References
- Adem A.A., Altinok M. Weighted statistical convergence of real valued sequences. Facta Univ. Ser. Math. Inform. 2020, 35 (3), 887–898. doi:10.22190/FUMI2003887A
- Aiche F., Dubois D. Possibility and gradual number approaches to ranking methods for random fuzzy intervals. Commun. Comput. Inf. Sci. 2012, 299, 9–18. doi:10.1007/978-3-642-31718-7_2
- Balcerzak M., Das P., Filipczak M., Swaczyna J. Generalized kinds of density and the associated ideals. Acta Math. Hungar. 2015, 147 (1), 97–115. doi:10.1007/s10474-015-0510-0
- Choudhury C., Debnath S. On \(\mathcal{I}\)-convergence of sequences in gradual normed linear spaces. Facta Univ. Ser. Math. Inform. 2021, 36 (3), 595–604. doi:10.22190/FUMI210108044C
- Connor J.S. The statistical and strong \(p\)-Cesaro convergence of sequences. Analysis 1988, 8 (1-2), 47–64. doi:10.1524/anly.1988.8.12.47
- Das P., Savas E. On generalized statistical and ideal convergence of metric-valued sequences. Ukrainian Math. J. 2017, 68 (12), 1849–1859. doi:10.1007/s11253-017-1333-7
- Dubois D., Prade H. Gradual elements in a fuzzy set. Soft Comput. 2007, 12 (2), 165–175. doi:10.1007/s00500-007-0187-6
- Ettefagh M., Azari F.Y., Etemad S. On some topological properties in gradual normed spaces. Facta Univ. Ser. Math. Inform. 2020, 35 (3), 549–559. doi:10.22190/FUMI2003549E
- Ettefagh M., Etemad S., Azari F.Y. Some properties of sequences in gradual normed spaces. Asian-Eur. J. Math. 2020, 13 (4), 2050085. doi:10.1142/S1793557120500850
- Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2 (3–4), 241–244.
- Fortin J., Dubois D., Fargier H. Gradual numbers and their application to fuzzy interval analysis. IEEE Trans. Fuzzy Syst. 2008, 16 (2), 388–402. doi:10.1109/TFUZZ.2006.890680
- Freedman A.R., Sember J.J. Densities and summability. Pacific J. Math. 1981, 95 (2), 293–305.
- Fridy J.A. On statistical convergence. Analysis 1985, 5 (4), 301–314. doi:10.1524/anly.1985.5.4.301
- Fridy J.A. Statistical limit points. Proc. Amer. Math. Soc. 1993, 118 (4), 1187–1192.
- Konca S., Kücükaslan M., Genç E. \(I\)-statistical convergence of double sequences defined by weight functions in a locally solid Riesz space. Konuralp J. Math. 2019, 7 (1), 55–61.
- Lietard L., Rocacher D. Conditions with aggregates evaluated using gradual numbers. Control Cybernet. 2009, 38 (2), 395–417.
- Rath D., Tripathy B.C. On statistically convergent and statistically Cauchy sequences. Indian J. Pure Appl. Math. 1994, 25 (4), 381–386.
- Sadeqi I., Azari F.Y. Gradual normed linear space. Iran. J. Fuzzy Syst. 2011, 8 (2011), 131–139.
doi:10.22111/IJFS.2011.302
- Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30 (2), 139–150.
- Savas E. On \(I\)-lacunary statistical convergence of weight \(g\) of sequences of sets. Filomat 2017, 31 (16), 5315–5322. doi:10.2298/FIL1716315S
- Savas E., Das P. On \(I\)-statistical and \(I\)-lacunary statistical convergence of weight \(g\). Bull. Math. Anal. Appl. 2019, 11 (1-2), 2–11.
- Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74.
- Stock E.A. Gradual numbers and fuzzy optimization. Ph.D. thesis, University of Colorado Denver, Denver, 2010.
- Tripathy B.C. On statistically convergent sequences. Bull. Calcutta Math. Soc. 1998 90, 259–262.
- Zadeh L.A. Fuzzy sets. Information and Control 1965, 8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X