Carpathian Math. Publ. 2021, **13** (3), 831–837 doi:10.15330/cmp.13.3.831-837

Non-symmetric approximations of functional classes by splines on the real line

Parfinovych N.V.

Let $S_{h,m}$, h > 0, $m \in \mathbb{N}$, be the spaces of polynomial splines of order m of deficiency 1 with nodes at the points kh, $k \in \mathbb{Z}$.

We obtain exact values of the best (α, β) -approximations by spaces $S_{h,m} \cap L_1(\mathbb{R})$ in the space $L_1(\mathbb{R})$ for the classes $W_{1,1}^r(\mathbb{R})$, $r \in \mathbb{N}$, of functions, defined on the whole real line, integrable on \mathbb{R} and such that their rth derivatives belong to the unit ball of $L_1(\mathbb{R})$.

These results generalize the well-known G.G. Magaril-Ilyaev's and V.M. Tikhomirov's results on the exact values of the best approximations of classes $W_{1,1}^r(\mathbb{R})$ by splines from $S_{h,m}\cap L_1(\mathbb{R})$ (case $\alpha=\beta=1$), as well as are non-periodic analogs of the V.F. Babenko's result on the best non-symmetric approximations of classes $W_1^r(\mathbb{T})$ of 2π -periodic functions with rth derivative belonging to the unit ball of $L_1(\mathbb{T})$ by periodic polynomial splines of minimal deficiency.

As a corollary of the main result, we obtain exact values of the best one-sided approximations of classes W_1^r by polynomial splines from $S_{h,m}(\mathbb{T})$. This result is a periodic analogue of the results of A.A. Ligun and V.G. Doronin on the best one-sided approximations of classes W_1^r by spaces $S_{h,m}(\mathbb{T})$.

 $\textit{Key words and phrases: } best L_1$ -approximation, one-sided approximation, non-symmetric approximation, polynomial spline, functional class.

Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine E-mail: nat-vic-par@i.ua

Introduction

Let \mathbb{N} , \mathbb{Z}_+ , \mathbb{Z} , \mathbb{R}_+ , and \mathbb{R} be the sets of integer positive, integer non-negative, integer, real non-negative, and real numbers, respectively, and \mathbb{T} be the interval $[0, 2\pi]$ with identified ends.

Let $L_p(\mathbb{G})$, $1 \le p \le \infty$, $\mathbb{G} \subset \mathbb{R}$, be the spaces of all measurable on \mathbb{G} functions with norms $\|\cdot\|_{L_p(\mathbb{G})}$, $C^r(\mathbb{G})$, $r \in \mathbb{Z}_+$, be the spaces of r times continuously differentiable (continuous for r=0) on \mathbb{G} functions, and $AC(\mathbb{G})$ be the set of all absolutely continuous (locally for $\mathbb{G}=\mathbb{R}$ and $\mathbb{G}=\mathbb{R}_+$) on \mathbb{G} functions.

For $f \in L_p(\mathbb{G})$ and $\alpha, \beta > 0$ we set

$$||f||_{L_n(\mathbb{G});\alpha,\beta} = ||\alpha f_+ + \beta f_-||_{L_n(\mathbb{G})},$$

where $f_{\pm}(t) = \max\{\pm f(t), 0\}$. The quantity

$$E(f, H)_{L_p(\mathbb{G}); \alpha, \beta} := \inf_{u \in H} \|f - u\|_{L_p(\mathbb{G}); \alpha, \beta}$$
 (1)

is called the best (α, β) -approximation of a function $f \in L_p(\mathbb{G})$ by the set $H \subset L_p(\mathbb{R})$ in the metric $L_p(\mathbb{G})$.

УДК 517.5

2020 Mathematics Subject Classification: 26D10, 41A17, 41A65, 46A45.

832 Parfinovych N.V.

The notation $E(f)_{L_p(\mathbb{G});\alpha,\beta}$ will be used for the best (α,β) -approximation of a function $f \in L_p(\mathbb{G})$ by subset of constants.

For class of functions $M \subset L_p(\mathbb{G})$, the quantity

$$E(M,H)_{L_p(\mathbb{G});\alpha,\beta} := \sup_{f \in M} E(f,H)_{L_p(\mathbb{G});\alpha,\beta}$$
 (2)

is called the best (α, β) -approximation of the class M by the set H in the space $L_p(\mathbb{G})$. If $\alpha = \beta = 1$ the quantities (1) and (2) coincide with ordinary best L_p -approximation of a function f (notation $E(f, H)_{L_p(\mathbb{G})}$) and of class M (notation $E(M, H)_{L_p(\mathbb{G})}$), respectively.

