mathbb

References

  1. Applebaum D. Lévy processes and stochastic calculus. (2nd ed.) Cambridge Univ. Press, Cambridge, 2009. doi:10.1017/CBO9780511809781
  2. Bertoin J. Lévy processes. In: Cambridge Tracts in Mathematics Book, 121. Cambridge Univ. Press, Cambridge, 1996.
  3. Blumenthal R.M., Getoor R.K. Some theorems on stable processes. Trans. Amer. Math. Soc. 1960, 95, 263–273. doi:10.1090/S0002-9947-1960-0119247-6
  4. Bucur C., Valdinoci E. Nonlocal diffusion and applications. In: Cannarsa P., Caporaso L. (Eds.) Lecture Notes of the Unione Matematica Italiana, 20. Springer, Berlin, 2016. doi:10.1007/978-3-319-28739-3
  5. Chandrasekhar S. Stohastic problems in physics and astronomy. Rev. Modern Phys. 1943, 15 (1), 1–89. doi:10.1103/RevModPhys.15.1
  6. Drin' Y.M. Investigation of a class of parabolic pseudo-differential operators on classes of H\(\ddot{\mathrm{o}}\)lder continuous functions. Dopov. Akad. Nauk Ukr. SSR, Ser. A. 1974, 1, 19–22. (in Ukrainian)
  7. Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. In: Ball J.A., Böttcher A., Dym H., Langer H., Tretter C. (Eds.) Operator Theory: Advances and Applications, 152. Birkh\(\ddot{\mathrm{a}}\)user Verlag, Basel, 2004.
  8. Fedoryuk M.V. Asymptotic properties of Green's function of a parabolic pseudodifferential equation. Differ. Equ. 1978, 14, 923–927. (in Russian)
  9. Friedman A. PDE problems arising in mathematical biology. Netw. Heterog. Media 2012, 7 (4), 691–703. doi:10.3934/nhm.2012.7.691
  10. Frostman O. Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Ohlsson, Lund, 1935.
  11. Holtsmark J. Über die verbreiterung von spektrallinien. Ann. Physics 1919, 58, 577–630. doi:10.1002/andp.19193630702
  12. Ibe O.C. Markov processes for stochastic modeling. (2nd Ed.) Elsevier, Amsterdam, 2013. doi:10.1016/C2012-0-06106-6
  13. Jacob N. Pseudo differential operators and Markov processes. Vol. 3. Imper. College Press, London, 2005.
  14. Knopova V.P., Kochubei A.N., Kulik A.M. Parametrix methods for equations with fractional Laplacians. In: Kochubei A., Luchko Y. (Eds.) Vol. 2. Fractional Differential Equations. De Gruyter, Boston, 2019. doi:10.1515/9783110571660-013
  15. Knopova V., Kulik A. Parametrix construction of the transition probability density of the solution to an SDE driven by \(\alpha\)-stable noise. Ann. Inst. Henri Poincar\(\mathrm{\acute{e}}\) Probab. Stat. 2018, 54 (1), 100–140. doi:10.1214/16-AIHP796
  16. Lévy P. Calcul des probabilities. Gauthier-Villars et Cie, Paris, 1925.
  17. Litovchenko V.A. Classical solutions of the equation of local fluctuations of Ries gravitational fields and their properties. Ukrainian Math. J. 2022, 74 (1), 73–85. (in Ukrainian) doi:10.37863/umzh.v74i1.6879
  18. Litovchenko V.A. Pseudodifferential equation of fluctuations of nonstationary gravitational fields. J. Math. 2021, 2021, 1–8. doi:10.1155/2021/6629780
  19. Litovchenko V.A. Cauchy problem with Riesz operator of fractional differentiation. Ukrainian Math. J. 2005, 57 (12), 1937–1956. doi:10.1007/s11253-006-0040-6
  20. Litovchenko V.A. The Cauchy problem for one class of parabolic pseudodifferential systems with nonsmooth symbols. Sib. Math. J. 2008, 49, 300–316. doi:10.1007/s11202-008-0030-z
  21. Liu W., Song R., Xie L. Gradient estimates for the fundamental solution of Lévy type operator. Adv. Nonlinear Anal. 2020, 9 (1), 1453–1462. doi:10.1515/anona-2020-0062
  22. Lizorkin P. Description of the spaces \(L^r_p(\mathbb{R}^n)\) in terms of difference singular integrals. Math. Sb. 1970, 81 (1), 79–91. (in Russian)
  23. Montefusco E., Pellacci B., Verzini G. Fractional diffusion with Neumann boundary conditions: the logistic equation. Contin. Dyn. Syst. Ser. B 2013, 18 (8), 2175–2202. doi:10.3934/dcdsb.2013.18.2175
  24. Polya G. Herleitung des Gausschen fehlergesetzes aus einer funktionalgleichung. Math. Z. 1923, 18, 96–108.
  25. Reynolds A. Liberating Lévy walk research from the shackles of optimal foraging. Phys. Life Rev. 2015, 14, 59–83. doi:10.1016/j.plrev.2015.03.002
  26. Riesz M. Potentiels de divers ordres et leurs fonctions de Green. C. R. Congr\(\grave{\mathrm{e}}\)s Intern. Math. Oslo 1936, 2, 62–63.
  27. Riesz M. Integrales de Riemann-Liouville et potentiels. Acta Sci. Math. (Szeged) 1938, 9, 1–42.
  28. Samko S.G. Spaces of Riesz potentials. Izv. AN SSSR. Ser. Math. 1976, 40 (5), 1143–1172. (in Russian)
  29. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives and some of their applications. Science and Technology, Minsk, 1987. (in Russian)
  30. Schneider W.R. Stable distributions: Fox function representation and generalization. Lecture Notes in Phys. 1986, 262, 497–511. doi:10.1007/3540171665_92
  31. Schwartz L. Theorie des distributions. Hermann Paris, Paris, 1951.
  32. Sobolev S.L. On a theorem of functional analysis. Math. Sb. 1938, 4 (3), 471–497. (in Russian)
  33. Stein E. The characterisation of functions arising as potentials. Bull. Amer. Math. Soc. (N.S.) 1961, 67 (1), 102–104.
  34. Thorin G. Convexiti theorems. Comm. Semin. Math. L'Univ. Lund. Uppsala. 1948, 9, 1–57.
  35. Uchaikin V.V. Fractional derivatives method. Atrishok, Ulyanovsk, 2008. (in Russian)
  36. Viswanathan G.M., Afanasyev V., Buldyrev S.V., Havlin S., Luz M.G., Raposo E.P., Stanley H.E. Lévy flights in random searches. J. Phys. A 2000, 282 (1-2), 1–12. doi:10.1016/S0378-4371(00)00071-6
  37. Zolotarev V.M. One-dimensional stable distributions. Nauka, Moscow, 1983. (in Russian)