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Local Polya fluctuations of Riesz gravitational fields and the
Cauchy problem

Litovchenko V.A.

We consider a pseudodifferential equation of parabolic type with a fractional power of the

Laplace operator of order α ∈ (0; 1) acting with respect to the spatial variable. This equation nat-

urally generalizes the well-known fractal diffusion equation. It describes the local interaction of

moving objects in the Riesz gravitational field. A simple example of such system of objects is stellar

galaxies, in which interaction occurs according to Newton’s gravitational law. The Cauchy problem

for this equation is solved in the class of continuous bounded initial functions. The fundamental

solution of this problem is the Polya distribution of probabilities Pα(F) of the force F of local in-

teraction between these objects. With the help of obtained solution estimates the correct solvability

of the Cauchy problem on the local field fluctuation coefficient under certain conditions is deter-

mined. In this case, the form of its classical solution is found and the properties of its smoothness

and behavior at the infinity are studied. Also, it is studied the possibility of local strengthening of

convergence in the initial condition. The obtained results are illustrated on the α-wandering model

of the Lévy particle in the Euclidean space R3 in the case when the particle starts its motion from

the origin. The probability of this particle returning to its starting position is investigated. In par-

ticular, it established that this probability is a descending to zero function, and the particle “leaves”

the space R
3.
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Introduction

Let Rn be the n-dimensional Euclidean space with the scalar product (·, ·) and the norm

|r| = (r, r)1/2; Z
n
+ be the set of all n-dimensional multi-indices; R = R

1 and Z+ = Z
1
+. The

Fourier transform operator is denoted by the symbol F.

In the space R3, we consider a system of moving objects Zj with masses mj. We believe

that the interaction between objects is subject to Riesz potential [26]. This means that the

gravitational influence F between any two objects of masses M and m is described by the law

F = G
Mm

|r|β r0, β > 0, (1)

where G is the corresponding gravitational constant, r is the vector of the distance between

these objects, and r0 = r/|r|, r ∈ R3. A simple example of such systems are stellar galaxies, in
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which the interaction between star objects Zj is described by the well-known Newton’s law (1)

with β = 2.

In this system we fix some object Z0 and assume that it is at the origin. We are concerned

with the force F(t) of local influence on the unit of mass of the object Z0 at time t, which

is caused by the close environment of this object. Since this environment is constantly and

unpredictably changing, it is convenient to consider F as a random variable.

In [18], it is established that the nonstationary probabilities distribution Wβ(F; t) of the force

F(t) is determined by equality

Wβ(F; t) = F
−1
[

e−aβ(t)|ξ|3/β
]

(F; t), β > 3/2, (2)

where aβ(·) is the so-called the coefficient of local fluctuation of the system’s gravitational

field, which is determined by the distribution of objects in the system and their average mass.

Under certain conditions on aβ(·), the distribution Wβ on the set R3 × (0; T] is a fundamen-

tal solution of the Cauchy problem for the pseudodifferential equation (PDE) [18]

∂tu(x; t) + a′β(t)Aνu(x; t) = 0, t ∈ (0; T], x ∈ R
n. (3)

Here n = 3, ν = 3/β, T ∈ (0;+∞]; Aν is the Riesz operator of fractional differentiation of ν

order, i.e. Aν = (−∆)ν/2, where ∆ is the Laplace operator [29], and

a′β(t) =
daβ(t)

dt
.

In the simplest case a′β(t) ≡ const, equation (3) is known as “fractal diffusion equation”

[12, p. 324] or “isotropic superdiffusion equation” [35, p. 251]. An important example for mo-

tivating the study of the fractal diffusion equation is given in [4, p. 2]. Here a probabilistic

model of a random walk of the particle X in long jumps is proposed and it is shown that the

probability u(x; t) of the presence particle X at the time t at the spatial point x is the solution to

equation (3) for a′β(t) ≡ 1. Processes of this type occur in nature quite often, see in particular

the biological observations in [25, 36] and the mathematical discussions in [9, 23].

The fractal diffusion equation is the source of many random processes [13]. In further

generality, it is known that the Riesz operator Aν (the fractional Laplacian) is an infinitesimal

generator of the Lévy process, see e.g. [1, 2] for further details. In this regard, we note that

each distribution Wβ(·; t), β > 3/2, with a fixed t ∈ [0; T] belongs to the class of the Lévy

distributions of symmetric stable random processes [16, 37]:

Lν(·) = F
−1
[

e−b|ξ|ν
]

(·), ν ∈ (0; 2]. (4)

In particular, W2 is the known Holtsmark distribution [5, 11].