Let the set $H \subset L_p(\mathbb{G})$ be fixed. We associate with the function f the subsets

$$H_f^+ = \{u(t) \colon u \in H, \ u(t) \leq f(t), \ t \in \mathbb{G}\} \quad \text{and} \quad H_f^- = \{u(t) \colon u \in H, \ u(t) \geq f(t), \ t \in \mathbb{G}\}.$$

For $f \in L_p(\mathbb{G})$ and $M \subset L_p(\mathbb{G})$ we set

$$E^{\pm}(f,H)_{L_p(\mathbb{G})} = \begin{cases} \inf\{\|f - u\|_{L_p(\mathbb{G})} \colon u \in H_f^{\pm}\}, & H_f^{\pm} \neq \varnothing, \\ \infty, & H_f^{\pm} = \varnothing, \end{cases}$$

and

$$E^{\pm}(M,H)_{L_p(\mathbb{G})} = \sup_{f \in M} E^{\pm}(f,H)_{L_p(\mathbb{G})}.$$

Quantities $E^{\pm}(f,H)_{L_p(\mathbb{G})}$ and $E^{\pm}(M,H)_{L_p(\mathbb{G})}$ are called the best approximation from below (+) and from above (-) of a function $f \in L_p(\mathbb{G})$ and $M \subset L_p(\mathbb{G})$, respectively.

In the case when G is a segment, V.F. Babenko [1] (see also [7, Theorems 1.4.10 and 1.5.9]) established that if the set $H \subset L_p(\mathbb{G})$, $1 \le p \le \infty$, is locally compact then for any function $f \in L_p(\mathbb{G})$, monotonously on α and β

$$\lim_{\beta \to \infty} E(f, H)_{L_p(G); 1, \beta} = E^+(f, H)_{L_p(G)}, \quad \lim_{\alpha \to \infty} E(f, H)_{L_p(G); \alpha, 1} = E^-(f, H)_{L_p(G)}, \tag{3}$$

for any set $M \subset L_p(\mathbb{G})$, monotonously on α and β

$$\lim_{\beta \to \infty} E(M,H)_{L_p(\mathbb{G});1,\beta} = E^+(M,H)_{L_p(\mathbb{G})}, \quad \lim_{\alpha \to \infty} E(M,H)_{L_p(\mathbb{G});\alpha,1} = E^-(M,H)_{L_p(\mathbb{G})}. \tag{4}$$

In the case $\mathbb{G} = \mathbb{R}$ one can prove (3) and (4) the same.

For $r \in \mathbb{N}$, let

$$L_p^r(\mathbb{G}) = \{ f \in L_1(\mathbb{G}) \colon f^{(r-1)} \in AC(\mathbb{G}), f^{(r)} \in L_p(\mathbb{G}) \},$$

$$W_p^r(\mathbb{G}) = \{ f \in L_p^r(\mathbb{G}) \colon ||f^{(r)}||_{L_p(\mathbb{G})} \le 1 \}, \quad W_{p,q}^r(\mathbb{G}) = W_p^r(\mathbb{G}) \cap L_q(\mathbb{G}).$$

For h > 0 and $m \in \mathbb{Z}_+$, by $S_{h,m}(\mathbb{R})$ we denote the collection of functions $s \in C^{(m-1)}(\mathbb{R})$, $m \ge 1$, such that $s^{(m)}|_{(jh;(j+1)h)} = c_j = const$, $j \in \mathbb{Z}$. The set $S_{h,m}(\mathbb{R})$ is called the space of polynomial splines on \mathbb{R} of order m and defect 1 with nodes at the points jh, $j \in \mathbb{Z}$.

The subspace of 2π -periodic polynomial splines of order m and defect 1 with nodes at the points $j\pi/n$, $j \in \mathbb{Z}$, we denote as $S_{\pi/n,m}(\mathbb{T})$.

