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New approach to timelike Bertrand curves in
3-dimensional Minkowski space

Erdem H.A.1, Uçum A.1, İlarslan K.1, Camcı Ç.2

In the theory of curves in Euclidean 3-space, it is well known that a curve β is said to be a

Bertrand curve if for another curve β⋆ there exists a one-to-one correspondence between β and β⋆

such that both curves have common principal normal line. These curves have been studied in differ-

ent spaces over a long period of time and found wide application in different areas. In this article,

the conditions for a timelike curve to be Bertrand curve are obtained by using a new approach in

contrast to the well-known classical approach for Bertrand curves in Minkowski 3-space. Related

examples that meet these conditions are given. Moreover, thanks to this new approach, timelike,

spacelike and Cartan null Bertrand mates of a timelike general helix have been obtained.
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Introduction

A classical problem in differential geometry, raised by French mathematician B. Saint-

Venant in 1845 (see [32]), led to discovery of Bertrand curves in 1850 (see [3]). A Bertrand

curve is a curve in the Euclidean space such that its principal normal is the principal normal

of the second curve. J. Bertrand proved that a necessary and sufficient condition for the exis-

tence of such a second curve is required in fact a linear relationship calculated with constant

coefficients should exist between the first and second curvatures of the given original curve.

In other words, if we denote first and second curvatures of a given curve by k1 and k2 respec-

tively, we have λk1 + µk2 = 1, λ, µ ∈ R. Since 1850, after the paper of J. Bertrand, the pairs

of curves like this have been called conjugate Bertrand curves, or more commonly Bertrand

curves (see [13]).

The study of this kind of curves has been extended to many other ambient spaces. In [20],

L.R. Pears studied this problem for curves in the n-dimensional Euclidean space En, n > 3,

he proved that either k2 or k3 must be zero. In other words, Bertrand curves in En, n > 3,

are degenerate, which means that a Bertrand curve in E
n must belong to a three-dimensional

subspace E
3 ⊂ E

n. This result is restated to H. Matsuda and S. Yorozu [18]. They proved

that there are not any special Bertrand curves in En, n > 3. As a result of this fact, they de-

fined a new kind, which is called (1, 3)-type Bertrand curves in 4-dimensional Euclidean space.

Bertrand curves and their characterizations were studied by many researchers in Minkowski
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3-space and Minkowski space-time (see [1, 2, 7, 11, 24–26, 28]) as well as in Euclidean space. In

addition, in [27,30], the authors studied (1, 3)-type Bertrand curves in semi-Euclidean 4-space

with index 2.

Bertrand curves in the three-dimensional sphere S
3 ⊂ E

4 have been studied by P. Lucas

and J.A. Ortega-Yagües in [15, 16]. They considered the correspondence of the principal nor-

mal geodesics by using the tools of connection, and gave the relationship between (1, 3)-type

Bertrand curve in E4 and the Bertrand curve on 3-dimensional sphere S3. Also in [17], a new

algorithm to construct Bertrand curves in three-dimensional semi-Euclidean space E3
q, by us-

ing an arc length parametrized curve in a totally umbilical surface S
2, S

2
1 or H

2, is given by

P. Lucas and J.A. Ortega-Yagües. They proved that every Bertrand curve in E3
q can be ob-

tained in this way. In [6], J.H. Choi et al. studied the Bertrand curves in 3-dimensional simply

connected space forms, i.e. 3-dimensional Euclidean space E3, 3-dimensional sphere S3 and

3-dimensional hyperbolic space H
3 by using the curvature functions of the curve. Moreover, it

is done in other spaces, such as in Riemann-Otsuki spaces [34]. In [9], S. Honda and M. Taka-

hashi studied Frenet type framed Bertrand curves in E3. These curves are studied in 3-space

forms by H. Jie and D. Pei in [12].

The Bertrand curve can be regarded as the generalization of the helix. The helix, as a special

kind of curve, has drawn the attention of scientists as well as mathematicians because of its

various applications in science.