Obviously, Wβ = Lν for ν = 3/β and b = aβ(t), t ∈ (0; T]. This equality characterizes

the general nature of symmetric stable random Lévy processes. Each of such processes Lν for

ν ∈ (0; 2) can be regarded as a process of local influence of moving objects in the corresponding

gravitational field of M. Riesz.

In his fundamental work [16], P. Lévy proved that the function Lν(·) is the probability

density only for ν ∈ (0; 2]. This study was preceded by the research of the Hungarian mathe-

matician G. Polya [24], who established this fact for the case ν ∈ (0; 1). Thus Lévy distributions

Lν(·) of order ν ∈ (0; 1) are also called Polya Pν(·) distributions in the literature.
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For convenience, the fundamental solution of the problems Cauchy for PDE (3) we denote

by

Gν(x; t) = F
−1
[

e−âβ(t)|ξ|ν
]

(x; t), x ∈ R
n, t ∈ (0; T], (5)

where âβ(·) = aβ(·)− aβ(0).

Investigation of the Cauchy problem for PDE (3) and the corresponding function Gν(x; t)

in the case when the coefficient aβ(·) is a strictly increasing function on the interval (0; T], was

conducted in many works [3, 6–8, 30] (see the detailed review in [18]). There, for ν ∈ [1; 2],

various methods were developed to study the properties of the fundamental solution Gν(x; t),

and statements were formulated about the correct solvability of the Cauchy problem in classes

of Hölder functions. Also, the typical properties of the classical solutions of PDE (3) were

clarified, in particular, an analogue of the maximum principle was established.

At the same time, the case of ν ∈ (0; 1) appeared to be much more problematic and had

remained little-studied for a long time. Recently, new results have been obtained [14, 15, 21].

Here, in a slightly different form than that in [7], a parametrix was proposed for constructing

the structure of the fundamental solution of the Lévy-type operator L with a variable symbol of

order ν ∈ (0; 1). Gradient estimates of this solution are also established, which are important in

the study of the corresponding Markov processes. In addition, for PDE (3) the correct solution

of the Cauchy problem in the class of unbounded, discontinuous with integrative singularity

of initial functions is proved in [17]. Also an analogue of the maximum principle is established,

by means of which the uniqueness of the solution of this problem is substantiated.

The subject of our research is the properties of the Polya distribution density related to the

problem of local influence of moving objects in the Riesz gravitational field, i.e. the properties

of fundamental solutions Gν of the Cauchy problem for PDE (3) of purely fractional order ν,

and the correct solvability of this problem in the class of bounded continuous initial data. The

results obtained here harmoniously complement the results of research conducted in [7, 17].

The contents of the work is as follows. Section 1 contains the necessary information about

the operator Aν and the properties of the function Gν. The Cauchy problem for PDE (3) of

order ν ∈ (0; 1) in the class of continuous bounded initial functions is solved in Section 2.

Here the classical solution of this problem is obtained, the form of the image of a solution is

found and properties of its smoothness and behavior at infinity are investigated. Section 3

clarifies the question of the uniqueness of the solution of this Cauchy problem under certain

conditions on the coefficient of local fluctuation aβ(·). The possibility of local increasing the

convergence of the solution of the Cauchy problem to its limit value when approaching the

initial hyperplane is clarified in Section 4. The obtained result are illustrated in Section 5 by

the example of solving the problem of finding the time of return of a wandering Lévy particle,

to the place of its start. Section 6 presents conclusions.

1 Preliminary information

We assume that Cl(Q) is the class of all continuously differentiable to order l functions

on the set Q, S = S
(

R3
)

is the Schwartz space defined on R3 infinitely differentiable rapidly

decreasing functions [31], and ΠQ =
{

(x; t) : x ∈ R3, t ∈ Q
}

.

