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New approach to timelike Bertrand curves in
3-dimensional Minkowski space

Erdem H.A.l, Ucum A.}, flarslan K.!, Camc1 C.2

In the theory of curves in Euclidean 3-space, it is well known that a curve g is said to be a
Bertrand curve if for another curve B* there exists a one-to-one correspondence between § and *
such that both curves have common principal normal line. These curves have been studied in differ-
ent spaces over a long period of time and found wide application in different areas. In this article,
the conditions for a timelike curve to be Bertrand curve are obtained by using a new approach in
contrast to the well-known classical approach for Bertrand curves in Minkowski 3-space. Related
examples that meet these conditions are given. Moreover, thanks to this new approach, timelike,
spacelike and Cartan null Bertrand mates of a timelike general helix have been obtained.
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Introduction

A classical problem in differential geometry, raised by French mathematician B. Saint-
Venant in 1845 (see [32]), led to discovery of Bertrand curves in 1850 (see [3]). A Bertrand
curve is a curve in the Euclidean space such that its principal normal is the principal normal
of the second curve. J. Bertrand proved that a necessary and sufficient condition for the exis-
tence of such a second curve is required in fact a linear relationship calculated with constant
coefficients should exist between the first and second curvatures of the given original curve.
In other words, if we denote first and second curvatures of a given curve by k; and k, respec-
tively, we have Ak + uky = 1, A, u € R. Since 1850, after the paper of J. Bertrand, the pairs
of curves like this have been called conjugate Bertrand curves, or more commonly Bertrand
curves (see [13]).

The study of this kind of curves has been extended to many other ambient spaces. In [20],
L.R. Pears studied this problem for curves in the n-dimensional Euclidean space E", n > 3,
he proved that either ky or k3 must be zero. In other words, Bertrand curves in E", n > 3,
are degenerate, which means that a Bertrand curve in [E” must belong to a three-dimensional
subspace B3 C E". This result is restated to H. Matsuda and S. Yorozu [18]. They proved
that there are not any special Bertrand curves in [E”, n > 3. As a result of this fact, they de-
fined a new kind, which is called (1, 3)-type Bertrand curves in 4-dimensional Euclidean space.
Bertrand curves and their characterizations were studied by many researchers in Minkowski
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3-space and Minkowski space-time (see [1,2,7,11,24-26,28]) as well as in Euclidean space. In
addition, in [27,30], the authors studied (1, 3)-type Bertrand curves in semi-Euclidean 4-space
with index 2.

Bertrand curves in the three-dimensional sphere $° C [E* have been studied by P. Lucas
and J.A. Ortega-Yagties in [15,16]. They considered the correspondence of the principal nor-
mal geodesics by using the tools of connection, and gave the relationship between (1, 3)-type
Bertrand curve in [E* and the Bertrand curve on 3-dimensional sphere 83, Also in [17], a new
algorithm to construct Bertrand curves in three-dimensional semi-Euclidean space [E2, by us-
ing an arc length parametrized curve in a totally umbilical surface 52, $? or H?, is given by
P. Lucas and J.A. Ortega-Yagties. They proved that every Bertrand curve in IES’ can be ob-
tained in this way. In [6], ].H. Choi et al. studied the Bertrand curves in 3-dimensional simply
connected space forms, i.e. 3-dimensional Euclidean space [E3, 3-dimensional sphere S and
3-dimensional hyperbolic space H? by using the curvature functions of the curve. Moreover, it
is done in other spaces, such as in Riemann-Otsuki spaces [34]. In [9], S. Honda and M. Taka-
hashi studied Frenet type framed Bertrand curves in [E3. These curves are studied in 3-space
forms by H. Jie and D. Pei in [12].

The Bertrand curve can be regarded as the generalization of the helix. The helix, as a special
kind of curve, has drawn the attention of scientists as well as mathematicians because of its
various applications in science.

Bertrand curves have a wide range of applications. For instance, Bertrand curves repre-
sent particular examples of offset curves which are used in computer-aided design (CAD) and
computer-aided manufacture (CAM) (see [8,19]). In [21], Bertrand trajectory ruled surfaces
have been defined and a generalization of the theory of Bertrand curves has been presented
for the Bertrand trajectory ruled surfaces based on line geometry.

