References

  1. Adem A.A., Altinok M. Weighted statistical convergence of real valued sequences. Facta Univ. Ser. Math. Inform. 2020, 35 (3), 887–898. doi:10.22190/FUMI2003887A
  2. Aiche F., Dubois D. Possibility and gradual number approaches to ranking methods for random fuzzy intervals. Commun. Comput. Inf. Sci. 2012, 299, 9–18. doi:10.1007/978-3-642-31718-7_2
  3. Balcerzak M., Das P., Filipczak M., Swaczyna J. Generalized kinds of density and the associated ideals. Acta Math. Hungar. 2015, 147 (1), 97–115. doi:10.1007/s10474-015-0510-0
  4. Choudhury C., Debnath S. On \(\mathcal{I}\)-convergence of sequences in gradual normed linear spaces. Facta Univ. Ser. Math. Inform. 2021, 36 (3), 595–604. doi:10.22190/FUMI210108044C
  5. Connor J.S. The statistical and strong \(p\)-Cesaro convergence of sequences. Analysis 1988, 8 (1-2), 47–64. doi:10.1524/anly.1988.8.12.47
  6. Das P., Savas E. On generalized statistical and ideal convergence of metric-valued sequences. Ukrainian Math. J. 2017, 68 (12), 1849–1859. doi:10.1007/s11253-017-1333-7
  7. Dubois D., Prade H. Gradual elements in a fuzzy set. Soft Comput. 2007, 12 (2), 165–175. doi:10.1007/s00500-007-0187-6
  8. Ettefagh M., Azari F.Y., Etemad S. On some topological properties in gradual normed spaces. Facta Univ. Ser. Math. Inform. 2020, 35 (3), 549–559. doi:10.22190/FUMI2003549E
  9. Ettefagh M., Etemad S., Azari F.Y. Some properties of sequences in gradual normed spaces. Asian-Eur. J. Math. 2020, 13 (4), 2050085. doi:10.1142/S1793557120500850
  10. Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2 (3–4), 241–244.
  11. Fortin J., Dubois D., Fargier H. Gradual numbers and their application to fuzzy interval analysis. IEEE Trans. Fuzzy Syst. 2008, 16 (2), 388–402. doi:10.1109/TFUZZ.2006.890680
  12. Freedman A.R., Sember J.J. Densities and summability. Pacific J. Math. 1981, 95 (2), 293–305.
  13. Fridy J.A. On statistical convergence. Analysis 1985, 5 (4), 301–314. doi:10.1524/anly.1985.5.4.301
  14. Fridy J.A. Statistical limit points. Proc. Amer. Math. Soc. 1993, 118 (4), 1187–1192.
  15. Konca S., Kücükaslan M., Genç E. \(I\)-statistical convergence of double sequences defined by weight functions in a locally solid Riesz space. Konuralp J. Math. 2019, 7 (1), 55–61.
  16. Lietard L., Rocacher D. Conditions with aggregates evaluated using gradual numbers. Control Cybernet. 2009, 38 (2), 395–417.
  17. Rath D., Tripathy B.C. On statistically convergent and statistically Cauchy sequences. Indian J. Pure Appl. Math. 1994, 25 (4), 381–386.
  18. Sadeqi I., Azari F.Y. Gradual normed linear space. Iran. J. Fuzzy Syst. 2011, 8 (2011), 131–139. doi:10.22111/IJFS.2011.302
  19. Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30 (2), 139–150.
  20. Savas E. On \(I\)-lacunary statistical convergence of weight \(g\) of sequences of sets. Filomat 2017, 31 (16), 5315–5322. doi:10.2298/FIL1716315S
  21. Savas E., Das P. On \(I\)-statistical and \(I\)-lacunary statistical convergence of weight \(g\). Bull. Math. Anal. Appl. 2019, 11 (1-2), 2–11.
  22. Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74.
  23. Stock E.A. Gradual numbers and fuzzy optimization. Ph.D. thesis, University of Colorado Denver, Denver, 2010.
  24. Tripathy B.C. On statistically convergent sequences. Bull. Calcutta Math. Soc. 1998 90, 259–262.
  25. Zadeh L.A. Fuzzy sets. Information and Control 1965, 8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X