As it was mentioned above, the Riesz operator of fractional differentiation is the fractional

power of the Laplace operator, taken with the “minus” sign: Aν = (−△)ν/2. On the elements
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of the Schwartz space of rapidly decreasing functions, this operator is determined by equality

(Aν f )(·) = F
−1 [|ξ|νF[ f ]] (·), f ∈ S. (6)

However, the classical form of fractional differentiation (6) is not suitable for extending the

operator Aν to wider classes of functions. The following form is more convenient for our

research [29, p.367]:

(Aν f )(x) = c(ν)
∫

R3

f (x) − f (x + y)

|y|3+ν
dy, x ∈ R

3, ν ∈ (0; 1), (7)

where

c(ν) =
ν(1 + ν)

4πΓ(1 − ν) cos(νπ/2)

(here Γ(·) is gamma function).

It should be noted that the theory of Riesz potential and the corresponding fractional dif-

ferentiation originates from [10, 26, 27]. G. Thorin, S. Sobolev, S. Stein, P. Lizorkin, S. Samko

and others made a significant contribution to its development (see [22, 28, 32–34]).

Note that the integral from equality (7) converges absolutely, for example, for bounded

Hölder functions with an order greater than ν, so formula (7) allows us to apply the operator

Aν to functions of wider classes than the space S. The set of all functions f defined on R3, for

which the right-hand part of relation (7) has meaning, is denoted by D(Aν). It is obvious that

the constant function f (x) ≡ const belongs to the set D(Aν) for every ν ∈ (0; 1), and Aν f = 0.

Further, we assume that the coefficient aβ(·) ∈ C
1
(

[0; T]
)

and

âβ(t) ≡ aβ(t)− aβ(0) > 0 ∀t ∈ (0; T]. (8)

Under such conditions, the following statement holds.

Theorem 1. The density Wβ(x; t) of probability distribution on the set Π(0;T] is infinitely dif-

ferentiable with respect to the variable x and once differentiable with respect to the variable t.

The following estimates are correct:
∣

∣

∣
∂k

xWβ(x; t)
∣

∣

∣
≤ c1aβ(t)

(

(

aβ(t)
)1/ν

+ |x|
)−3−|k|−ν

, (9)

∣

∣

∣
∂t∂

k
xWβ(x; t)

∣

∣

∣
≤ c2

∣

∣

∣
a′β(t)

∣

∣

∣

(

(

aβ(t)
)1/ν

+ |x|
)−3−|k|−ν

, (10)

where c1 and c2 are positive constants.

This theorem is easily proved according to the scheme of the proof of Lemma 2 from [19].

Hence, taking into account (2) and (5), the following consequence becomes obvious.

Corollary 1. For the derivatives of the fundamental solution Gν the following estimates are

correct:
∣

∣

∣
∂k

xGν(x; t)
∣

∣

∣
≤ c1 âβ(t)

(

(

âβ(t)
)1/ν

+ |x|
)−3−|k|−ν

, (11)

∣

∣

∣
∂t∂

k
xGν(x; t)

∣

∣

∣
≤ c2

∣

∣

∣
a′β(t)

∣

∣

∣

(

(

âβ(t)
)1/ν

+ |x|
)−3−|k|−ν

, (12)

for all (x; t) ∈ Π(0;T] and k ∈ Z
3
+.

Note that estimates (11), (12) for the case when the coefficient aβ(·) is a strictly increasing

function, were obtained in [19, 20].

Estimates (11), (12) will allow us to establish the correct solvability of the Cauchy problem

for PDE (3) in the class of continuous bounded initial functions and to study some properties

of its solutions.
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2 The Cauchy problem

For PDE (3) we consider the Cauchy problem

u(·; t)|t=0
= f , (13)

in which f is a bounded continuous function on R
3.

Definition 1. The solution of the Cauchy problem (3), (13) on the set Π(0;T] is called the func-

tion u(x; t), which on this set is differentiable by the variable t and u(·; t) ∈ D(Aν), t ∈ (0; T].

In this case the function u on Π(0;T] satisfies the equation (3) in the usual sense, and the initial

condition (13) in the sense of the boundary relation

u(x; t) →
t→+0

f (x), x ∈ R
3. (14)

This auxiliary statement holds.

Lemma 1. Let aβ(·) ∈ C
1
(

[0; T]
)

satisfy condition (8). Then the function

u(x; t) = ( f ∗ Gν)(x; t), (x; t) ∈ Π(0;T] (15)

is:

1) on R3 – infinitely differentiable with respect to the variable x with a fixed t ∈ (0; T] and

bounded together with all its derivatives;

2) on (0; T] – differentiable at t for a fixed x ∈ R
3.

