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Characterizing Riesz bases via biorthogonal Bessel sequences

Zikkos E.

Recently D.T. Stoeva proved that if two Bessel sequences in a separable Hilbert space H are
biorthogonal and one of them is complete in H, then both sequences are Riesz bases for H. This
improves a well known result where completeness is assumed on both sequences.

In this note we present an alternative proof of Stoeva’s result which is quite short and elementary,
based on the notion of Riesz-Fischer sequences.
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Introduction

Let H be a separable Hilbert space endowed with an inner product (-, - ) and anorm || - ||.
Let {f.}:" , be a sequence of vectors in . We say that:

(1) {fu}3>; is a complete sequence if the closed span of {f, }$°_; in H is equal to #;
(ii) {fn};; is minimal if each f, does not belong to the closed span of { fi } ¢, in H;

(iii) {fn}5>; is exact if it is both complete and minimal.

It is well known that {f, }3° ; is a minimal sequence in  if and only if it has a biorthogonal
sequence {g, }°° ; in H, that is

1, m=mn,
0, m#n.

Remark 1. An exact sequence in H has a unique biorthogonal sequence.

(fn, gm) = {

We also say that

(iv) {fu};>, is a Bessel sequence if
YA <o Ve
n=1

(v) {fu};, is a Riesz sequence (see [2, p. 68] and [4, Lemma 3.2]), if there are some positive
constants A and B, A < B, so that for any finite scalar sequence {8, } we have

0 00 5 oS
A Z:l‘ﬁnyz < ’ Zlﬁnfn <B Z:llﬁn\z;
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(vi) {fu}; is a Riesz basis for H if f, = U(e,), where {e,}? , is an orthonormal basis for

‘H and U is a bounded bijective operator from H onto H.

Remark 2. A Riesz sequence is a Riesz basis for the closure of its linear span in H (see
[2, p. 68]). Therefore, a complete Riesz sequence in H is a Riesz basis for H.

There are many equivalences of Riesz bases (see, e.g., [5, Theorem 1.1]). One of them states
that a sequence {f,}?’ ; is a Riesz basis for H if and only if {f,};’ ; is a complete Bessel
sequence having a complete biorthogonal Bessel sequence {g; }>_; in H.

Recently D.T. Stoeva [5] improved the above by assuming completeness on just one (anyone)

of the two {f, }°_1, {81}, sequences.

Theorem A ([5, Theorem 2.5]). Let two sequences {f,}%_; and {g,}_; in H be biorthogonal.

n=1
If both of them are Bessel sequences and one of them is complete in H, then they are Riesz

bases for H.

Our goal in this note is to offer an alternative proof of Theorem A, which is quite short and
elementary. We only need to use the notion of Riesz-Fischer sequences introduced below and
a result by P. Casazza et al. [1].

1 Riesz-Fischer sequences and Bessel sequences

Following R.M. Young (see [7, Chapter 4, Section 2]), we say that a sequence of vectors
{fn}> 1 in H is a Riesz-Fischer sequence if the moment problem

(f, fu) = cn

has at least one solution f € H for every sequence {c, }%°_; in the space I2(IN).

In [7, Chapter 4, Section 2, Theorem 3], we find the following two theorems, attributed to
N. Bari, which provide a necessary and sufficient condition so that a sequence in H is either a
Riesz-Fischer sequence or a Bessel sequence.

(A) {fu}5 is a Riesz-Fischer sequence in # if and only if there exists a positive number A
so that for any finite scalar sequence {B, } we have

2

1)

AZ:lfﬁn\ZS ;ﬁ”fn

(B) {fn}i; is a Bessel sequence in H if and only if there exists a positive number B so that
for any finite scalar sequence {B,} we have

o0 2 o0
Y Buful| <BY|Bul* ()
n=1 n=1

Remark 3. Hence, a Riesz sequence is a Bessel sequence and a Riesz-Fischer sequence simul-
taneously.

It easily follows from (1) that a Riesz-Fischer sequence is also a minimal sequence hence
it has at least one biorthogonal sequence. As stated by P. Casazza et al. [1], one of them is a
Bessel sequence.
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Proposition ([1, Proposition 2.3, (ii)]). The Riesz-Fischer sequences in H are precisely the
families for which a biorthogonal Bessel sequence exists.

For the sake of completeness, we present a proof of one of the two directions of the above
result.