A Razzaboni surface is a surface which is generated by a one-parameter family of geodesic
Bertrand curves. In [23], W.K. Schief gave a modern accessible overview of Razzaboni’s clas-
sical works (1898-1903) on such surfaces and their transformations (see [22]). Some known
results related to Bertrand curves and Razzaboni surfaces in Euclidean 3-space generalized to
Minkowski 3-space [E3 by C. Xu et al. in [33].

In [29], the authors studied the timelike Bertrand curves in Minkowski 3-space. They ob-
tained the necessary and sufficient conditions for timelike curves to have a timelike, spacelike
or Cartan null Bertrand mate curve, separately. Moreover, in [5], the auhors gave a new ap-
proach for Bertrand curves in 3-dimensional Euclidean space. Also they showed that there
exists general helix except circular helix which is Bertrand curve in 3.

In this paper, the conditions for a timelike curve to be Bertrand curve are obtained by us-
ing a new approach in contrast to the well-known classical approach for Bertrand curves in
Minkowski 3-space E3. Related examples that meet these conditions are given. Moreover,
thanks to this new approach, timelike, spacelike and Cartan null Bertrand mates of a timelike
general helix have been obtained.

1 Preliminaries

Minkowski space 3 is a three-dimensional affine space endowed with an indefinite flat
metric ¢ with signature (—, +, +). This means that metric bilinear form can be written as

g(x,y) = —x1y1 + X2 + X3Y3
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for any two vectors x = (x1,x2,x3), ¥ = (y1,¥2,y3) in E3. Recall that a vector v € E3\{0} can
be spacelike if ¢(v,v) > 0, timelike if g(v,v) < 0 and null (lightlike) if ¢(v,v) = 0 and v # 0. In
particular, the vector v = 0 is a spacelike. The norm of a vector v is given by [|v]|= 1/|g(v,v)|.
Two vectors v and w are said to be orthogonal if ¢(v,w) = 0 (see [31]). An arbitrary curve
a(s) in 3 can be locally spacelike, timelike or null (lightlike) if all its velocity vectors a’(s) are
respectively spacelike, timelike or null [13]. A null curve « is parameterized by pseudo-arc s if
g (a”(s),a”(s)) = 1. A spacelike or a timelike curve «(s) has unit speed if ¢ (a'(s),a'(s)) = +1
(see [4,14])).

Let {T, N, B} be the moving Frenet frame along a curve & in IE3, consisting of the tangent,
the principal normal and the binormal vector fields, respectively. Depending on the causal
character of «, the Frenet equations have the following forms.

Case L. If « is a non-null curve, the Frenet equations are given by (see [13])

T 0 ek 0 T
N’ = —€1k1 0 €3k2 N (1)
B’ 0 —€2k2 0 B

where k; and k; are the first and the second curvature of the curve, respectively. Moreover, the
following conditions hold:

g(T,T) =€ ==%1, g(N,N)=e ==+1, g(B,B) =€3= =1

and
§(T,N) = ¢(T,B) = g(N,B) = 0.

Case II. If « is a null curve, the Frenet equations are given by (see [4, 10])

T/ 0 k 0 T
N/ = k2 0 - kl N ’ (2)
B’ 0 —kp O B

where k; = 0 if « is straight line, or k; = 1 in all other cases. In particular, the following
conditions hold:

§(T,T) = g(B,B) =g(T,N) = g(N,B) =0, g(N,N)=g(T,B) =1

2 A new approach to timelike Bertrand curves in Minkowski 3-space

In this section, we will reconsider the Bertrand curves in Minkowski 3-space 3. In the
following definition, we give the well-known definition of Bertrand curve in IE“;’

Definition 1. A curve : I C R — E} with non-zero curvatures is a Bertrand curve if there is
a curve B* : I* — E3 and a bijection ¢ : p — B* such that the principal normal vectors of B(s)
and B*(s*) ats € I, s* € I* coincide. In this case, p*(s*) is called the Bertrand mate of (s).

Let B : I C R — E? be a timelike Bertrand curve with the Frenet frame {T(s), N(s), B(s) }
and non-zero curvatures ki, ko, and p* : I — E3 be a Bertrand mate curve of § with the Frenet
frame {T*(s), N*(s), B*(s) } and non-zero curvatures kj, k5. Then p* can be written as

B (s*) = B*(f(s)) = B(s) +u(s)T(s) + v(s)N(s) + w(s)B(s),
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where u(s), v(s) and w(s) are differentiable functions on I. Since the principal normal vector
of the timelike curve  is spacelike, the Bertrand mate curve p* can be a timelike curve, a
spacelike curve with spacelike principal normal or a Cartan null curve. We will consider all
cases separately in the following theorem.