In this case, we have

∂k
xu(x; t) =

(

f ∗ ∂k
xGν

)

(x; t), ∂tu(x; t) = ( f ∗ ∂tGν)(x; t), (x; t) ∈ Π(0;T]. (16)

If

∃{c, α} ⊂ (0;+∞) ∀ x ∈ R
3 :

∣

∣ f (x)
∣

∣ ≤ c
(

1 + |x|
)α , (17)

then

lim
|x|→+∞

u(x; t) = 0 ∀ t ∈ (0; T]. (18)

Proof. First, we note that

( f ∗ Gν)(x; t) =
∫

R3
f (y)Gν(x − y; t)dy, (x; t) ∈ Π(0;T]. (19)

Having taken into account the conditions of the function f and estimate (11), we obtain that

for all k ∈ Z3
+ and (x; t) ∈ Π(0;T] the following inequalities hold true

∣

∣

∣

∣

∫

R3
f (y)∂k

x Gν(x − y; t)dy

∣

∣

∣

∣

≤
∫

R3

∣

∣ f (y)
∣

∣

∣

∣

∣
∂k

x−yGν(x − y; t)
∣

∣

∣
dy

≤
∫

R3

câβ(t)dy
(

(

âβ(t)
)1/ν

+ |x − y|
)3+|k|+ν

=
∫

R3

c
(

âβ(t)
)−|k|/ν

dz
(

1 + |z|
)3+|k|+ν

≡ ck

(

âβ(t)
)−|k|/ν

,
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where ck is a positive value that depends only on k. These estimates ensure that the following

equality

∂k
x( f ∗ Gν)(x; t) =

(

f ∗ ∂k
xGν

)

(x; t), (x; t) ∈ Π(0;T],

holds for each k ∈ Z3
+. Hence we obtain that the function u(x; t) is infinitely differentiable

with respect to the variable x on Π(0;T] and the derivatives ∂k
xu are bounded. Similarly, using

estimate (12), we verify the differentiability of u(x; t) by the variable t and the fulfillment of

the second equality with (16).

We are going to set the boundary relation (18). To do this, we use the estimate

∣

∣u(x; t)
∣

∣ ≤ c

(

∫

2|y|≥|x|

Gν(x − y; t)dy
(

1 + |y|
)α +

∫

2|y|<|x|

Gν(x − y; t)dy
(

1 + |y|
)α

)

∀ (x; t) ∈ Π(0;T].

According to the equality
∫

R3
Gν(x; t)dx = 1, t ∈ (0; T], (20)

we have
∫

2|y|≥|x|

Gν(x − y; t)dy
(

1 + |y|
)α ≤ 2α

(

1 + |x|
)α

∫

R3
Gν(x − y; t)dy ≡ 2α

(

1 + |x|
)α →

|x|→+∞

0.

Further, if 2|y| < |x|, then |x − y| ≥
∣

∣|x| − |y|
∣

∣ = |x|
∣

∣1 − |y|/|x|
∣

∣ ≥ |x|/2.

Considering this and estimate (11), we find

∫

2|y|<|x|

Gν(x − y; t)
(

1 + |y|
)α dy ≤

∫

2|y|<|x|

c1âβ(t)dy

|x − y|ν/2
(

(

âβ(t)
)1/ν

+ |x − y|
)3+ν/2

≤
√

2ν

|x|ν/2

∫

R3

c1âβ(t)dy
(

(

âβ(t)
)1/ν

+ |x − y|
)3+ν/2

=

√
2ν

|x|ν/2

∫

R3

c1

√

âβ(t)dz
(

1 + |z|
)3+ν/2

→
|x|→+∞

0 ∀ t ∈ (0; T].

Thus, the fulfillment of the boundary relation (18) is substantiated.

Theorem 2. Let aβ(·) ∈ C1
(

[0; T]
)

satisfy condition (8), then formula (15) determines the

solution of Cauchy problem (3), (13).

Proof. We write formally

Aνu(x; t) = c(ν)
∫

R3

u(x; t)− u(x + y; t)

|y|3+ν
dy, (x; t) ∈ Π(0;T].

By Lemma 1, the function u(·; t) is infinitely differentiable and bounded together with all

derivatives by R3, so the integral from the previous equality is absolutely convergent on Π(0;T].

