mathbb
References
- Applebaum D. Lévy processes and stochastic calculus. (2nd ed.)
Cambridge Univ. Press, Cambridge, 2009. doi:10.1017/CBO9780511809781
- Bertoin J. Lévy processes. In: Cambridge Tracts in Mathematics Book,
121. Cambridge Univ. Press, Cambridge, 1996.
- Blumenthal R.M., Getoor R.K. Some theorems on stable
processes. Trans. Amer. Math. Soc. 1960, 95,
263–273. doi:10.1090/S0002-9947-1960-0119247-6
- Bucur C., Valdinoci E. Nonlocal diffusion and applications. In:
Cannarsa P., Caporaso L. (Eds.) Lecture Notes of the Unione Matematica
Italiana, 20. Springer, Berlin, 2016. doi:10.1007/978-3-319-28739-3
- Chandrasekhar S. Stohastic problems in physics and
astronomy. Rev. Modern Phys. 1943, 15 (1), 1–89.
doi:10.1103/RevModPhys.15.1
- Drin' Y.M. Investigation of a class of parabolic
pseudo-differential operators on classes of H\(\ddot{\mathrm{o}}\)lder continuous
functions. Dopov. Akad. Nauk Ukr. SSR, Ser. A. 1974,
1, 19–22. (in Ukrainian)
- Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the
theory of differential and pseudo-differential equations of parabolic
type. In: Ball J.A., Böttcher A., Dym H., Langer H., Tretter C. (Eds.)
Operator Theory: Advances and Applications, 152. Birkh\(\ddot{\mathrm{a}}\)user Verlag, Basel,
2004.
- Fedoryuk M.V. Asymptotic properties of Green's function of a
parabolic pseudodifferential equation. Differ. Equ. 1978,
14, 923–927. (in Russian)
- Friedman A. PDE problems arising in mathematical biology.
Netw. Heterog. Media 2012, 7 (4), 691–703. doi:10.3934/nhm.2012.7.691
- Frostman O. Potentiel d'équilibre et capacité des ensembles avec
quelques applications à la théorie des fonctions. Ohlsson, Lund,
1935.
- Holtsmark J. Über die verbreiterung
von spektrallinien. Ann. Physics 1919, 58,
577–630. doi:10.1002/andp.19193630702
- Ibe O.C. Markov processes for stochastic modeling. (2nd Ed.)
Elsevier, Amsterdam, 2013. doi:10.1016/C2012-0-06106-6
- Jacob N. Pseudo differential operators and Markov processes. Vol. 3.
Imper. College Press, London, 2005.
- Knopova V.P., Kochubei A.N., Kulik A.M. Parametrix methods for
equations with fractional Laplacians. In: Kochubei A., Luchko Y.
(Eds.) Vol. 2. Fractional Differential Equations. De Gruyter, Boston,
2019. doi:10.1515/9783110571660-013
- Knopova V., Kulik A. Parametrix construction of the transition
probability density of the solution to an SDE driven by \(\alpha\)-stable noise. Ann. Inst.
Henri Poincar\(\mathrm{\acute{e}}\)
Probab. Stat. 2018, 54 (1), 100–140.
doi:10.1214/16-AIHP796
- Lévy P. Calcul
des probabilities. Gauthier-Villars et Cie, Paris, 1925.
- Litovchenko V.A. Classical solutions of the equation of local
fluctuations of Ries gravitational fields and their properties.
Ukrainian Math. J. 2022, 74 (1), 73–85. (in Ukrainian)
doi:10.37863/umzh.v74i1.6879
- Litovchenko V.A. Pseudodifferential equation of fluctuations of
nonstationary gravitational fields. J. Math. 2021,
2021, 1–8. doi:10.1155/2021/6629780
- Litovchenko V.A. Cauchy problem with Riesz operator of fractional
differentiation. Ukrainian Math. J. 2005, 57 (12),
1937–1956. doi:10.1007/s11253-006-0040-6
- Litovchenko V.A. The Cauchy problem for one class of parabolic
pseudodifferential systems with nonsmooth symbols. Sib. Math. J.
2008, 49, 300–316. doi:10.1007/s11202-008-0030-z
- Liu W., Song R., Xie L. Gradient estimates for the fundamental
solution of Lévy
type operator. Adv. Nonlinear Anal. 2020, 9 (1),
1453–1462. doi:10.1515/anona-2020-0062
- Lizorkin P. Description of the spaces \(L^r_p(\mathbb{R}^n)\) in terms of
difference singular integrals. Math. Sb. 1970, 81
(1), 79–91. (in Russian)
- Montefusco E., Pellacci B., Verzini G. Fractional diffusion with
Neumann boundary conditions: the logistic equation. Contin. Dyn.
Syst. Ser. B 2013, 18 (8), 2175–2202.
doi:10.3934/dcdsb.2013.18.2175
- Polya G. Herleitung des Gausschen fehlergesetzes aus einer
funktionalgleichung. Math. Z. 1923, 18,
96–108.
- Reynolds A. Liberating Lévy walk research from
the shackles of optimal foraging. Phys. Life Rev. 2015,
14, 59–83. doi:10.1016/j.plrev.2015.03.002
- Riesz M. Potentiels de divers ordres et leurs fonctions de
Green. C. R. Congr\(\grave{\mathrm{e}}\)s Intern. Math. Oslo
1936, 2, 62–63.
- Riesz M. Integrales de Riemann-Liouville et potentiels. Acta
Sci. Math. (Szeged) 1938, 9, 1–42.
- Samko S.G. Spaces of Riesz potentials. Izv. AN SSSR. Ser.
Math. 1976, 40 (5), 1143–1172. (in Russian)
- Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and
derivatives and some of their applications. Science and Technology,
Minsk, 1987. (in Russian)
- Schneider W.R. Stable distributions: Fox function representation
and generalization. Lecture Notes in Phys. 1986,
262, 497–511. doi:10.1007/3540171665_92
- Schwartz L. Theorie des distributions. Hermann Paris, Paris,
1951.
- Sobolev S.L. On a theorem of functional analysis. Math. Sb.
1938, 4 (3), 471–497. (in Russian)
- Stein E. The characterisation of functions arising as
potentials. Bull. Amer. Math. Soc. (N.S.) 1961, 67
(1), 102–104.
- Thorin G. Convexiti theorems. Comm. Semin. Math. L'Univ.
Lund. Uppsala. 1948, 9, 1–57.
- Uchaikin V.V. Fractional derivatives method. Atrishok, Ulyanovsk,
2008. (in Russian)
- Viswanathan G.M., Afanasyev V., Buldyrev S.V., Havlin S., Luz M.G.,
Raposo E.P., Stanley H.E. Lévy flights in random
searches. J. Phys. A 2000, 282 (1-2), 1–12.
doi:10.1016/S0378-4371(00)00071-6
- Zolotarev V.M. One-dimensional stable distributions. Nauka, Moscow,
1983. (in Russian)