Theorem 1. Let B : I C R — I3 be a unit speed timelike curve with the non-zero curvatures
ki,ky. Then the curve B is a Bertrand curve with Bertrand mate * if and only if one of the
following conditions hold.

(i) There exist differentiable functions u, v and w satistying
0 +uky =wky and w +vky =0 3)
or there exist differentiable functions u, v, w and a real number h satisfying

v +uky =wky, w +0ky #£0, 1+u +vk = h(w/ + vky),

; (4)
ky —hky #0, hky—ky £0, H —1>0.

In this case, the Bertrand mate curve B* is a timelike curve.

(ii) There exist ditferentiable functions u, v, w and a real number h satisfying

0 +uky =wky, w +0ky#0, 1+u +0vk; = h(w/ + vky),
ky —hky #0, hky —k, #0, h —1<0.

In this case, the Bertrand mate curve B* is a spacelike curve with spacelike principal
normal.

(iii) There exist differentiable functions u, v, w and real numbers vy, h = +1 satisfying
v+ uk1 = wko, w + vkp #0, 1+ U+ vky=h <w/ + vkz) , )
hki —ky £ 0, |w + vky| = 4% [hky — ka|, Ty + ko # 0.

In this case, the Bertrand mate curve * is a Cartan null curve.

Proof. Assume that f is a timelike Bertrand curve parametrized by arc length s with non-zero
curvatures ki, ko and the curve f* is the Bertrand mate curve of g parametrized by with arc
length or pseudo arc s*. Then we can write the curve f* as

B (s¥) = B*(f(s)) = B(s) + u(s)T(s) + v(s)N(s) + w(s)B(s) (6)

for all s € I, where u(s), v(s) and w (s) are differentiable functions on I.
(i) Let B* be a timelike curve. Then differentiating (6) with respect to s and using the Frenet
equations (1), we get

1= (1+ u + vk) T + (v/ + uky — wky )N + (w’ + vky)B. (7)
By taking the scalar product of (7) with N, we obtain

wkz = U/ + ukl. (8)
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Substituting (8) in (7), we find
FT* = (14u +0vk)) T+ (w +vky)B. )

By taking the scalar product of (9) with itself, we obtain

(F) = (1 +u +0k)* = (0 + k). (10)
If we denote ) ,
5:1—{—uf/—|—vk1 and ,Y:w —;/vkzl (11)

we get T* = 6T + yB. Differentiating this equation with respect to s and using the Frenet
equations (1), we find
fKIN =6T+ (6ky — vko) N+ v B. (12)

By taking the scalar product of (12) with N, we get
§=0 and 4 =0. (13)

Firstly, we assume that v = 0. Then we have w + vk, = 0. Now we assume that v #0.
Then we have 1+ ' + vk; = h(w/ + vky), where h = 6/7. Substituting (13) in (12), we find

KN = (6ky — vky) N. (14)

By taking the scalar product of (14) with itself, using (10) and (11), we obtain

N2 2 (ki —ko)?
(f)" (k)" = I
where hk; —ky # 0and h? —1 > 0. If we put A = M}TTZIQ, we get N* = AN. Differentiating
1

the last equation with respect to s and using Frenet equations (1), we find
F'ksB* = AT + A'N + AkoB — f'K5T*,
where A" = 0. Rewriting the above equation by using (9), we get f'ksB* = P(s)T + Q(s)B,
where
(hky — ko) (w' + vky) (W — ky)
7\ 2
(f) ki (h2 =1)

which implies that hky, — ki # 0.

Conversely, let B be a timelike curve parametrized by arc length s with non-zero curvatures
ki, ky. Firstly assume that p satisfies the conditions (3) for differentiable functions u, v and w.
Then we can define a curve p* as

B (s") = B (f(s)) = B(s) +u(s)T(s) + v(s)N(s) +w(s)B(s).
Differentiating the above equation with respect to s, we find

ap”
ds

(hky — ko) (w' + vky) (hky — Ky )
() K32 = 1)

P(s) = Q(s) =

4

= (1 +u + vky) T.
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i

where my = sgn(1+ u' + vky ). Then we can easily obtain

This implies
1(1+ U+ vky) >0,

T =mT, N*=mimyN, B*=mimym3B

and
m2k1 TH3k2

where my, m3 = £1. Therefore the curve B is a Bertrand curve and the curve §* is a timelike
Bertrand mate curve of the curve . Also, there exists a homothety map between g and *.