This means that u(·; t) ∈ D(Aν), t ∈ (0; T].

Further, we find that

∫

R3

u(x; t)− u(x + y; t)

|y|3+ν
dy =

∫

R3

∫

R3
f (z)

Gν(x − z; t)− Gν(x + y − z; t)

|y|3+ν
dzdy
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directly from equations (15) and (19). The absolute convergence of the integral from the left-

hand side of the equality makes it possible to change the order of integration in the integral in

the right-hand side of this equality and obtain

Aνu(x; t) = ( f ∗ AνGν)(x; t), (x; t) ∈ Π(0;T].

Hence, taking into account that the function Gν is a solution of equation (3), as well as

formula (16), we find

Aνu(x; t) = −( f ∗ ∂tGν)(x; t) = −∂tu(x; t), (x; t) ∈ Π(0;T].

Therefore, on the set Π(0;T] equation (15) determines the classical solution of PDE (3).

We now show that this solution satisfies the initial condition (13), i.e. the boundary relation

(14). To do this, we use equality (20), according to which

∣

∣( f ∗ Gν)(x; t)− f (x)
∣

∣ ≤
∫

R3

∣

∣Gν(ξ; t)
∣

∣

∣

∣ f (x − ξ)− f (x)
∣

∣dξ ≡ I(x; t).

Since f is a continuous function on R
3, for every x ∈ R

3 and arbitrary ε > 0 there exists such

t0 that t
1

2ν
0 < ε and

∣

∣ f (x − ξ)− f (x)
∣

∣ < ε, if |ξ| < t
1

2ν
0 . Then

I(x; t) < ε
∫

|ξ|<t
1

2ν
0

∣

∣Gν(ξ; t)
∣

∣dξ +
∫

|ξ|≥t
1

2ν
0

∣

∣Gν(ξ; t)
∣

∣

∣

∣ f (x − ξ)− f (x)
∣

∣dξ ≤ εI1(t) + I2(x; t),

where

I1(t) =
∫

R3

∣

∣Gν(ξ; t)
∣

∣dξ, I2(x; t) =
∫

|ξ|≥t
1

2ν
0

∣

∣Gν(ξ; t)
∣

∣

∣

∣ f (x − ξ)− f (x)
∣

∣dξ.

Further, considering estimate (11) and the boundedness of the function f in R3, for all t ∈ (0; T]

and x ∈ R3 we find

I1(t) ≤ c1âβ(t)
∫

R3

dξ
(

(

âβ(t)
)1/ν

+ |ξ|
)3+ν

= c1

∫

R3

dz
(

1 + |z|
)3+ν

≡ c2;

I2(x; t) ≤ c3âβ(t)
∫

|ξ|≥t
1

2ν
0

|ξ|−(3+ν)dξ = c3âβ(t)
∫ +∞

t
1

2ν
0

ρ−(1+ν)dρ = c4 âβ(t)t
−1/2
0 . (21)

It should be noted that the functions aβ(·) and âβ(·) on (0; T] are positive, while aβ(·) is

continuously differentiable, so according to mean value theorem, there is a constant δ > 0

such that for all t ∈ (0; T] the following estimate

âβ(t) ≤ δt.

is performed. Hence it follows from the above and from inequality (21) that for all x ∈ R
3 and

t ≤ t0 we have

I2(x; t) ≤ c4δt1/2
0 < c4δεν ≡ c5εν.

So, for each x ∈ R
3 and arbitrary ε > 0 there is t0 < ε2ν such that for all t ≤ t0 the inequality

I(x; t) < c(ε + εν)

holds, i.e. the boundary relation (14) is true.
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Taking into account the non-negativity of the function Gν and equality (20), directly from

formula (15), we arrive at the following statement.

Corollary 2. If Cauchy problem (3), (13) has a unique solution u, then

inf
x∈R3

f (x) ≤ u(x; t) ≤ sup
x∈R3

f (x) ∀ (x; t) ∈ Π[0;T].

In the next section, the question of uniqueness of the Cauchy problem solution (3), (13) is

clarified.

3 Conditions for the uniqueness of the solution

We previously assumed that on the set [0; T] the fluctuation coefficient aβ(·) is such contin-

uously differentiable function that satisfy the condition (8), i.e.

aβ(t) > aβ(0) ∀ t ∈ (0; T].

