f and hV) € H¢

/A(f®h(1))(u)du = /Af Y (w)du = f - /Ah(l)(u)du. (31)
In fact, for each F € (L2)~F by (29) we have

<F//Af‘h(1)(u)du>>(y) = (F@1a f @ hY) 12y,

(F ) iz /A WO (u)du = ((F, f - /A 1 (w)du

Letnow f,g € (L?)P and k(")) € H¢. Using (26) and (31) we obtain
[ (FOg @ M) wydu = [ ((£0g) ©h V) (wdu = / (£98) -h<1><u>du
— (f0g) /h u)du = £0(3 /h
:fQ/Ag-h u duEfO/A g h (u)du.

From here, by virtue of continuity of the Wick multiplications ¢ and ¢, and continuity of Pettis
integral (30), we obtain the following statement.



On Wick calculus and its relationship with stochastic integration ... 207

Theorem 5 (cf. Theorem 4). Let A € B(R;) be such that p(A) < oo, f € (L?)P and g €
(L2)P @ Hc. Then

[ (FO)wdu = £0 [ guydu  (L2)P. (32)

Note that, as in the case of the extended stochastic integral, now one can interpret g as a
function acting from Ry to (L?)#, and rewrite equality (32) in a classical form [, fOg(u)du =

fO [ g(u)du
Now we will introduce a Pettis integral over a set of infinite Lebesgue measure and obtain
an analog of Theorem 5 for this integral.

Definition 7 (cf. Definition 6). Let A € B(R. ) be such that p(A) = oo, and g € (L?)f ® Hc
satisfies the condition

vgeZy [ gl < o0 3)

(here we interpret g as a function acting from R+ to (L?)P). Define a Pettis integral [, g(u)du €
(L?)P as a unique element of (L?)P such that for each F € (L?)~F equality (29) is fulfilled.

The well-posedness of this definition follows from the estimate (see (29))

(F 9108 uonc| = | [ (F.g0))2du

(34)
< [ GF g azyldu < I1Fl 25 [ 8wl 1z pd
where g € Z, issuch that F € (LZ):g . Moreover, it follows from (34) that
| [, st < [, N0 (3)

Note that the Lebesgue integral [, Hg(u)H(D2 pdu = l1m fA llg(u)|| Lz)ﬁdu, where for each
n q

nelNA, € B(Ry), Ay € Apiq, p(An) < 00, and U1 Ay = A (see, e.g., [3] for details). Let us
n—=
show that

[ stwdu = Jim | g(u)du (36)

n (L?)P. In fact, by (29) for each F € (L?)~F we have
(F, [ sGodu— [ stwduz) = (F, [ sdu)e —(F, [ gludu)

=(F®1a, 8N (12)0me — (F ®1a,, 8N (12)ane = (F®1a —F® 14, 8) (1201,
(F® (1a —14,), 8D (1201 = (F @ 1a\a, 8N (12)0mc = «F’/A\A g(u)du)) 12y,

therefore [, g(u)du — fA u)du = fA\A ¢(u)du and by (35) foreach g € Z

H/ d”_/ng(”)d”"mé N H/A\Ang(”)d” (128 = /A\An I8l gz g
= | [ sl gzt = [ gl pitu] =2 0,

— 0
/I\
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which is what had to be proved.

Let now f € (L?)P, ¢ € (L?)P ® Hc and satisfy condition (33) (with A as in Definition 7).
Then by construction of Wick multiplications ¢ and ¢ for p-almost all u € R g(u) € (L?)P
and (f0g)(u) = fO(g(u)), hence by (20) the Wick product fOg € (L?)P @ Hc also satisfies
(33). Therefore all said above about g holds true for f{g. Since for each n € N p(A,) < oo, by
(32) we have

|, (o9 wau=f0 [ swdu @)
But by (36)
J O = | (F0g)(w)du, )

and by (20) and (36) foreachg € Zy and g1 > g+2+

Ifo [ stwau—so || stwa] ., = [fo( [ stwau— [ swan

< Wl | [yt = [ stoau] 0 =0
therefore
f<>/ u)du An—T>Af<>/Ag(u)du (39)

in (L?)P. Hence, by (38), (39) and (37) representation (32) holds true in the case of integration
over a measurable set A of infinite Lebesgue measure. Let us formulate the proved statement
as a theorem.

Theorem 6 (cf. Theorem 5). Let A € B(R;) be such that p(A) = oo, f € (L?)P and g €
(L?)P @ Hc satisfy condition (33). Then representation (32) is fulfilled.

Remark 12. An analog of Theorem 6 is valed in the Lévy analysis on the spaces of regular
generalized functions [13]: for A € B(R ) with p(A) = oo, F € (L?) P and G € (LZ)’/3 ® He

such that for someq € Zy [, HG(”)H(LZ)ﬂWZ” < oo we have [, (FOG)(u)du = FQ [, G(u)du €
-1

(L2)~F, one can prove this statement by analogy with the proof of Theorem 6.