For $\alpha, \beta > 0$, $\lambda > 0$, $m \in \mathbb{N}$, by $\varphi_{\lambda,m}(\alpha, \beta; t)$ we denote $(2\pi/\lambda)$ -periodic integral of order m with zero mean over the period from even $(2\pi/\lambda)$ -periodic function $\varphi_{\lambda,0}(\alpha, \beta; t)$, which for $t \in [0, \pi/n)$ is defined as follows

$$\varphi_{\lambda,0}(\alpha,\beta;t) = \begin{cases} \alpha, & 0 \le t \le \pi\beta/(\lambda(\alpha+\beta)), \\ -\beta, & \pi\beta/(\lambda(\alpha+\beta)) < t < \pi/n. \end{cases}$$

For $\alpha = \beta = 1$ instead of $\varphi_{\lambda,m}(\alpha,\beta;t)$ we will write $\varphi_{\lambda,m}(t)$.

By

$$B_{\lambda,m}(t) = -2\lambda^{-m} \sum_{k=1}^{n} \frac{\cos(k\lambda t - \pi m/2)}{k^m}, \quad m \in \mathbb{N},$$

we denote the Bernoulli kernel of order m (see [7, p. 107]).

Note (see [7, p.109]) that for $m \ge 2$ and $\beta \to \infty$ one has

$$\|\varphi_{1,m}(1,\beta;\cdot) - B_{\lambda,m}\|_{L_{\infty}(\mathbb{T})} \to 0.$$
 (5)

Moreover, for all $m \in \mathbb{N}$ and $\beta \to \infty$,

$$E(\varphi_{1,m}(1,\beta;\cdot))_{L_{\infty}(\mathbb{T})} \to E(B_{1,m})_{L_{\infty}(\mathbb{T})}.$$
(6)

1 Preliminary information and main results

Let p = 1, ∞. It is well known, that for $n, r, m \in \mathbb{N}$, $m \ge r - 1$,

$$E(W_p^r(\mathbb{T}), S_{\pi/n, m}(\mathbb{T}))_{L_p(\mathbb{T})} = \frac{\|\varphi_{1, r}\|_{L_\infty(\mathbb{T})}}{n^r}.$$
(7)

In the case $p = \infty$ and m = r - 1, the equality (7) was established by V.M. Tikhomirov [14] and in the other cases by A.A. Ligun [8].

Similar results for one-sided approximations of classes $W_p^r(\mathbb{T})$ by splines were obtained by V.G. Doronin and A.A. Ligun [6]. They proved that for $n, m, r \in \mathbb{N}$, $m \ge r$,

$$E^{\pm}(W_1^r(\mathbb{T}), S_{\pi/n, m}(\mathbb{T}))_{L_1(\mathbb{T})} = \frac{E(B_{1, r})_{L_{\infty}(\mathbb{T})}}{n^r}.$$
 (8)

Later V.F. Babenko [1] established, that for $n, m, r \in \mathbb{N}$, $m \ge r$, and $\alpha, \beta > 0$,

$$E^{\pm}(W_1^r(\mathbb{T}), S_{\pi/n, m}(\mathbb{T}))_{L_1(\mathbb{T}); \alpha, \beta} = \frac{E(\varphi_{1, r}(\alpha, \beta; \cdot))_{L_{\infty}(\mathbb{T})}}{n^r}.$$
(9)

Note that considering (5), (6), the result (8) can be obtained from (9) by passing to the limit. For other results on best approximations of classes $W_1^r(\mathbb{T})$ by splines in a periodic case see [2–5,11,12] and references therein.

In was proved in [9] that for all $r \in \mathbb{N}$, $m \in \mathbb{Z}_+$, $m \ge r - 1$, and h > 0,

$$E(W_{1,1}^r(\mathbb{R}), S_{h,m}(\mathbb{R}) \cap L_1(\mathbb{R}))_{L_1(\mathbb{R})} = \frac{\|\varphi_{1,r}\|_{L_{\infty}(\mathbb{T})} \cdot h^r}{\pi^r}.$$
 (10)

Moreover, it is shown in [10] that this result can be obtained from its periodic analogue (7).

In this paper, we obtain non-symmetric analogs of equality (10), based on the result of V.F. Babenko (9).

Theorem. Let α , $\beta > 0$, r, n, $m \in \mathbb{N}$, $m \ge r$, h > 0. Then

$$E(W_{1,1}^r(\mathbb{R}), S_{h,m}(\mathbb{R}) \cap L_1(\mathbb{R}))_{L_1(\mathbb{R}); \alpha, \beta} = \frac{E(\varphi_{1,r}(\alpha, \beta; \cdot))_{L_{\infty}(\mathbb{T})} \cdot h^r}{\pi^r}.$$

Corollary. Let α , $\beta > 0$, r, n, $m \in \mathbb{N}$, $m \ge r$, h > 0. Then

$$E^{\pm}(W_{1,1}^{r}(\mathbb{R}), S_{h,m}(\mathbb{R}) \cap L_{1}(\mathbb{R}))_{L_{1}(\mathbb{R})} = \frac{E(B_{1,r})_{L_{\infty}(\mathbb{T})}h^{r}}{\pi^{r}}.$$

834 Parfinovych N.V.

2 Proof of the main result

We give a proof of our theorem.