Fulfillment of this condition causes the increase of the function aβ(·), even if not on the whole

interval (0; T], then at least on some part of it (0; t0), t0 < T. However, on [t0; T] the function

aβ(·) can be non-increasing. In this case, we have

a′β(t0) = 0; a′β(t) > 0, t ∈ (0; t0); a′β(t) ≤ 0, t ∈ [t0; T].

The following statement holds.

Theorem 3. Let aβ(·) ∈ C1([0; T]) satisfy condition (8) and t0 is a fixed point with [0; T] such

that

a′β(t) ≥ 0, t ∈ (0; t0].

Then on Π(0;t0] the Cauchy problem (3), (13) has only one solution for which the boundary

relation (18) holds.

Proof. Suppose that for the Cauchy problem (3), (13) on Π(0;t0] there are two different solutions

u1 and u2 with property (18). Consider the function v = u1 − u2, which on Π(0;t0] is also a

solution of PDE (3) with property (18). The zero initial condition (13) is obviously satisfied for

v, i.e.

v(·; t)|t=0
= 0.

We have to show that

v(x; t) ≡ 0 ∀ (x; t) ∈ Π(0;t0]. (22)

We apply the method of proof by contradiction. Suppose that condition (22) is not satisfied.

This means that

λ = inf
(x;t)∈Π[0;t0]

v(x; t) < 0 or µ = sup
(x;t)∈Π[0;t0]

v(x; t) > 0.

Let λ < 0 and

Lw(x; t) = ∂tw(x; t) + a′β(t)Aνw(x; t).
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We consider the auxiliary function

v̂(x; t) = v(x; t) + tχ, (x; t) ∈ Π(0;t0],

where χ is such fixed number that 0 < χ < −λ/t0. Obviously

inf
(x;t)∈Π[0;t0]

v̂(x; t) < 0.

It should be noted that v̂(x; t) is a continuous function on Π[0;t0] for a set of variables, in

addition,

v̂(x; t)|t=0
= v(x; t)|t=0

= 0, x ∈ R
3,

and

v̂(x; t) →
|x|→∞

tχ > 0, t ∈ (0; t0].

Therefore, v(x; t) has a negative global minimum in some point (x∗; t∗) ∈ Π(0;t0]. Then

∂tv̂(x∗; t∗) = 0.

Beside this

v̂(x∗; t∗)− v̂(x∗ + y; t∗) ≤ 0 ∀ y ∈ R
3,

i.e.

Aνv̂(x∗; t∗) = c(ν)
∫

R3

v̂(x∗; t∗)− v̂(x∗ + y; t∗)
|y|3+ν

dy ≤ 0.

Hence, we find that

Lv̂(x∗; t∗) = ∂tv̂(x∗; t∗) + a′β(t∗)Aνv̂(x∗; t∗) = a′β(t∗)Aν v̂(x∗; t∗) ≤ 0.

On the other hand, for all (x; t) ∈ Π(0;T] we have

Lv̂(x; t) = L
(

v(x; t) + tχ
)

= Lv(x; t) + L(tχ) = L(tχ) = χ + ta′β(t)Aνχ = χ > 0.

Here a contradiction arises. Therefore,

inf
(x;t)∈Π[0;t0]

v(x; t) = 0.

The falseness of the condition µ > 0 is established similarly using the function

v̌(x; t) = v(x; t)− tχ, (x; t) ∈ Π(0;t0],

(here χ is a fixed constant such that 0 < χ < µ/t0). Thus, the fulfillment of condition (22) is

justified.

4 The principle of the solution localization on the initial hyperplane

In this section we clarify the question of the possibility of increasing convergence in the

initial condition (13) on that part of the space R3, where the initial function f is smooth.

The below statement holds.
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Theorem 4. Let f be a continuous function bounded on R3, and let u be a corresponding

solution of the Cauchy problem (3), (13). If f ∈ Cl(Q), Q ⊂ R3, then

∂k
xu(x; t)

K⊂Q

⇒
t→+0

∂k
x f (x), 0 ≤ |k| ≤ l,

(this refers to uniform convergence on each compact set K from the set Q).

Proof. Obviously, it will be enough to prove the fulfillment of the boundary relation

∂k
xu(x; t)

K⊂Q

⇒
t→+0

0, k ∈ Z
3
+,

for f (x) = 0, x ∈ Q.