Bertrand curves have a wide range of applications. For instance, Bertrand curves repre-

sent particular examples of offset curves which are used in computer-aided design (CAD) and

computer-aided manufacture (CAM) (see [8, 19]). In [21], Bertrand trajectory ruled surfaces

have been defined and a generalization of the theory of Bertrand curves has been presented

for the Bertrand trajectory ruled surfaces based on line geometry.

A Razzaboni surface is a surface which is generated by a one-parameter family of geodesic

Bertrand curves. In [23], W.K. Schief gave a modern accessible overview of Razzaboni’s clas-

sical works (1898–1903) on such surfaces and their transformations (see [22]). Some known

results related to Bertrand curves and Razzaboni surfaces in Euclidean 3-space generalized to

Minkowski 3-space E
3
1 by C. Xu et al. in [33].

In [29], the authors studied the timelike Bertrand curves in Minkowski 3-space. They ob-

tained the necessary and sufficient conditions for timelike curves to have a timelike, spacelike

or Cartan null Bertrand mate curve, separately. Moreover, in [5], the auhors gave a new ap-

proach for Bertrand curves in 3-dimensional Euclidean space. Also they showed that there

exists general helix except circular helix which is Bertrand curve in E
3.

In this paper, the conditions for a timelike curve to be Bertrand curve are obtained by us-

ing a new approach in contrast to the well-known classical approach for Bertrand curves in

Minkowski 3-space E3
1. Related examples that meet these conditions are given. Moreover,

thanks to this new approach, timelike, spacelike and Cartan null Bertrand mates of a timelike

general helix have been obtained.

1 Preliminaries

Minkowski space E3
1 is a three-dimensional affine space endowed with an indefinite flat

metric g with signature (−,+,+). This means that metric bilinear form can be written as

g(x, y) = −x1y1 + x2y2 + x3y3
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for any two vectors x = (x1, x2, x3), y = (y1, y2, y3) in E3
1. Recall that a vector v ∈ E3

1\{0} can

be spacelike if g(v, v) > 0, timelike if g(v, v) < 0 and null (lightlike) if g(v, v) = 0 and v 6= 0. In

particular, the vector v = 0 is a spacelike. The norm of a vector v is given by ‖v‖=
√

∣

∣g(v, v)
∣

∣.

Two vectors v and w are said to be orthogonal if g(v, w) = 0 (see [31]). An arbitrary curve

α(s) in E
3
1 can be locally spacelike, timelike or null (lightlike) if all its velocity vectors α′(s) are

respectively spacelike, timelike or null [13]. A null curve α is parameterized by pseudo-arc s if

g (α′′(s), α′′(s)) = 1. A spacelike or a timelike curve α(s) has unit speed if g (α′(s), α′(s)) = ±1

(see [4, 14]).

Let {T, N, B} be the moving Frenet frame along a curve α in E3
1, consisting of the tangent,

the principal normal and the binormal vector fields, respectively. Depending on the causal

character of α, the Frenet equations have the following forms.

Case I. If α is a non-null curve, the Frenet equations are given by (see [13])





T′

N′

B′



 =





0 ǫ2k1 0

−ǫ1k1 0 ǫ3k2

0 −ǫ2k2 0









T

N

B



 (1)

where k1 and k2 are the first and the second curvature of the curve, respectively. Moreover, the

following conditions hold:

g(T, T) = ǫ1 = ±1, g(N, N) = ǫ2 = ±1, g(B, B) = ǫ3 = ±1

and

g(T, N) = g(T, B) = g(N, B) = 0.

Case II. If α is a null curve, the Frenet equations are given by (see [4, 10])





T′

N′

B′



 =





0 k1 0

k2 0 −k1

0 −k2 0









T

N

B



 , (2)

where k1 = 0 if α is straight line, or k1 = 1 in all other cases. In particular, the following

conditions hold:

g(T, T) = g(B, B) = g(T, N) = g(N, B) = 0, g(N, N) = g(T, B) = 1.