Proof. We obtain an upper bound first. In doing so, we will use ideas and methods from [10]. Let $n \in \mathbb{N}$ and h > 0. Let us consider the class $W_p^r(\frac{nh}{\pi}\mathbb{T})$ of 2nh-periodic functions. Note that $f \in W_p^r(\frac{nh}{\pi}\mathbb{T})$ if and only if $g(t) = f(\frac{nh}{\pi}t) \in (\frac{nh}{\pi})^r \cdot W_p^r(\mathbb{T})$. Similarly, $s \in S_{h,m}(\frac{nh}{\pi}\mathbb{T})$ if and only if $\sigma(t) = s(\frac{nh}{\pi}t) \in S_{h,m}(\mathbb{T})$. Then from (9) we obtain

$$E\left(W_{p}^{r}\left(\frac{nh}{\pi}\mathbb{T}\right), S_{h,m}\left(\frac{nh}{\pi}\mathbb{T}\right)\right)_{L_{p}\left(\frac{nh}{\pi}\mathbb{T}\right);\alpha,\beta} = \left(\frac{nh}{\pi}\right)^{r} E\left(W_{p}^{r}(\mathbb{T}), S_{h,m}(\mathbb{T})\right)_{L_{p}(\mathbb{T});\alpha,\beta}$$

$$= \frac{E(\varphi_{1,r}(\alpha,\beta;\cdot))_{L_{\infty}(\mathbb{T})} \cdot h^{r}}{\pi^{r}}.$$

$$(11)$$

Let now $f \in W^r_{1,1}(\mathbb{R})$ and $\eta(\cdot)$ infinitely differentiable on \mathbb{R} function such that $0 \le \eta(t) \le 1$, $t \in \mathbb{R}$, supp $\eta(\cdot) \subset [-1,1]$ and $\eta(t) = 1$ subject to $t \in [-1/2,1/2]$. For any l > 0 put $\eta_l(t) := \eta(t/l)$ and $f_l(\cdot) = f(\cdot)\eta_l(\cdot)$. By Leibniz's formula we have

$$f_l^{(r)}(t) = \sum_{j=0}^r \binom{r}{j} f^{(j)}(t) l^{-(r-j)} \eta_l^{(r-j)}(t).$$
 (12)

Stain's inequality [13] implies the boundedness of the derivatives $x^{(j)}$, j = 1, 2, ..., r - 1, in $L_1(\mathbb{R})$. From here and from (12) we obtain

$$||f_l^{(r)}||_{L_1(\mathbb{R})} \le \rho(l) + ||f^{(r)}||_{L_1(\mathbb{R})} \le \rho(l) + 1,$$

where $\rho(l) \to 0$ as $l \to \infty$.

By \tilde{f}_h denote 4nh-periodic continuation of function $(\rho(2nh)+1)^{-1}f_{2nh}(\cdot)\subset W^r_{[-2nh,2nh]}$ and $\|\tilde{f}_h^{(r)}\|_{L_p(\frac{nh}{\pi}\mathbb{T})}\leq 1$. Thus $\tilde{f}_h\in W^r_p(\frac{nh}{\pi}\mathbb{T})$. Since $S_{h,m}(\frac{nh}{\pi}\mathbb{T})$ is a finite-dimensional space, there exists a spline s_n^* from this space such that

$$\|\tilde{f}_h - s_n^*\|_{L_p(\frac{nh}{\pi}\mathbb{T});\alpha,\beta} = E\Big(\tilde{f}_h, S_{h,m}\Big(\frac{nh}{\pi}\mathbb{T}\Big)\Big)_{L_p(\frac{nh}{\pi}\mathbb{T});\alpha,\beta}.$$