Let K ⊂ K1 ⊂ Q, where K1 is some compact set of R3, such that

∀x ∈ K ∀ξ ∈ R
3 \ K1 : |x − ξ| ≥ b > 0. (23)

We consider the finite function η ∈ C∞(R3), such that suppη ⊂ Q, η(x) = 1 on K1 and we put

µ = 1 − η.

According to Lemma 1, for all k ∈ Z3
+ and (x; t) ∈ Π(0;T] we have the relation

∂k
xu(x; t) =

∫

R3
∂k

xGν(x − ξ; t)η(ξ) f (ξ)dξ +
∫

R3
∂k

xGν(x − ξ; t)µ(ξ) f (ξ)dξ

from which, considering the equality f = 0, µ = 0 on the sets Q and K1, respectively, and that

supp
(

∂k
xGν(x − ·; t)η(·)

)

⊂ Q,

we find

∂k
xu(x; t) =

∫

R3\K1

∂k
xGν(x − ξ; t)µ(ξ) f (ξ)dξ, (x; t) ∈ Π(0;T].

Hence, using estimate (11) and taking into account the boundedness of the functions µ, f

on R3 as well as condition (23), for x ∈ K and 0 < t << 1 we obtain

∣

∣

∣
∂k

xu(x; t)
∣

∣

∣
≤
∫

R3\K1

∣

∣

∣
∂k

xGν(x − ξ; t)
∣

∣

∣

∣

∣µ(ξ) f (ξ)
∣

∣dξ

≤ câβ(t)
∫

R3\K1

|x − ξ|−3−|k|−νdξ ≤ câβ(t)
∫

|z|>b
|z|−3−νdz ≡ c0 âβ(t) →

t→+0
0

(here c0 is a positive constant).

From Theorem 4, considering that the initial function f is continuous on R3, we arrive at

the following statement.

Corollary 3. Let u be the solution of Cauchy problem (3), (13). Then for each compact set

K ⊂ R3 the following boundary relation

u(x; t)
K

⇒

t→+0
f (x).

is fulfilled.
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5 Example

As an example, consider the model “Lévy ν-wandering” of the particle X in R
3 [4, p. 2].

The probability u(x; t) of finding the particle X in point (x; t) is a solution of the following

equation

∂tu(x; t) + Aνu(x; t) = 0, (x; t) ∈ Π(0;+∞). (24)

Suppose that at the initial time t = 0 the probabilistic location of the particle X in R3 is char-

acterized by the function

f (x) = (1 + x2)−2, x ∈ R
3.

Then the mathematical model of the “ν-wandering” of the particle X is the Cauchy problem

for PDE (24) with the initial condition

u(x; t)|t=0
= (1 + x2)−2, x ∈ R

3. (25)

The function f is continuous on R3 and satisfies condition (17), therefore, according to

Theorems 2 and 3, the only solution for Cauchy problem (24), (25) is

u(x; t) =
∫

R3
Gν(x − ξ; t) f (ξ)dξ, (x; t) ∈ Π(0;+∞),

where

Gν(·; t) = F−1
[

e−t|y|ν
]

(·; t), t > 0.

In views of Corollary 2 and

sup
x∈R3

f (x) = 1, inf
x∈R3

f (x) = 0,

we get the following estimates

0 ≤ u(x; t) ≤ 1 ∀ (x; t) ∈ Π(0;+∞).

According to condition (25), at the initial moment of time t = 0 the particle X with proba-

bility 1 starts its motion from point O(0).

Let us investigate the probability u(0; t) of X returning to its original position. Using

f (x) = π2
F
−1
[

e−|y|
]

(x), x ∈ R
3

and

F
−1[ f ∗ g] = F

−1[ f ]F−1[g],

we find

u(0; t) = π2
∫

R3
F
−1
[

e−t|y|ν
]

(ξ; t)F−1
[

e−|y|
]

(ξ)dξ

= π2
∫

R3
F
−1
[

e−t|y|ν ∗ e−|y|
]

(ξ; t)dξ

= π2
F

[

F
−1
[

e−t|y|ν ∗ e−|y|
]

]

(0; t)dξ

= π2
∫

R3
e−t|y|ν−|y|dy, t > 0.
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Hence it follows that

∀{t1, t2} ⊂ (0;+∞), t1 < t2 : 1 = u(0; 0) > u(0; t1) > u(0; t2)

and

lim
t→+∞

u(0; t) = 0.