2 A new approach to timelike Bertrand curves in Minkowski 3-space

In this section, we will reconsider the Bertrand curves in Minkowski 3-space E
3
1. In the

following definition, we give the well-known definition of Bertrand curve in E3
1.

Definition 1. A curve β : I ⊂ R → E3
1 with non-zero curvatures is a Bertrand curve if there is

a curve β⋆ : I⋆ → E
3
1 and a bijection ϕ : β → β⋆ such that the principal normal vectors of β(s)

and β⋆(s⋆) at s ∈ I, s⋆ ∈ I⋆ coincide. In this case, β⋆(s⋆) is called the Bertrand mate of β(s).

Let β : I ⊂ R → E3
1 be a timelike Bertrand curve with the Frenet frame

{

T(s), N(s), B(s)
}

and non-zero curvatures k1, k2, and β⋆ : I → E3
1 be a Bertrand mate curve of β with the Frenet

frame {T⋆(s), N⋆(s), B⋆(s)} and non-zero curvatures k⋆1 , k⋆2. Then β⋆ can be written as

β⋆ (s⋆) = β⋆
(

f (s)
)

= β(s) + u(s)T(s) + v(s)N(s) + w(s)B(s),
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where u(s), v(s) and w(s) are differentiable functions on I. Since the principal normal vector

of the timelike curve β is spacelike, the Bertrand mate curve β⋆ can be a timelike curve, a

spacelike curve with spacelike principal normal or a Cartan null curve. We will consider all

cases separately in the following theorem.

Theorem 1. Let β : I ⊂ R → E
3
1 be a unit speed timelike curve with the non-zero curvatures

k1, k2. Then the curve β is a Bertrand curve with Bertrand mate β⋆ if and only if one of the

following conditions hold.

(i) There exist differentiable functions u, v and w satisfying

v
′
+ uk1 = wk2 and w

′
+ vk2 = 0 (3)

or there exist differentiable functions u, v, w and a real number h satisfying

v
′
+ uk1 = wk2, w

′
+ vk2 6= 0, 1 + u

′
+ vk1 = h

(

w
′
+ vk2

)

,

k1 − hk2 6= 0, hk1 − k2 6= 0, h2 − 1 > 0.
(4)

In this case, the Bertrand mate curve β⋆ is a timelike curve.

(ii) There exist differentiable functions u, v, w and a real number h satisfying

v
′
+ uk1 = wk2, w

′
+ vk2 6= 0, 1 + u

′
+ vk1 = h

(

w
′
+ vk2

)

,

k1 − hk2 6= 0, hk1 − k2 6= 0, h2 − 1 < 0.

In this case, the Bertrand mate curve β⋆ is a spacelike curve with spacelike principal

normal.

(iii) There exist differentiable functions u, v, w and real numbers γ, h = ±1 satisfying

v
′
+ uk1 = wk2, w

′
+ vk2 6= 0, 1 + u

′
+ vk1 = h

(

w
′
+ vk2

)

,

hk1 − k2 6= 0, |w′
+ vk2| = γ2 |hk1 − k2| , hk1 + k2 6= 0.

(5)

In this case, the Bertrand mate curve β⋆ is a Cartan null curve.

Proof. Assume that β is a timelike Bertrand curve parametrized by arc length s with non-zero

curvatures k1, k2 and the curve β⋆ is the Bertrand mate curve of β parametrized by with arc

length or pseudo arc s⋆. Then we can write the curve β⋆ as

β⋆ (s⋆) = β⋆
(

f (s)
)

= β(s) + u(s)T(s) + v(s)N(s) + w(s)B(s) (6)

for all s ∈ I, where u(s), v(s) and w (s) are differentiable functions on I.