Now, assume that 3 satisfies the conditions (4) for differentiable functions u, v, w and a real
number h. Then we can define a curve f* as

Br(s") = B (f(s)) = B(s) +u(s)T(s) + v(s)N(s) +w(s)B(s).
Differentiating the above equation with respect to s, we find

g
ds

Kt = K =

= (1—|—u/—|—vk1)T+ (w/+vk2)B, (15)

which leads to

(w + vky) Vh? -1,

where ny = sgn (w’ + vky). Rewriting (15), we obtain

7=l -

1y
N

Differentiating (16) with respect to s, we get

T =

(hT+B), g(T*,T*) = -1 (16)

* —
dT _m (hkl kz)N

e (17)
which causes that
k* _ dT* _ no (hkl — kz)
1 ds* f, /—hz ] ’
where ny = sgn(hky — ky). Now, we can find N* as
N*=mn;N, g(N*,N*)=1. (18)

Differentiating (18) with respect to s, using (16) and (17), we get

dAN* T ] (hkz — kl)
— KT = 7z ) (T +hB),
which leads to
k,z( _ ns (hkz — kl)

vz —1"'
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where n3 = sgn(hky — k). Lastly, we define B* as

w _ Mo
Vh?z—1

Then B* is a timelike curve and a Bertrand mate curve of . Thus, B is a Bertrand curve.

(ii) Let B* be a spacelike curve with spacelike principal normal. In this case, we omit the
proof since it is similar to the case when p* is timelike.

(iii) Let B* be a Cartan null curve. Then differentiating (6) with respect to s and using the
Frenet equations (1) and (2), we get

(T+hB), g¢(B*B*)=1.

FT = (14 u +0k)) T+ (0 + uky — wky) N + (w + vky)B. (19)

By taking the scalar product of (19) with N, we obtain wk, = v’ 4 uk;. Substituting this in (19),
we find
fT* = (14+u +0vk))T+ (w +vky)B. (20)

By taking the scalar product of (20) with itself, we obtain
(1+ u + vkl)2 = (w/ + vk2)2 (21)
and1+u + vk1 = h(w’ + vkz), where h = £1. If we denote

5= w +/Uk2’ (22)
f
we get T* = ¢ (hT + B). Differentiating this equation with respect to s and using the Frenet
equations (1) and (2), we find

fN* =6 (hT + B) 46 (k; — ky) N. (23)

From (23), we get
§ =0 and hk; —kp #0. (24)

Substituting (24) in (23), we find
fN* =6 (hky — k) N. (25)
By taking the scalar product of (25) with itself, using (21) and (22), we obtain
|+ vka| = 6% |hky — ko -

Also, since N* = =N, we have k3T* — B* = &+ (kyT 4 koB) and —2k} = k% — k%, which implies
that |k | # |kz| or hky +ky # 0.

Conversely, let B be a timelike curve parametrized by arc length s with non-zero curvatures
ki, k. Assume that B satisfies the conditions (5) for differentiable functions u, v, w and real
number /1 = £1. Then we can define a curve p* as

B (s*) = B*(f (5)) = B(s) + u(s)T(s) + v(s)N(s) + w(s)B(s).

Differentiating the above equation with respect to s, we find

% = (w +vky) (hT + B) (26)
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and dzﬁ*

— = (W + k)’ (hT + B) + (' + vk2) (k1 —k2) N,

which leads to

f = \Jma (@ + ko) \/ms (hky — ka),

where my = sgn(w/ + vky) and m3 = sgn (hky — k). Rewriting (26), we obtain
T* = myd (WT + B), g (T*,T*) =0, 27)

where my = sgn (). Differentiating (27) with respect to s, we get

dT* m4(5 (hkl — kz)
T = 7 N =mgmyN and kj =1
Now, we can find N* as N* = m3zmyN, g (N*, N*) = 1. So we can obtain

B* = % (—hT+B), g¢(B5B)=0 and g(T* B*) =1.