This means that over time, the probability of the return of the particle X to its original position

tends to zero.

It turns out that for t → +∞ the particle X leaves the space R3 altogether, since

lim
t→+∞

u(x; t) = 0 ∀x ∈ R
3. (26)

Let us prove boundary relation (26). Taking into account that equation (24) is a special case of

(3) for aβ(t) = t + a, a ≥ 0, from (11) we obtain the estimates

Gν(x; t) ≤ c1t
(

t1/ν + |x|
)3+ν

, t > 0, x ∈ R
3.

Hence, we have

u(x; t) ≤ c
∫

R3

tdξ
(

1 + |x − ξ|2
)2 (

t1/ν + |ξ|
)3+ν

≤ c

t3/ν

∫

R3

dz
(

1 + |z|2
)2

≡ c0

t3/ν
→

t→+∞
0, x ∈ R

3.

In conclusion, we note the following. If we assume that the particle X is a hungry shark,

then the considered model (24), (25) turns into the model “About a yawing shark in search of a

prey”. This problem becomes more natural in the context of the problem of the local influence

of moving objects in the corresponding Riesz gravitational field generated by the force F of the

predator’s gravitation to the prey, which obeys the law (1) for ν = 3/β.

6 Conclusions

In this research the important estimates of the derivatives of the nonstationary probabil-

ity distribution Polya Wβ for the force F of the local influence of moving objects in the Riesz

gravitational field are found. The problem case of studying the Cauchy problem for the corre-

sponding PDE with the Riesz operator of fractional differentiation is considered. The correct

solvability of this problem in the class of bounded continuous initial functions is determined.

The obtained results are important for further studies of P. Lévy symmetric stable random

processes, the Riesz gravitational fields in particular. The estimates of the derivatives of the

Wβ function found here reveal wide possibilities for studying these processes in areas with

boundary conditions by means of the theory of boundary value problems for PDEs with point-

nonsmooth symbols.
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Лiтовченко В.А. Локальнi флуктуацiї Пойа гравiтацiйних полiв Рiсса та задача Кошi // Карпат-

ськi матем. публ. — 2023. — Т.15, №1. — C. 222–235.

Розглядається псевдодиференцiальне рiвняння параболiчного типу з дробовим степенем

оператора Лапласа порядку α ∈ (0; 1), що дiє за просторовою змiнною. Це рiвняння приро-

дньо узагальнює вiдоме рiвняння фрактальної дифузiї. Воно описує локальний вплив рухо-

мих об’єктiв у гарвiтацiйному полi Рiсса. Простiшим прикладом такої системи об’єктiв є зо-

рянi галактики, в яких взаємодiя вiдбувається згiдно з гравiтацiйним законом Ньютона. Для

цього рiвняння розв’язується задача Кошi в класi неперервних обмежених початкових фун-

кцiй. Фундаментальний розв’язок цiєї задачi є розподiлом Пойа Pα(F) ймовiрностей для си-

ли F локальної взаємодiї мiж цими об’єктами. Одержано оцiнки похiдних цього розв’язку,

за допомогою яких встановлено коректну розв’язнiсть задачi Кошi за певних умов на кое-

фiцiєнт локальної флуктуацiї гравiтацiйного поля. При цьому знайдено форму класичного

розв’язку цiєї задачi та дослiджено властивостi його гладкостi й поведiнку на нескiнченностi.

Також з’ясовано можливiсть локального посилення збiжностi в початковiй умовi. Одержанi

результати проiлюстровано на моделi α-блукання частинки Левi в евклiдовому просторi R3

у випадку, коли частинка починає свiй рух з початку координат. Дослiджено ймовiрнiсть по-

вернення цiєї частинки у своє вихiдне положення. Зокрема, встановлено, що ця ймовiрнiсть є

спадною функцiєю, яка з плином часу прямує до нуля, а сама частинка “покидає” простiр R
3.

Ключовi слова i фрази: гравiтацiйне поле, потенцiал Рiсса, розподiл Пойя, симетричний стiй-

кий випадковий процес Левi, полiт Левi, рiвняння фрактальної дифузiї, дробовий лапласiан,

фундаментальний розв’язок, задача Кошi.


