- Amanov T.I.
*Representation and imbedding theorems for function spaces \(S^{(r)}_{p,\theta}B(\mathbb{R}_n)\) and \(S^{(r)_*}_{p,\theta}B\), (\(0\leq x_j\leq 2\pi\); \(j=1,\ldots,n\))*. Tr. Mat. Inst. Steklova 1965,**77**, 5–34. (in Russian) - Berezansky Yu.M., Sheftel Z.G., Us G.F. Functional Analysis. Vol. 1. Institute of Matematics of NAS of Ukraine, Kyiv, 2010.
- Besov O.V.
*Investigation of one family of functional spaces in connection with the embedding and continuation theorems*. Tr. Mat. Inst. Steklova 1961,**60**, 42–81. (in Russian) - Besov O.V., Il’in V.P., Nikol’skii S.M. Integral Representations of Functions and Embedding Theorems. Nauka, Moscow, 1996. (in Russian)
- Lizorkin P.I.
*Generalized Hölder spaces \(B^{(r)}_{p,\theta}\) and their relation with the Sobolev spaces \(L^{(r)}_p\)*. Sib. Math. J. 1968,**9**(5), 837–858. doi:10.1007/BF01041168 (translation of Sibirsk. Mat. Zh. 1968,**9**(5), 1127–1152. (in Russian)) - Lizorkin P.I.
*Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions*. Proc. Steklov Inst. Math. 1969,**105**, 105–202. (translation of Tr. Mat. Inst. Steklova 1969,**105**, 89–167. (in Russian)) - Myroniuk V.V.
*Approximation of functions from the isotropic classes \(B^{\Omega}_{1,\theta}(\mathbb{R}^d)\) by entire functions of exponential type*. Zb. Pr. Inst. Mat. NAN Ukr., Collection of Works “Approximation Theory of Functions and Related Problems” 2013,**10**(1), 169–183. (in Ukrainian) - Myroniuk V.V., Yanchenko S.Ya.
*Approximation of functions from generalized Nikol’skii-Besov classes by entire functions in Lebesgue spaces*. Mat. Stud. 2013,**39**(2), 190–202. (in Ukrainian) - Nikol’skii S.M. Approximation of Functions of Many Variables and Imbedding Theorems. Nauka, Moscow, 1969. (in Russian)
- Nikol’skii S.M.
*Embedding theorems for the classes of generalized functions*. Sib. Math. J. 1968,**9**(5), 821–837. doi:10.1007/BF01041167 (translation of Sibirsk. Mat. Zh. 1968,**9**(5), 1107–1126. (in Russian)) - Nikol’skii S.M.
*Inequalities for entire functions of finite power and their application to the theory of differentiable functions of many variables*. Tr. Mat. Inst. Steklova 1951,**38**, 244–278. (in Russian) - Nikol’skii S.M.
*On one family of functional spaces*. Uspekhi Mat. Nauk 1956,**11**(6 (72)), 203–212. (in Russian) - Romanyuk A.S.
*Approximative characteristics of the isotropic classes of periodic functions of many variables*. Ukrainian Math. J. 2009,**61**(4), 613–626. doi:10.1007/s11253-009-0232-y (translation of Ukrain. Mat. Zh. 2009,**61**(4), 513–523. (in Russian)) - Romanyuk A.S.
*Approximation of the isotropic classes \(B^r_{p,\theta}\) of periodic functions of many variables in the space \(L_q\)*. Zb. Pr. Inst. Mat. NAN Ukr., Collection of Works “Approximation Theory of Functions and Related Problems” 2008,**5**(1), 263–278 (in Russian). - Romanyuk A.S., Romanyuk V.S.
*Trigonometric and orthoprojection widths of classes of periodic functions of many variables*. Ukrainian Math. J. 2009,**61**(10), 1589–1609. doi:10.1007/s11253-010-0300-3 (translation of Ukrain. Mat. Zh. 2009,**61**(10), 1348–1366. (in Russian)) - Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow, 1981. (in Russian)
- Heping W., Yongsheng S.
*Approximation of multivariate functions with a certain mixed smoothness by entire functions*. Northeast. Math. J. 1995,**11**(4), 454–466. - Yachenko S.Ya.
*Approximation of functions from the isotropic Nikol’skii-Besov classes in the uniform and integral metrics*. Ukrainian Math. J. 2016,**67**(10), 1599–1610. doi:10.1007/s11253-016-1175-8 (translation of Ukrain. Mat. Zh. 2015,**67**(10), 1423–1433. (in Ukrainian)) - Yanchenko S.Ya.
*Approximation of the classes \(S^{r}_{p,\theta}B(\mathbb{R}^d)\) of functions of many variables by entire functions of a special form*. Ukrainian Math. J. 2011,**62**(8), 1307–1325. doi:10.1007/s11253-011-0431-1 (translation of Ukrain. Mat. Zh. 2010,**62**(8), 1124–1138 (in Ukrainian)) - Yanchenko S.Ya.
*Approximation of the Nikolskii-Besov functional classes by entire functions of a special form*. Carpathian Math. Publ. 2020,**12**(1), 148–156. doi:10.15330/cmp.12.1.148-156 - Yanchenko S.Ya.
*Estimates for approximative characteristics of classes \(S^r_{p,\theta}B(\mathbb{R}^d)\) of functions in the uniform metric*. Zb. Pr. Inst. Mat. NAN Ukr., Collection of Works “Approximation Theory of Functions and Related Problems” 2013,**10**(1), 328–340. (in Ukrainian)