Lemma 1. Suppose that a Bessel sequence {f,}{>_; is biorthogonal to a sequence {g,} ; in

H. Then {g,};"_, is a Riesz-Fischer sequence.

Proof. Consider a finite scalar sequence { B, }. Due to biorthogonality, the Cauchy-Schwartz in-
equality and since {f, }$>_; is a Bessel sequence, thus (2) holds, there is some positive constant

A so that
) 2 00 1) 2
(Z18:2) = ((Zposu L boos))
n=1 n=1 n=1
) 2 ) 2
< Zﬁnfn : Zﬁn'gﬂ
n=1 n=1
00 0 2
SA'ZHSHF' Zﬁn'gn
n=1 n=1
It is clearly now, that (1) holds, therefore {g, }7°_; is a Riesz-Fischer sequence. O

2 Proof of Theorem A and an application

Consider the assumptions of Theorem A. Then by Lemma 1 the biorthogonal Bessel se-
quences {f,}°° ; and {g}5_; are also Riesz-Fischer sequences in /. Therefore, both of them
are Riesz sequences in #H. If one of them, say { fn},?zl, is complete in H, then it follows from
Remark 2 that {f,}?_; is a Riesz basis for 7. Biorthogonality yields that {g,}$> ; is a Riesz
basis for H as well. The proof of Theorem A is now complete.

As an application of Theorem A, consider an exact Bessel sequence {f,}5_; in a Hilbert
space H such that it is not a Riesz basis for . Since it is exact, it has a unique biorthogonal
sequence {g, }°" ;. By Lemma 1, {g,};; is a Riesz-Fischer sequence. However, {g,}%_; is not
a Bessel sequence: if it were, then by Theorem A the families {g, }$> ; and {f,}’" ; would be
Riesz bases for H.

As an example, consider the exponential system {e'*} where

nez’

n+jg, n>0,

An = O, n = O,

n—g, n<o.
The system {ei)‘"t}n <z is not only minimal but also uniformly minimal in L%(—m, ) (see
[3, Theorem 5]). In fact it is exact in L?(—7, 1) (see [7, Chapter 3, Section 2, Theorem 4]).
However, this exponential system is not a Riesz basis for LZ(—n, 1) (see [3, Theorem 4]).
Nevertheless, since the frequencies A, are uniformly separated (A,4+1 — A, > 1foralln € Z),
the system is a Bessel sequence in every L?>(—A, A) space, A > 0 (see [7, Chapter 4, Sec-
tion 3, Theorem 4]). But clearly, the system is not a Riesz-Fischer sequence in Lz(—rc, ), oth-
erwise it would be a Riesz basis. Moreover, the various properties of this exponential system,
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Lemma 1 and Theorem A, imply that the system has a unique biorthogonal sequence {¢n },cz
in L2(—, r), which is a Riesz-Fischer sequence but not a Bessel one. In addition, it follows
from [6], that {g, }nez is also exact in L2(— 7, 7r), a property enjoyed by biorthogonal families
to exact exponential systems {e#*},cz in L?(—7, 7).
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Heaasno A.T. CToeBa A0BeAa, IO SIKIIO ABi ocAia0OBHOCTI becceast B cemapabeAbHOMY TiAbbep-
TOBOMY IIPOCTOpi H € 6i0pTOroHaABHMMM Ta OAHA 3 HIMX € IIOBHOIO B #, TO OOMABI IIOCAIAOBHOCTI €
6asamm Picca arst H. Le mokparnye A06pe BiAOMIIL pe3yAbTAT, KOAM IlepeAbadaeThCst IIOBHOTA 060X
TTOCAIAOBHOCTEIA.

Y wiii 3aMiTIi MM IpeACTaBASIEMO aAbTepHATUBHE AOBeAeHHs pe3yAbTaTy CTOEBOI, SIKe € AOCUTD
KOpPOTKMM i eAeMeHTapHIM, Ta I'PYHTYEThCSI Ha IIOHATTI ocAiaoBHOCTel Picca-Dimepa.

Kntouosi crosa i ¢ppasu: mocaipoBHicTh Picca-dimmepa, mocaiaoBHicTb becceast, mocaiaoBHicTs Pic-
ca, 6asuc Picca, 6iopToroHaAbHa MOCAIAOBHICTB, TIOBHOTA.