(i) Let β⋆ be a timelike curve. Then differentiating (6) with respect to s and using the Frenet

equations (1), we get

f
′
T⋆ =

(

1 + u
′
+ vk1

)

T +
(

v
′
+ uk1 − wk2

)

N +
(

w
′
+ vk2

)

B. (7)

By taking the scalar product of (7) with N, we obtain

wk2 = v
′
+ uk1. (8)
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Substituting (8) in (7), we find

f
′
T⋆ =

(

1 + u
′
+ vk1

)

T +
(

w
′
+ vk2

)

B. (9)

By taking the scalar product of (9) with itself, we obtain

(

f
′)2

=
(

1 + u
′
+ vk1

)2 −
(

w
′
+ vk2

)2
. (10)

If we denote

δ =
1 + u

′
+ vk1

f ′
and γ =

w
′
+ vk2

f ′
, (11)

we get T⋆ = δT + γB. Differentiating this equation with respect to s and using the Frenet

equations (1), we find

f
′
k⋆1 N = δ

′
T + (δk1 − γk2) N + γ

′
B. (12)

By taking the scalar product of (12) with N, we get

δ
′
= 0 and γ

′
= 0. (13)

Firstly, we assume that γ = 0 . Then we have w
′
+ vk2 = 0. Now we assume that γ 6= 0 .

Then we have 1 + u
′
+ vk1 = h

(

w
′
+ vk2

)

, where h = δ/γ. Substituting (13) in (12), we find

f
′
k⋆1 N = (δk1 − γk2) N. (14)

By taking the scalar product of (14) with itself, using (10) and (11), we obtain

(

f
′)2

(k⋆1)
2 =

(hk1 − k2)
2

h2 − 1
,

where hk1 − k2 6= 0 and h2 − 1 > 0. If we put λ = δk1−γk2

f ′k⋆1
, we get N⋆ = λN. Differentiating

the last equation with respect to s and using Frenet equations (1), we find

f ′k⋆2B⋆ = λk1T + λ
′
N + λk2B − f ′k⋆1T⋆,

where λ
′
= 0. Rewriting the above equation by using (9), we get f ′k⋆2 B⋆ = P(s)T + Q(s)B,

where

P(s) =
(hk1 − k2)

(

w
′
+ vk2

)

(hk2 − k1)
(

f ′
)2

k⋆1(h
2 − 1)

, Q(s) =
(hk1 − k2)

(

w
′
+ vk2

)

(hk2 − k1)h
(

f ′
)2

k⋆1(h
2 − 1)

,

which implies that hk2 − k1 6= 0.

Conversely, let β be a timelike curve parametrized by arc length s with non-zero curvatures

k1, k2. Firstly assume that β satisfies the conditions (3) for differentiable functions u, v and w.

Then we can define a curve β⋆ as

β⋆ (s⋆) = β⋆
(

f (s)
)

= β(s) + u(s)T(s) + v(s)N(s) + w(s)B(s).

Differentiating the above equation with respect to s, we find

dβ⋆

ds
=

(

1 + u
′
+ vk1

)

T.



New approach to timelike Bertrand curves in 3-dimensional Minkowski space 487

This implies

f
′
=

∥

∥

∥

∥

dβ⋆

ds

∥

∥

∥

∥

= m1

(

1 + u
′
+ vk1

)

> 0,

where m1 = sgn
(

1 + u
′
+ vk1

)

. Then we can easily obtain

T⋆ = m1T, N⋆ = m1m2N, B⋆ = m1m2m3B

and

k⋆1 =
m2k1

f ′
, k⋆2 =

m3k2

f ′
,

where m2, m3 = ±1. Therefore the curve β is a Bertrand curve and the curve β⋆ is a timelike

Bertrand mate curve of the curve β. Also, there exists a homothety map between β and β⋆.

Now, assume that β satisfies the conditions (4) for differentiable functions u, v, w and a real

number h. Then we can define a curve β⋆ as

β⋆ (s⋆) = β⋆
(

f (s)
)

= β(s) + u(s)T(s) + v(s)N(s) + w(s)B(s).