Since

$$E\left(\tilde{f}_h, S_{h,m}\left(\frac{nh}{\pi}\mathbb{T}\right)\right)_{L_1\left(\frac{nh}{\pi}\mathbb{T}\right);\alpha,\beta} \leq \|\tilde{f}_h\|_{L_1\left(\frac{nh}{\pi}\mathbb{T}\right);\alpha,\beta'}$$

using the inequality

$$\min\{\alpha, \beta\} \| \cdot \|_{L_p(\mathbb{G})} \le \| \cdot \|_{L_p(\mathbb{G});\alpha,\beta} \le \max\{\alpha, \beta\} \| \cdot \|_{L_p(\mathbb{G})},$$

we get

$$\min\{\alpha,\beta\}\|s_n^*\|_{L_1(\frac{nh}{\pi}\mathbb{T})} \leq \|s_n^* - \tilde{f}_h + \tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T});\alpha,\beta} \leq 2\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T});\alpha,\beta} \leq 2\max\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T})},\alpha,\beta} \leq 2\max\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T})},\alpha,\beta} \leq 2\max\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T})},\alpha,\beta} \leq 2\max\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T})},\alpha,\beta} \leq 2\min\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T})},\alpha,\beta} \leq 2\min\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi})},\alpha,\beta} \leq 2\min\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi})},\alpha,\beta} \leq 2\min\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi})},\alpha,\beta} \leq 2\min\{\alpha,\beta\}\|\tilde{f}_h\|_{L_1(\frac{nh}{\pi})},\alpha,\beta} \leq 2$$

whence

$$\|s_n^*\|_{L_1(\frac{nh}{\pi}\mathbb{T})} \leq \frac{2\max\{\alpha,\beta\}}{\min\{\alpha,\beta\}} \|\tilde{f}_h\|_{L_1(\frac{nh}{\pi}\mathbb{T})}.$$

Thus the conditions of Proposition 1 in [10] are satisfied. According to them there exists a spline $\xi \in S_{h,m}(\mathbb{R}) \cap L_1(\mathbb{R})$ and a sequence $\{s_{n_j}^*\}_{j \in \mathbb{N}}$ such that $\|\xi - s_{n_j}^*\|_{L_{\infty}(I)} \to 0$, $j \to \infty$, for any finite segment $I \subset \mathbb{R}$.

We set $a_n = \rho(2nh) + 1$. Taking into account that $\tilde{f}_h(\cdot)|_{[-nh,nh]} = a_n^{-1}f(\cdot)$ for all $n \in \mathbb{N}$ and for all $j \in \mathbb{N}$ such that $n_j \geq n$, based on (11) we will have

$$||f - s_{n_{j}}^{*}||_{L_{1}([-nh,nh]);\alpha,\beta} \leq ||a_{n_{j}}\tilde{f}_{n_{j}} - s_{n_{j}}^{*}||_{L_{1}([-n_{j}h,n_{j}h]);\alpha,\beta}$$

$$\leq a_{n_{j}}E\left(W_{1}^{r}\left(\frac{nh}{\pi}\mathbb{T}\right),S_{h,m}\left(\frac{nh}{\pi}\mathbb{T}\right)\right)_{L_{1}\left(\frac{nh}{\pi}\mathbb{T}\right);\alpha,\beta}$$

$$= a_{n_{j}}\frac{E(\varphi_{1,r}(\alpha,\beta;\cdot))_{L_{\infty}(\mathbb{R})}h^{r}}{\pi^{r}}.$$

$$(13)$$

Passing in (13) to the limit as $j \to \infty$, according to [10, Proposition 1] we obtain

$$\|\tilde{f} - \xi\|_{L_1([-nh,nh]);\alpha,\beta} \leq \frac{E(\varphi_{1,r}(\alpha,\beta;\cdot))_{L_\infty(\mathbb{R})}h^r}{\pi^r}.$$

Whence, taking into account Fatou's lemma, we have

$$\|\tilde{f} - \xi\|_{L_1(\mathbb{R});\alpha,\beta} \le \frac{E(\varphi_{1,r}(\alpha,\beta;\cdot))_{L_\infty(\mathbb{R})}h^r}{\pi^r}.$$

The upper bound is obtained.

