References

  1. Abasova G.A., Aliyeva L.R., Hasanov J.J., Shirinova E.S. Necessary and sufficient conditions for the boundedness of comutators of B-Riesz potentials in Lebegues spaces. J. Contemp. Appl. Math. 2016, 6 (2), 18–31.
  2. Akbulut A., Ekincioglu I., Serbetci A., Tararykova T. Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. Eurasian Math. J. 2011, 2 (2), 5–30.
  3. Ayazoglu R., Hasanov J.J. On the boundedness of \(B\)-Riesz potential in the generalized weighted \(B\)-Morrey spaces. Georgian Math. J. 2016, 23 (2), 143–155. doi:10.1515/gmj-2016-0009
  4. Burenkov V.I., Guliyev H.V. Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Studia Math. 2004, 163 (2), 157–176. doi:10.4064/sm163-2-4
  5. Burenkov V.I., Guliyev V.S. Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces. Potential Anal. 2009, 31 (2), 1–39.
  6. Chiarenza F., Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl.(7) 1987, 7, 273–279.
  7. Coifman R.R., Weiss G. Analyse harmonique non commutative sur certains expaces homogenes. Lecture Notes in Math., Springer-Verlag, Berlin, 1971.
  8. Ekincioğlu I., Keskin C., Serbetci A. Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces. Positivity 2021, 25 (1), 1551–1567. doi:10.1007/s11117-021-00828-3
  9. Ekincioglu I., Serbetci A. On the singular integral operators generated by the generalized shift operator. Int. J. Appl. Math. 1999, 199 (1), 29–38.
  10. Di Fazio G., Ragusa M.A. Commutators and Morrey spaces. Boll. Unione Mat. Ital. 1991, 7 (5)-A, 323–332.
  11. Gadjiev A.D., Aliev I.A. On classes of operators of potential types, generated by a generalized shift. 1988, 3 (2), 21–24. (in Russian)
  12. Guliyev E.V. Weighted inequality for fractional maximal functions and fractional integrals,associated with the laplace-bessel differential operator. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 2006, 26 (1), 71–80.
  13. Guliyev V.S. Integral operators on function spaces on the homogeneous groups and on domains in \(\mathbb R^n\). Doctor's degree dissertation, Moscow, Mat. Inst. Steklov 1994, 1–329. (in Russian)
  14. Guliyev V.S., Hasanov J.J. Necessary and sufficient conditions for the boundedness of Riesz potential associated with the Laplace-Bessel differential operator in Morrey spaces. J. Math. Anal. Appl. 2008, 347 (1), 113–122.
  15. Guliyev V.S. Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-Bessel spaces. Dokl. Akad. Nauk 1999, 367 (2), 155–156.
  16. Guliyev V.S. On maximal function and fractional integral, associated with the Bessel differential operator. Math. Inequal. Appl. 2003, 2 (2), 317–330. doi:10.7153/mia-06-30
  17. Guliyev V.S., Hasanov J.J. Sobolev-Morrey type inequality for Riesz potentials, associated with the Laplace-Bessel differential operator. Fract. Calc. Appl. Anal. 2006, 9 (1), 17–32.
  18. Hasanov J.J. A note on anisotropic potentials, associated with the Laplace-Bessel differential operator. Oper. Matrices 2008, 2 (4), 465–481.
  19. Hasanov J.J., Ayazoğlu R., Bayrakçi S. B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials on B-Morrey spaces. Open Math. 2020, 18, 715–730.
  20. Kipriyanov I.A., Fourier-Bessel transformations and imbedding theorems. Trudy Math. Inst. Steklov 1967, 89, 130–213.
  21. Kokilashvili V.M., Kufner A. Fractional integrals on spaces of homogeneous type. Comment. Math. Univ. Carolin. 1989, 30, 511–523.
  22. Levitan B.M. Bessel function expansions in series and Fourier integrals. Uspekhi Mat. Nauk 6. 1951, 2 (42), 102–143. (in Russian)
  23. Lyakhov L.N. Multipliers of the mixed Fourier-Bessel transformation. Proc. V.A. Steklov Inst. Math. 1997, 214, 234–249.
  24. Macias R.A., Segovia C. A well behaved quasi distance for spaces of homogeneous type. Trab. Mat. Inst. Argent. Mat. 1981, 32, 18p.
  25. Mizuhara T. Boundedness of some classical operators on generalized Morrey spaces. In: Igari S. (Ed.) Harmonic Analysis, ICM 90 Satellite Proceedings, Tokyo, 1991, Springer-Verlag, 183–189.
  26. Morrey C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 1938, 43, 126–166. doi:10.1090/S0002-9947-1938-1501936-8
  27. Muckenhoupt B., Stein E.M. Classical expansions and their relation to conjugate harmonic functions. Trans. Amer. Math. Soc. 1965, 118, 17–92. doi:10.2307/1993944
  28. Nakai E. Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 1994, 166, 95–103.
  29. Nakai E. Generalized fractional integrals on generalized Morrey spaces. Math. Nachr. 2014, 287 (2-3), 339–351.
  30. Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivative. Theory and Applications. Gordon and Breach Sci. Publishers 1993.
  31. Sawano Y. Generalized Morrey spaces for non-doubling measures. NoDEA Nonlinear Differential Equations Appl. 2008, 12 (4-5), 413–425.
  32. Sawano Y., Sugano S.,Tanaka H. Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Amer. Math. Soc. 2011, 363 (12), 6481–6503. doi:10.1090/S0002-9947-2011-05294-3
  33. Serbetci A., Ekincioglu I. On Boundedness of Riesz potential generated by generalized shift operator on \(Ba\) spaces. Czechoslovak Math. J. 2004, 54 (3), 579–589.
  34. Stein E.M. Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton, NJ, 1970.
  35. Stein E.M., Weiss G. Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press, Princeton, NJ, 1971.
  36. Stempak K. Almost everywhere summability of Laguerre series. Studia Math. 1991, 100 (2), 129–147.
  37. Shishkina E.L. Hyperbolic Riesz \(B\)-Potential and Solution of an Iterated Non-Homogeneous \(B\)-Hyperbolic Equation. Lobachevskii J. Math. 2020, 41 (5), 895–916. doi:10.1134/S1995080220050121
  38. Trimeche K. Inversion of the Lions transmutation operators using generalized wavelets. Appl. Comput. Harmon. Anal. 1997, 4, 97–112.