Differentiating the above equation with respect to s, we find

dβ⋆

ds
=

(

1 + u
′
+ vk1

)

T +
(

w
′
+ vk2

)

B, (15)

which leads to

f
′
=

∥

∥

∥

∥

dβ⋆

ds

∥

∥

∥

∥

= n1

(

w
′
+ vk2

)

√

h2 − 1,

where n1 = sgn
(

w
′
+ vk2

)

. Rewriting (15), we obtain

T⋆ =
n1√

h2 − 1
(hT + B) , g (T⋆, T⋆) = −1. (16)

Differentiating (16) with respect to s, we get

dT⋆

ds⋆
=

n1 (hk1 − k2)

f ′
√

h2 − 1
N, (17)

which causes that

k⋆1 =

∥

∥

∥

∥

dT⋆

ds⋆

∥

∥

∥

∥

=
n2 (hk1 − k2)

f ′
√

h2 − 1
,

where n2 = sgn
(

hk1 − k2

)

. Now, we can find N⋆ as

N⋆ = n1n2N, g (N⋆, N⋆) = 1. (18)

Differentiating (18) with respect to s, using (16) and (17), we get

dN⋆

ds⋆
− k⋆1T⋆ =

n1n2 (hk2 − k1)

f ′ (h2 − 1)
(T + hB) ,

which leads to

k⋆2 =
n3 (hk2 − k1)

f ′
√

h2 − 1
,
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where n3 = sgn
(

hk2 − k1

)

. Lastly, we define B⋆ as

B⋆ =
n1n2n3√

h2 − 1
(T + hB) , g (B⋆, B⋆) = 1.

Then β⋆ is a timelike curve and a Bertrand mate curve of β. Thus, β is a Bertrand curve.

(ii) Let β⋆ be a spacelike curve with spacelike principal normal. In this case, we omit the

proof since it is similar to the case when β⋆ is timelike.

(iii) Let β⋆ be a Cartan null curve. Then differentiating (6) with respect to s and using the

Frenet equations (1) and (2), we get

f
′
T⋆ =

(

1 + u
′
+ vk1

)

T +
(

v
′
+ uk1 − wk2

)

N +
(

w
′
+ vk2

)

B. (19)

By taking the scalar product of (19) with N, we obtain wk2 = v
′
+ uk1. Substituting this in (19),

we find

f
′
T⋆ =

(

1 + u
′
+ vk1

)

T +
(

w
′
+ vk2

)

B. (20)

By taking the scalar product of (20) with itself, we obtain

(

1 + u
′
+ vk1

)2
=

(

w
′
+ vk2

)2
(21)

and 1 + u
′
+ vk1 = h

(

w
′
+ vk2

)

, where h = ±1. If we denote

δ =
w

′
+ vk2

f ′
, (22)

we get T⋆ = δ (hT + B). Differentiating this equation with respect to s and using the Frenet

equations (1) and (2), we find

f
′
N⋆ = δ

′
(hT + B) + δ (hk1 − k2) N. (23)

From (23), we get

δ
′
= 0 and hk1 − k2 6= 0. (24)

Substituting (24) in (23), we find

f
′
N⋆ = δ (hk1 − k2) N. (25)

By taking the scalar product of (25) with itself, using (21) and (22), we obtain
∣

∣w
′
+ vk2

∣

∣ = δ2 |hk1 − k2| .

Also, since N⋆ = ±N, we have k⋆2T⋆ − B⋆ = ± (k1T + k2B) and −2k⋆2 = k2
2 − k2

1, which implies

that |k1| 6= |k2| or hk1 + k2 6= 0.

Conversely, let β be a timelike curve parametrized by arc length s with non-zero curvatures

k1, k2. Assume that β satisfies the conditions (5) for differentiable functions u, v, w and real

number h = ±1. Then we can define a curve β⋆ as

β⋆ (s⋆) = β⋆
(

f (s)
)

= β(s) + u(s)T(s) + v(s)N(s) + w(s)B(s).