Let c_0 be the constant of the best approximation of function $\varphi_{\pi/h,r}(\alpha,\beta;t)$. For $\varepsilon > 0$ we consider the set

$$e = \{t \in [-h,h] : |\varphi_{\pi/h,r}(\alpha,\beta;t) - c_0| > E(\varphi_{\pi/h,r}(\alpha,\beta;\cdot))_{L_{\infty}(\mathbb{T})} - \varepsilon\}.$$

Let $f_{\varepsilon}(t)$ be the 2*h*-periodic function such that

$$f_{\varepsilon}(t) = \begin{cases} (\operatorname{mes} e)^{-1} \operatorname{sign}(\varphi_{\pi/h,r}(\alpha,\beta;t) - c_0), & t \in e, \\ 0, & t \in ([-h,h] \setminus e), \end{cases}$$

and $f_{\varepsilon,r}$ be the *r*th antiderivative of $f_{\varepsilon}(t)$.

By $\tilde{f}_{\varepsilon,r}$ we denote the product $f_{\varepsilon,r}(t)\eta(t)$, where $\eta(t)$ is infinitely differentiable on \mathbb{R} function such that $0 \le \eta(t) \le 1$, $t \in \mathbb{R}$ and

$$\eta(t) = \begin{cases} 1, & t \in [-\varepsilon - h, h + \varepsilon], \\ 0, & t \in (\mathbb{R} \setminus [-3\varepsilon - h, h + 3\varepsilon]), \end{cases}$$

(see [15, p. 77]). It is clear that $\tilde{f}_{\varepsilon,r} \in L_1(\mathbb{R})$, $\operatorname{supp} \tilde{f}_{\varepsilon,r} = [-3\varepsilon - h, h + 3\varepsilon]$, and

$$\tilde{f}_{\varepsilon,r}^{(r)}(t) = \sum_{j=0}^{r} {r \choose j} f_{\varepsilon,r}^{(j)}(t) \eta^{(r-j)}(t).$$

Since for j = 0, 1, ..., r - 1

$$\operatorname{supp} \eta^{(r-j)} = [-h - 3\varepsilon, -h - \varepsilon] \cup [h + \varepsilon, h + 3\varepsilon],$$

 $\eta^{(r-j)}$ and $f_{\varepsilon,r}^{(j)}(t)$ are continuous on both segments $[-h-3\varepsilon,-h-\varepsilon]$ and $[h+\varepsilon,h+3\varepsilon]$, we can represent the function $\tilde{f}_{\varepsilon,r}^{(r)}(t)$ as $\tilde{f}_{\varepsilon,r}^{(r)}(t)=f_{\varepsilon}(t)\eta(t)+\rho(t)$, where

$$\rho(t) = \begin{cases} O(1), & t \in [-h - 3\varepsilon, -h - \varepsilon] \cup [h + \varepsilon, h + 3\varepsilon], \\ 0, & t \in (\mathbb{R} \setminus ([-h - 3\varepsilon, -h - \varepsilon] \cup [h + \varepsilon, h + 3\varepsilon])), \end{cases}$$

836 Parfinovych N.V.

in particular, there exists a constant C such that $|\rho(t)| \leq C$.

Now, we establish the upper estimate for the norm $\|\tilde{f}_{\varepsilon,r}^{(r)}\|_{L_1(\mathbb{R})}$:

$$\begin{split} \|\tilde{f}_{\varepsilon,r}^{(r)}\|_{L_1(\mathbb{R})} &= \int_{-h-3\varepsilon}^{h+3\varepsilon} |f_{\varepsilon}(t)\eta(t) + \rho(t)| \, dt \leq \int_{-h-3\varepsilon}^{h+3\varepsilon} |f_{\varepsilon}(t)\eta(t)| \, dt + \int_{[-h-3\varepsilon,-h-\varepsilon] \cup [h+\varepsilon,h+3\varepsilon]} |\rho(t)| \, dt \\ &\leq \|f_{\varepsilon}\|_{L_1([-h,h])} + \int_{[-h-3\varepsilon,-h] \cup [h,h+3\varepsilon]} |f_{\varepsilon}(t)| \, dt + 4C\varepsilon \leq 1 + C_1\varepsilon, \quad C_1 > 0. \end{split}$$

Thus the function $\tilde{f}_{\varepsilon,r}/(1+C_1\varepsilon) \in W^r_{1,1}(\mathbb{R})$. Let us obtain a lower estimate for the quantity $E := E(W^r_{1,1}(\mathbb{R}), S_{h,m}(\mathbb{R}) \cap L_1(\mathbb{R}))_{L_1(\mathbb{R});\alpha,\beta}$.

