
Peng Liang-Xue

School of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
E-mail: pengliangxue@bjut.edu.cn

Recall that a topological space X is weakly semiregular, if X has a base consisting of regular open sets, that is such sets U that $U = \text{int} U$. In [1] is stated the following result.

Lemma 3 ([1]). Let (X, τ) be a weakly semiregular space, (Y, σ) be a space and $\pi: X \to Y$ be a continuous clopen surjection. Then Y is a weakly semiregular space.

Unfortunately, lemma’s proof from [1] contains an error. Namely, the inclusion $\pi(\overline{U}) \subset \pi\pi^{-1}(V)$ fails, for instance, when π is the identity map and $U = V$ is any regular open set such that $U \neq \overline{U}$.

Fortunately, in the paper [1] Lemma 3 is applied only once, namely in conjunction with Lemma 1 to prove Proposition 2. This application can be fixed because the map π considered in Lemma 1 satisfies a condition $\pi^{-1}(\pi(U)) = U$ for every regular open subset of X. Adding this condition to Lemma 3, we can derive the required conclusion as follows.

Let $y \in Y$ be any point and $V \in \sigma$ be any open neighborhood of y. Pick a point $x \in \pi^{-1}(y)$. Since $\pi^{-1}(V)$ is an open neighborhood of x and X is weakly semiregular, there exists a regular open subset U of X such that $x \in U \subset \pi^{-1}(V)$. Since the mapping π is continuous and clopen, we have $\pi(\overline{U}) = \pi(U)$ and $\pi(U)$ is open in Y. Since U is open, the set $X \setminus \overline{U}$ is a regular open subset of X. Then $X \setminus \overline{U} = \pi^{-1}(\pi(X \setminus \overline{U}))$. Thus $\overline{U} = \pi^{-1}(\pi(\overline{U}))$.

Suppose that there exists a point $z \in \text{int}(\overline{\pi(U)}) \setminus V$. Then $\pi^{-1}(z) \subset X \setminus \pi^{-1}(V)$ and $\pi^{-1}(z) \subset \pi^{-1}(\text{int} \pi(U)) \subset \pi^{-1}(\pi(U)) = \overline{U}$. This contradicts with $\text{int} \overline{U} \subset \pi^{-1}(V)$. Thus $y \in \text{int} \pi(U) \subset V$, and hence Y is a weakly semiregular space.

References

Received 25.10.2021

УДК 12.546.82, 512.546.8, 512.546

The author is supported by Beijing Natural Science Foundation (Grant No. 1202003) and the National Natural Science Foundation of China (Grant No. 12171015, 1171029)

© Peng Liang-Xue, 2022