Differentiating the above equation with respect to s, we find

dβ⋆

ds
=

(

w
′
+ vk2

)

(hT + B) (26)
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and
d2β⋆

ds2
=

(

w
′
+ vk2

)′
(hT + B) +

(

w
′
+ vk2

)

(hk1 − k2) N,

which leads to

f
′
=

√

m2

(

w′ + vk2

)

√

m3 (hk1 − k2),

where m2 = sgn
(

w
′
+ vk2

)

and m3 = sgn (hk1 − k2). Rewriting (26), we obtain

T⋆ = m4δ (hT + B) , g (T⋆, T⋆) = 0, (27)

where m4 = sgn (δ). Differentiating (27) with respect to s, we get

dT⋆

ds⋆
=

m4δ (hk1 − k2)

f ′
N = m3m4N and k⋆1 = 1.

Now, we can find N⋆ as N⋆ = m3m4N, g (N⋆, N⋆) = 1. So we can obtain

B⋆ =
m4

2δ
(−hT + B) , g (B⋆, B⋆) = 0 and g (T⋆, B⋆) = 1.

Lastly, we can get

k⋆2 = g

(

dN⋆

ds⋆
, B⋆

)

=
m3 (hk1 + k2)

2 f ′δ
6= 0.

Then β⋆ is a Cartan null curve and a Bertrand mate curve of β. Thus, β is a Bertrand curve.

The proof is completed.

The following examples confirm the above theorem. They are new in the literature.

Example 1. Let us consider a timelike curve in E
3
1 with the equation

β(s) =
(

√
2 sinh s,

√
2 cosh s, s

)

with the curvatures k1 =
√

2, k2 = −1 and the Frenet frame

T(s) =
(

√
2 cosh s,

√
2 sinh s, 1

)

, N(s) =
(

sinh s, cosh s, 0
)

, B(s) =
(

cosh s, sinh s,
√

2
)

.

(i) If we take u = −1, v =
√

2, w =
√

2 and h = − 3√
2

in (i) of Theorem 1, then we get the

curve β⋆ as follows

β⋆(s) =
(

2
√

2 sinh s, 2
√

2 cosh s, s + 1
)

.

By straight calculations, we get

T⋆(s) =

(

2
√

2√
7

cosh s,
2
√

2√
7

sinh s,
1√
7

)

, N⋆(s) =
(

sinh s, cosh s, 0
)

,

B⋆(s) =

(

− 1√
7

cosh s,− 1√
7

sinh s,−2
√

2√
7

)

and

k⋆1 =
2
√

2

7
, k⋆2 =

1

7
.

It can be easily seen that the curve β⋆ is a timelike Bertrand mate curve of the curve β.
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(ii) If we take u = 2, v = −
√

2
3 , w = −2

√
2 and h = 1√

2
in (ii) of Theorem 1, then we get the

curve β⋆ as follows

β⋆(s) =

(

2
√

2

3
sinh s,

2
√

2

3
cosh s, s − 2

)

.

By straight calculations, we get

T⋆(s) =
(

2
√

2 cosh s, 2
√

2 sinh s, 3
)

, N⋆(s) = (sinh s, cosh s, 0) ,

B⋆(s) =
(

3 cosh s, 3 sinh s, 2
√

2
)

and

k⋆1 = 6
√

2, k⋆2 = −9.

It can be easily seen that the curve β⋆ is a spacelike Bertrand mate curve of the curve β.

(iii) If we take u = 2, v = −1 −
√

2, w = −2
√

2 and h = −1 in (iii) of Theorem 1, then we get

the curve β⋆ as follows

β⋆(s) =
(

− sinh s,− cosh s, s − 2
)

.

By straight calculations, we get

T⋆(s) =
(

− cosh s,− sinh s, 1
)

, N⋆(s) =
(

− sinh s,− cosh s, 0
)

,

B⋆(s) =

(

cosh s

2
,

sinh s

2
,

1

2

)

and

k⋆1 = 1, k⋆2 = 1/2.