As is known, in different versions of the infinite-dimensional white noise analysis an ex-
tended stochastic integral can be presented as a Pettis integral from a Wick product of the
original integrand by the corresponding white noise. In particular, in the Lévy analysis this
representation has a form

/ F(u)dLy = / F(u)OLudu, A € B(Ry), (40)
A A

where L is a Lévy white noise. Depending on spaces in which integration is considered, equal-
ity (40) can be formal (e.g., on the spaces of regular generalized functions, see [13]) or can have
a rigorous sense (e.g., on the spaces of nonregular generalized functions, see [29]). In any case
this equality is very useful for applications, in particular, for study stochastic equations with
Wick type nonlinearities. Note that, in a sense, representation (40) is an analog of a formula
for replacement of a measure in the Lebesgue integration theory. In particular, L is an analog
of a Radon-Nikodym derivative.
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As we just noted, representation (40) is valid for F € (L) P @ Hc. In this case the equality
is formal because L, = (o,d,) (see Subsection 1.1) and &, ¢ Hc. Now the integral in the right
hand side of (40) is a formal Pettis integral in the sense that when integrate formally, we get [13]

/A F(u)OLydu = ¥+ (o1, EMy; — / F(u)dL,

n=0 A
for each A € B(R,) (see (12)), and, of course, for each f € (L2)P

<</AF(u)<>'Ludu,f))(Lz) = (F()0{0,8.), f @ 1a()) (12030 = <</Ap(u)ELu,f>>(Lz

(cf. (29)). Since the extended stochastic integral and the Wick multiplication ¢ on the spaces
of regular test functions are the restrictions to these spaces of the corresponding stochastic
integral and Wick multiplication introduced on the spaces of regular generalized functions,
and for f € (L?)P ® Hc we have [, f u)dL, € (L?)P, from the above-described result of [13]
the next statement follows.

Theorem 7. For arbitrary f € (L?)P @ Hc and A € B(Ry) the extended stochastic integral
N d L, can be formally presented as

/Af(u) /f )0 Ly du_/f (0,8, )du € ()P, (41)

where the integral in the right hand side is a formal Pettis integral.

Remark 13. It is easy to see that results of Theorems 4, 5, 6 and 7 hold true for integrands
described in Remark 3.

Now let us consider an example of an integral stochastic equation with Wick multiplication.

Example 1. Let

X; = Xo + / FOXyudu+g /[O . X,dL,, (42)
where X € (L?)f, f = YN : (o1, f(0)y:, £(n) ¢ Héxt), g € C. Applying to this equation the
S-transform with regard to (41), solving the obtained nonstochastic equation, and applying the
inverse S-transform, one can show by analogy with [23] that the solution of (42) is

X = Xo0 exp<> {ft +th} € (LZ)_1

(remind that Ly = (o,1)))). Butif N < 1and € [0,1) then, as it follows from Remark 9 and
Theorem 2, X; € (L?)P.

Remark 14. As we mentioned above, together with stochastic integrals and derivatives one
can consider so-called operators of stochastic ditferentiation on the spaces of regular test and
generalized functions [10, 14]. It is proved in [12] that the operator of stochastic differentiation
of tirst order satisfies the Leibnitz rule with respect to the Wick multiplication on the space
(L2)~F. Now it follows from Theorem 2 that this property holds true on the space (L?)F.

Finally we will make the following observation. We noted above and repeatedly used the
fact that many results of the Meixner white noise analysis can be easily reformulated for the
Lévy analysis. The converse of this statement is also true: many results of the Lévy white noise
analysis, in particular, all results of Subsection 2.2, can be easily reformulated for the Meixner
analysis.
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— T.14, Nel. — C. 194-212.

Mu mparoeMo 3 mpocTopaMi peTyASIPHMX OCHOBHMX (PYHKIIiV B aHaAi3i 6iaoro mymy Aesi, To-
6yAOBaHMMM 3 BMKOPMCTAHHSIM y3araAbHEHHS! BAACTMBOCTI XaOTMYHOTO PO3KAAAY, 3alpONOHOBa-
Horo €.B. AursyHoByM. Hattroro MeToro € BUBYeHHsI BAACTUBOCTEN BiKiBCbKOrO MHOXEHHSI i BikiB-
CBKMX Bepcili ToaroMOpcpHIMX (PYHKIIiM, a TAKOX OIMC 3BSI3KY MiX BiKiBCBKMM MHOXEHHSIM Ta iH-
TErpyBaHHSIM, Ha IMX IPOCTOpaXx. BiABII TOYHO, MM BCTAHOBAIOEMO, IIIO BiKiBChKMIT AOGYTOK pery-
ASIPHMX OCHOBHMX (pYHKIIili € peryAsipHOIO OCHOBHOIO (pYHKIIi€IO; 3a IeBHIMX YMOB BikiBcbKa Bepcist
roAOMOpdHOI (PYHKIIIT 3 apTyMEeHTOM 3 IIPOCTOPY PEryASIPHMX OCHOBHMX (PYHKIIiN € PeryAsIpHOO
OCHOBHOIO (DYHKIIi€IO; TOKA3y€eMO, 1110, BUKOPMCTOBYIOUM BiKiBChbKe MHOXEHHSI, MOXXHa BMHOCUTH
He3aAeXHMIA BiA 4acy MHOXHMK 3-TIA 3HAKy PO3IIMPEHOr0 CTOXaCTUYHOIO iHTerpaAa 3a Mpolle-
coM AeBi; BCTAHOBAIOEMO aHAAOT ITbOTO Pe3yAbTATy AAsI iHTerpana Ilerrica (crabxoro iHTerpana);
OTPMMY€EMO ITPeACTaBAEHHS PO3IIMPEHOTO CTOXaCTMYHOTO iHTerpana depe3 popMaAbHMIL iHTErpan
IleTTica Bia BikiBcbKOTro AOGYTKY BUXiAHOT HiAiHTerpaArbHOI PyHKILT Ha 6iawit rym Aesi. Sk mpum-
KAAA 3aCTOCYBaHHSI HAILMX PE3yAbTATIB MU PO3TASIAAEMO iHTerpaAbHe CTOXaCTUYHE PiBHIHHS 3 Bi-
KiBCBKVIM MHOXXEHHSIM.

Kntouosi crosa i ¢ppasu: mpotec AeBi, po3mmpeHmit CTOXaCTWIHMI iHTerpan, iHTerpan Ilerrica,
BiKiBCBKMI AOOYTOK.