Using the duality theorem (see, for example, [7, Theorem 1.4.9]) we can write

$$E = \sup_{f \in W_{1,1}^r(\mathbb{R})} \sup_{\|g\|_{\infty,\alpha} - 1,\beta - 1 \atop g \perp S_h \cdot m_r(\mathbb{R}) \cap L_1(\mathbb{R})} \int_{\mathbb{R}} f(t)g(t) \, dt.$$

Based on [9, Lemmas 1.4 and 1.1] after *r* times integration by parts we have

$$E \ge \sup_{f \in W^r_{1,1}(\mathbb{R})} \sup_{g \in W^{m+1}_{0,\alpha^{-1},\beta^{-1}(\mathbb{R})}} \int_{\mathbb{R}} f(t)g^{(m+1)}(t) dt = \sup_{f \in W^r_{1,1}(\mathbb{R})} \sup_{g \in W^{m+1}_{0,\alpha^{-1},\beta^{-1}(\mathbb{R})}} \int_{\mathbb{R}} f^{(r)}(t)g^{(m-r+1)}(t) dt.$$

Since (with the corresponding shift) the function $\varphi_{\pi/h,m+1}(\alpha,\beta;t) \in W^{m+1}_{\infty;\alpha^{-1},\beta^{-1}}(\mathbb{R})$ satisfies the conditions $\varphi_{\pi/h,m+1}(\alpha,\beta;kh) = 0$, $k \in \mathbb{Z}$, we obtain

$$\begin{split} E &\geq \sup_{f \in W_{1,1}^r(\mathbb{R})} \int_{\mathbb{R}} f^{(r)}(t) \varphi_{\pi/h,r}(\alpha,\beta;t) \, dt \geq \frac{1}{1+C_1 \varepsilon} \int_{\mathbb{R}} \tilde{f}_{\varepsilon,r}^{(r)}(t) \varphi_{\pi/h,r}(\alpha,\beta;t) \, dt \\ &= \frac{1}{1+C_1 \varepsilon} \Big(\int_{-h-3\varepsilon}^{h+3\varepsilon} (f_{\varepsilon}(t)\eta(t) + \rho(t)) \varphi_{\pi/h,r}(\alpha,\beta;t) \, dt \Big) \\ &= \frac{1}{1+C_1 \varepsilon} \Big(\int_{-h}^{h} f_{\varepsilon}(t) (\varphi_{\pi/h,r}(\alpha,\beta;t) - c_0) \, dt \\ &+ \int_{[-h-3\varepsilon,-h] \cup [h,h+3\varepsilon]} (f_{\varepsilon}\eta(t) + \rho(t)) \varphi_{\pi/h,r}(\alpha,\beta;t) \, dt \Big) \\ &\geq \frac{1}{1+C_1 \varepsilon} \Big(\frac{1}{\text{mes } e} \int_{e} |\varphi_{\pi/h,r}(\alpha,\beta;t) - c_0| \, dt + C_2 \varepsilon \Big) \\ &> \frac{1}{1+C_1 \varepsilon} (E(\varphi_{\pi/h,r}(\alpha,\beta;\cdot)) + (C_2-1)\varepsilon). \end{split}$$

Since ε is arbitrary, we obtain the required lower bound. Thus, the theorem is proved.

References

[1] Babenko V.F. *Nonsymmetric approximations in spaces of summable functions*. Ukrainian Math. J. 1982, **34** (4), 331–336. doi:10.1007/BF01091584 (translation of Ukrain. Mat. Zh. 1982, **34** (4), 409–416. (in Russian))

- [2] Babenko V.F., Parfinovich N.V. On the best L₁-approximations of functional classes by splines under restrictions imposed on their derivatives. Ukrainian Math. J. 1999, 51 (4), 481–491. doi:10.1007/BF02591753 (translation of Ukrain. Mat. Zh. 1999, 51 (4), 435–444. (in Russian))
- [3] Babenko V.F., Parfinovich N.V. Exact values of best approximations for classes of periodic functions by splines of deficiency 2. Math. Notes. 2009, **85** (3–4), 515–527. doi:10.1134/S0001434609030237 (translation of Mat. Zametki 2009, **85** (4), 538–551. (in Russian))