It can be easily seen that the curve β⋆ is a Cartan null Bertrand mate curve of the curve β.

Figure 1. The black graphic is β, the red graphic is the timelike Bertand mate curve, the blue graphic is

the spacelike Bertand mate curve and the green graphic is the null Bertand mate curve in Example 1
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Example 2. Let β : I ⊂ R → E3
1 be a timelike Bertrand curve with the curvatures k1, k2. Then

the conditions of Theorem 1 are satisfied. Assume that v = v0 ∈ R. Then we can find

uk1 = wk2 and 1 + u
′
+ v0k1 = h

(

w
′
+ v0k2

)

,

which implies that

w =
k1

(

s − v0

∫

(hk2 − k1) ds
)

hk1 − k2
and u =

k2

(

s − v0

∫

(hk2 − k1) ds
)

hk1 − k2
.

Thus we obtain the Bertrand mate curve β⋆ as

β⋆ = β +
k2

(

s − v0

∫

(hk2 − k1) ds
)

hk1 − k2
T + v0N +

k1

(

s − v0

∫

(hk2 − k1) ds
)

hk1 − k2
B.

Here the Bertrand mate curve β⋆ is spacelike, timelike or null if h2
> 1, h2

< 1 or h2 = 1,

respectively.

In what follows, we give the examples for timelike general helices, which are Bertrand

curves. We know that the timelike general helices do not satisfy the conditions of the theory

for classical Bertrand curves (see [29]). So these examples are so important for Bertrand curves.

Example 3. Let us consider a timelike general helix in E3
1 with the equation

β(s) =

(

3s8 − 5

24s3
,

3s8 + 5

24s3
,

3s

4

)

with the curvatures k1 = 5/s, k2 = 3/s and the Frenet frame

T(s) =

(

5
(

s8 + 1
)

8s4
,

5
(

s8 − 1
)

8s4
,

3

4

)

, N(s) =

(

s8 − 1

2s4
,

s8 + 1

2s4
, 0

)

,

B(s) =

(

− 3
(

s8 + 1
)

8s4
,−3

(

s8 − 1
)

8s4
,−5

4

)

.

(i) If we take u = 3 (s − ln s) /7, v = 1, w = 5 (s − ln s) /7 and h = 2 in (i) of Theorem 1,

then we get the curve β⋆ from Example 2 as follows

β⋆(s) =

(−12 − 5s + 12s8 + 3s9

24s4
,

12 + 5s + 12s8 + 3s9

24s4
,

5s

28
+

4 ln s

7

)

.

By straight calculations, we get

T⋆(s) =

(

7
(

s8 + 1
)

8
√

3s4
,

7
(

s8 − 1
)

8
√

3s4
,

1

4
√

3

)

, N⋆(s) =

(

s8 − 1

2s4
,

s8 + 1

2s4
, 0

)

,

B⋆(s) =

(

− s8 + 1

8
√

3s4
,− s8 − 1

8
√

3s4
,− 7

4
√

3

)

and

k⋆1 =
49

48 + 15s
, k⋆2 =

7

48 + 15s
.

It can be easily seen that the curve β⋆ is a timelike Bertrand mate curve of the curve β.
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(ii) If we take u = −6s − 21 ln s, v = 1, w = −10s − 35 ln s and h = 1/2 in (ii) of Theorem 1,

then we get the curve β⋆ from Example 2 as follows

β⋆(s) =

(−12 − 5s + 12s8 + 3s9

24s4
,

12 + 5s + 12s8 + 3s9

24s4
,

35s

4
+ 28 ln s

)

.

By straight calculations, we get

T⋆(s) =

(

s8 + 1

8
√

3s4
,

s8 − 1

8
√

3s4
,

7

4
√

3

)

, N⋆(s) =

(

s8 − 1

2s4
,

s8 + 1

2s4
, 0

)

,

B⋆(s) =

(

− 7
(

s8 + 1
)

8
√

3s4
,−7

(

s8 − 1
)

8
√

3s4
,− 1

4
√

3

)

and

k⋆1 =
1

48 + 15s
, k⋆2 =

7

48 + 15s
.

