References

  1. Arhangel’skiı̆ A.V., Tkachenko M. Topological groups and related structures. Atlantis Press, Paris; World World Sci. Publ., Hackensack, NJ, 2008.
  2. Banakh T., Kadets V. Banach actions preserving unconditional convergence. Axioms 2022, 11 (1), 13, 1–9. doi:10.3390/axioms11010013
  3. Banakh T., Leiderman A. The strong Pytkeev property in topological spaces. Topology Appl. 2017, 227, 10–29. doi:10.1016/j.topol.2017.01.015
  4. Beals R., Wong R. Special functions. Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511762543
  5. Fabian M., Habala P., Hájek P., Montesinos V., Zizler V. Banach space theory. The basis for linear and nonlinear analysis. Springer, New York, 2011.
  6. Fernandez C.S. The closed graph theorem for multilinear mappings. Int. J. Math. Math. Sci. 1996, 19 (2), 407–408. doi:10.1155/s0161171296000567
  7. Fichtenholz G.M. Differential and integral calculus. V. II, 7th ed. Nauka, Moscow, 1970. (in Russian)
  8. Hirsch D. (dch) Unconditional convergence of a sum of elements in a complete Hausdorff topological ring. math.stackexchange.com/q/3702472.
  9. Hofmann K.H., Morris S.A. The Structure of Compact Groups. 3rd ed. de Gruyter, Berlin, 2013.
  10. Netuka I., Veselý J. An inequality for finite sums in \({\bf R}^{m}\). Časopis pro pěstování matematiky 1978, 103 (1), 73–77. doi:10.21136/CPM.1978.117961
  11. Pontrjagin L.S. Continuous groups. 2nd ed. GITTL, Moscow, 1954. (in Russian)