- [4] Babenko V.F., Parfinovich N.V. *Nonsymmetric approximations of classes of periodic functions by splines of defect 2 and Jackson-type inequalities*. Ukrainian Math. J. 2009, **61** (11), 1695–1709. doi:10.1007/s11253-010-0307-9 (translation of Ukrain. Mat. Zh. 2009, **61** (11), 1443–1454. (in Russian))
- [5] Babenko V.F., Parfinovich N.V. On the exact values of the best approximations of classes of differentiable periodic functions by splines. Math. Notes. 2010, 87 (5–6), 623–635. doi:10.1134/S0001434610050032 (translation of Mat. Zametki 2010, 87 (5), 669–683. (in Russian))
- [6] Doronin V.G., Ligun A.A. Upper bounds for the best one-sided approximation by splines of the classes W^rL_1 . Math. Notes. 1976, **19** (1), 7–10. doi:10.1007/BF01147610 (translation of Mat. Zametki 1976, **19** (1), 11–17. (in Russian))
- [7] Korneichuk N.P. Exact Constants in Approximation Theory. Nauka, Moscow, 1987. (in Russian)
- [8] Ligun A.A. Inequalities for upper bounds of functionals. Anal. Math. 1976, 2 (1), 11-40. doi:10.1007/BF02079905
- [9] Magaril-Il'yaev G.G. *On best approximation by splines of function classes on the line*. Proc. Steklov Inst. Math. 1993, **194**, 153–164. (translation of Tr. Mat. Inst. Steklova 1992, **194**, 148–159. (in Russian))
- [10] Magaril-II'yaev G.G., Tikhomirov V.M. On approximation of functional classes on the real line by splines and entire functions. In: Function Spaces and Their Application to Differential Equations. Collection of Scientific Papers. RUDN, Moskow, 1992, 116–129. (in Russian)
- [11] Parfinovych N.V. Exact values of the best (α, β) -approximations for the classes of convolutions with kernels that do not increase the number of sign changes. Ukrainian Math. J. 2018, **69** (8), 1248–1261. doi:10.1007/s11253-017-1428-1 (translation of Ukrain. Mat. Zh. 2017, **69** (8), 1073–1083. (in Russian))
- [12] Parfinovych N.V. *On extremal subspaces for the widths of classes of convolutions*. Res. Math. 2017, **22** (8), 68–79. doi:10.15421/241708
- [13] Stain E.M. Functions of exponential type. Ann. Math. 1957, 65 (3), 582-592. doi:10.2307/1970066
- [14] Tikhomirov V.M. *On the n-dimensional widthes of some functional classes*. Dokl. Akad. Nauk USSR. 1960, **130** (4), 734–737. (in Russian)
- [15] Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow, 1967. (in Russian)

Received 02.03.2021 Revised 03.11.2021

Парфінович Н.В. Несиметричні наближення функціональних класів сплайнами на дійсній осі // Карпатські матем. публ. — 2021. — Т.13, \mathbb{N}^3 . — С. 831–837.

Нехай $S_{h,m},\,h>0,\,m\in\mathbb{N}$ — простори поліноміальних сплайнів порядку m дефекту 1 з вузлами в точках $kh,\,k\in\mathbb{Z}.$

Отримано точні значення найкращих (α, β) -наближень просторами $S_{h,m} \cap L_1(\mathbb{R})$ у просторі $L_1(\mathbb{R})$ для класів $W^r_{1,1}(\mathbb{R})$, $r \in \mathbb{N}$, функцій, визначених на всій дійсній прямій, інтегрованих на \mathbb{R} і таких, що r-ті похідні належать одиничній кулі $L_1(\mathbb{R})$.

Ці результати узагальнюють відомі результати Г.Г. Магарила-Ілляєва та В.М. Тихомирова щодо точних значень найкращих наближень класів $W^r_{1,1}(\mathbb{R})$ сплайнами з $S_{h,m}\cap L_1(\mathbb{R})$ (випадок $\alpha=\beta=1$), а також є неперіодичними аналогами В.Ф. Бабенка щодо найкращих несиметричних наближень класів $W^r_1(\mathbb{T})$ 2 π -періодичних функцій з r-тою похідною, що належить до одиничної кулі простору $L_1(\mathbb{T})$ періодичними поліноміальніми сплайнами мінімального дефекту.

Як наслідок основного результату, ми отримуємо точні значення найкращих односторонніх наближень класів W_1^r поліноміальними сплайнами з $S_{h,m}(\mathbb{T})$. Цей результат є періодичним аналогом результатів А.А. Лігуна і В.Г. Дороніна про найкращі односторонні наближення класів W_1^r просторами $S_{h,m}(\mathbb{T})$.

Ключові слова і фрази: найкраще L_1 -наближення, односторонне наближення, несиметричне наближення, поліноміальний сплайн, функціональний клас.