It can be easily seen that the curve β⋆ is a spacelike Bertrand mate curve of the curve β.

(iii) If we take u = 2s
3 + 3 ln s

4 , v = 1
4 − s

3 , w = s + 5 ln s
4 and h = γ = 1 in (iii) of Theorem 1,

then we get the curve β⋆ as follows

β⋆(s) =

(

s8 − 1

8s4
,

s8 + 1

8s4
,− ln s

)

.

By straight calculations, we get

T⋆(s) =

(

s8 + 1

4s4
,

s8 − 1

4s4
,−1

2

)

, N⋆(s) =

(

s8 − 1

2s4
,

s8 + 1

2s4
, 0

)

,

B⋆(s) =

(

− s8 + 1

2s4
,

1 − s8

2s4
,−1

)

and

k⋆1 = 1, k⋆2 = 2.

It can be easily seen that the curve β⋆ is a Cartan null Bertrand mate curve of the curve β.

Figure 2. The black graphic is β, the red graphic is the timelike Bertand mate curve, the blue graphic is

the spacelike Bertand mate curve and the green graphic is the null Bertand mate curve in Example 3
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Remark 1. If we take the functions u and w as u = w = 0 in Theorem 1, we obtain the theorems

in [29]. In addition to [29], in this paper, we give the necessary and sufficient conditions for

timelike curves in Minkowski 3-space to have a Cartan null Bertrand mate curve given by

β⋆ (s⋆) = β⋆
(

f (s)
)

= β(s) + v(s)N(s). (28)

So we complete all cases for timelike Bertrand curves whose Bertrand mate curve is given

by (28).
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[17] Lucas P., Ortega-Yagües J.A. A variational characterization and geometric integration for Bertrand curves. J. Math.

Phys. 2013, 54 (4), 043508. doi:10.1063/1.4800767

[18] Matsuda H., Yorozu S. Notes on Bertrand curves. Yokohama Math. J. 2003, 50 (1-2), 41–58.

[19] Papaioannou S.G., Kiritsis D. An application of bertrand curves and surfaces to CAD/CAM. Comput. Aided

Geom. Design 1985, 17 (8), 348–352. doi:10.1016/0010-4485(85)90025-9

[20] Pears L.R. Bertrand curves in Riemannian space. J. Lond. Math. Soc. (2) 1935, 1-10 (3), 180–183. doi:

10.1112/jlms/s1-10.2.180
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Ердем Х.А., Учум А., Iларслан К., Камчi Ч. Новий пiдхiд до часоподiбних кривих Бертрана у три-

вимiрному просторi Мiнковського // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 482–494.

Добре вiдомо в теорiї кривих в евклiдовому тривимiрному просторi, що криву β назива-

ють кривою Бертрана, якщо для iншої кривої β⋆ iснує така бiєкцiя мiж β та β⋆, що обидвi

кривi мають спiльну головну нормаль. Такi кривi вивчалися в рiзних просторах протягом три-

валого перiоду часу i знайшли широке застосування в рiзних областях. У цiй статтi отримано

умови для того, щоб часоподiбна крива була кривою Бертрана. Цi умови отриманi за допо-

могою нового пiдходу на вiдмiну вiд добре вiдомого класичного пiдходу для кривих Бертрана

у тривимiрному просторi Мiнковського. Наведено вiдповiднi приклади, якi вiдповiдають цим

умовам. Крiм того, завдяки цьому новому пiдходу було отримано часоподiбнi, простороподi-

бнi та картанiвськi виродженi пари Бертрана часоподiбної загальної спiралi.

Ключовi слова i фрази: крива Бертрана, часоподiбна крива, простороподiбна крива, виро-

джена крива Картана, тривимiрний простiр Мiнковського.