Lastly, we can get

dAN* ms3 (hkl + kz)
ky = =t .
2738 < ds*’ ) 25 70
Then B* is a Cartan null curve and a Bertrand mate curve of . Thus, B is a Bertrand curve.
The proof is completed. U

The following examples confirm the above theorem. They are new in the literature.

Example 1. Let us consider a timelike curve in [E$ with the equation
B(s) = (V2sinhs, v2coshs, s)
with the curvatures k1 = /2, ky = —1 and the Frenet frame
T(s) = (\/icosh s,V/2sinhs, 1), N(s) = (sinhs,coshs,0), B(s) = (coshs,sinhs, \/i)

() If we takeu = —1,v = V/2,w = V2 and h = —% in (i) of Theorem 1, then we get the

curve $* as follows
B*(s) = (2v2sinhs,2v2 coshs, s +1).

By straight calculations, we get

T*(s) = (ﬁ coshs,&sinhs,L) N*(s) = (sinhs, coshs,0),
V7 V7 V7

B*(s) = <— %Cos’hs’ _% sinhe _¥>

_2v2 . ]
7 T
It can be easily seen that the curve B* is a timelike Bertrand mate curve of the curve f.

and

1
ki
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(ii) If we takeu = 2,v = —g,w = —2v2andh = Lz in (ii) of Theorem 1, then we get the

S

curve B* as follows

B*(s) = <¥ sinhs, ¥ coshs,s — 2) .

By straight calculations, we get

T(s) = (2\/§coshs,2\/§sinhs, 3), N*(s) = (sinhs, coshs, 0),

B*(s) = <3 coshs,SSinhs,Z\/i)

and
ki =6v2, k=-9.

It can be easily seen that the curve B* is a spacelike Bertrand mate curve of the curve B.

(iii) If we takeu = 2,v = —1 — /2, w = —2v/2 and h = —1 in (iii) of Theorem 1, then we get
the curve B* as follows

B*(s) = ( —sinhs, — coshs, s — 2).
By straight calculations, we get

T*(s) = (—coshs, —sinhs,1), N*(s) = (—sinhs, — coshs,0),

coshs sinhs 1
wi = (55 )

and
ki=1 k=1/2

It can be easily seen that the curve B* is a Cartan null Bertrand mate curve of the curve .

Figure 1. The black graphic is §, the red graphic is the timelike Bertand mate curve, the blue graphic is
the spacelike Bertand mate curve and the green graphic is the null Bertand mate curve in Example 1
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Example 2. Letp: I C R — IE‘;’ be a timelike Bertrand curve with the curvatures k1, k,. Then
the conditions of Theorem 1 are satisfied. Assume thatv = vy € R. Then we can find

uky = wky and 1+ u +voky = h(w + voka),
which implies that

w:kl(s—vof(hkz—kl)ds) nd u:kz(s—vof(hkz—kl)ds)

hki — ko hky — ko '

Thus we obtain the Bertrand mate curve * as

kz (S — 00 f(hkz — kl) dS) k1 (S — 0o f(hkz — kl) dS)
*
pr=p+ Hky — K, T+ 0N + Hky — K, B

Here the Bertrand mate curve B* is spacelike, timelike or null if W>1,h <lorh?®=1,
respectively.

In what follows, we give the examples for timelike general helices, which are Bertrand
curves. We know that the timelike general helices do not satisfy the conditions of the theory
for classical Bertrand curves (see [29]). So these examples are so important for Bertrand curves.

Example 3. Let us consider a timelike general helix in E3 with the equation

B(s) = (358—5 3s8 45 3_s>

24s3 7 2453 7 4

with the curvatures ky = 5/s, ko, = 3/s and the Frenet frame

T(S):<5(SS+1) 5(s® 1) §>’ N(S):<s8—1 $#4+1 0),

8t 7 8%t 4 254 7 254

B(s) = <_3(58+1) 3% -1) _§>.

- 8s4 7 84 7 4

(i) If we takeu = 3(s—1Ins) /7, v =1, w = 5(s —Ins) /7 and h = 2 in (i) of Theorem 1,
then we get the curve p* from Example 2 as follows

—12 —55+12s8 +3s? 12 +55+12s8 +3s° 55 4lns
B*(s) = , r5a t
2454 2454 28 7

By straight calculations, we get
7(s8+1) 7(s8—1 8148
re=(CEERIEL ) v = (S,
8v3s4 ' 8v3st 43 25 25
P41 -1 7 )
8v/3s4" 835t 43

= 9 K= 7
1748 +155" P 48+ 15s
It can be easily seen that the curve B* is a timelike Bertrand mate curve of the curve f.

B(s) = (

and
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(ii) If we takeu = —6s —21Ins,v =1, w = —10s — 35Ins and h = 1/2 in (ii) of Theorem 1,
then we get the curve * from Example 2 as follows

—12 — 55 + 1258 +3s% 12 + 55 + 1258 + 3s? 35s
B*(s) = ( 1k , Y ,T+281ns>.

By straight calculations, we get
841 -1 7 81841
T*(S): <S + /S ’ )/ N*(S): <5—4’%'0>’
8v/3s%" 8v/3s%" 4/3 2% 7 2s
7(s%+1) 7(s*-1
= (10, Y 1)

8v3st | 83t | 43

ki = 1 ky = 7
17 48+155" 7 48+15s
It can be easily seen that the curve B* is a spacelike Bertrand mate curve of the curve B.

and

(iii) If we take u = £ +3Ins o — % -3 w=s+ % and h = v = 1 in (iii) of Theorem 1,
then we get the curve 5~ as follows

-1 841
B(s) = <W,W,—IHS>-

By straight calculations, we get

$+18-1 1 -1 s8+1
) = (F’F"E)' N(s) = (W F'(’)'
sB+1 158
B*(s) = | ) s —1
(s) ( 2% 7 264 )

and
k=1, k =2

It can be easily seen that the curve B* is a Cartan null Bertrand mate curve of the curve .

- — 2,
< " S

-,
i
|
L.

e
| I

Figure 2. The black graphic is 8, the red graphic is the timelike Bertand mate curve, the blue graphic is
the spacelike Bertand mate curve and the green graphic is the null Bertand mate curve in Example 3
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Remark 1. If we take the functionsu and w asu = w = 0 in Theorem 1, we obtain the theorems
in [29]. In addition to [29], in this paper, we give the necessary and sufficient conditions for
timelike curves in Minkowski 3-space to have a Cartan null Bertrand mate curve given by

B*(s*) = B*(f(s)) = B(s) + o(s)N(s). (28)

So we complete all cases for timelike Bertrand curves whose Bertrand mate curve is given
by (28).
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Aobpe BiAOMO B TeOpii KpMBUX B €BKAIAOBOMY TPMBMMipHOMY IPOCTOPI, III0 KPUBY 3 Ha3WBa-
I0Th KpUBOIO bepTpaHa, SIKIIO AASI iHIIOl KpmBOI B* icHye Taka 6iexriist Mix B Ta §*, 110 06MABI
KPUBi MalOTh CITIABHY TOAOBHY HOpMaAb. Taki KpMBi BUBYAAMCSI B Pi3HMX IPOCTOPaX MPOTSTOM TpU-
BAAOTO TIepiOAy Yacy i 3HaMIIIAM IIMPOKe 3aCTOCYyBaHHsI B Pi3HMX o6AacTsIX. Y il CTaTTi OTpUMaHO
YMOBM AASI TOTO, II06 YaconoaibHa kpmsa byaa xpusoro beprpana. Lli ymoBu oTpumaHni 3a A0TIO-
MOTOF0 HOBOTO ITiAXOAY Ha BiaMiHy Bia A06pe BiAOMOTo KAACHUIHOTO MAXOAY AASI KpuBMX Beprpana
y TpuBMMipHOMY npocTopi MinkoBcbkoro. HaBeaeHO BiAITOBiAHI IPMKAAAM, SIKi BiATIOBiAAIOTD IIVIM
yMmoBaM. KpiM ToOro, 3aBAsIKM IIbOMY HOBOMY IiAXOAY OYAO OTpMMAaHO YacomNoAibHi, IPOCTOPOIIOAi-
6Hi Ta KapTaHiBChKi BrpoakeHi mapy bepTpaHa 9acomoaibHOI 3araAbHOI criipaai.

Kontouosi cnosa i ¢ppasu: xpusa beprpana, gacomoai6Ha KpuBa, MPOCTOPONOAiGHA KpMBa, BUpPO-
AxeHa kpusa KapTana, TpuBuMipHImi mpocTtip MiHKOBCHKOTO.



