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Algebras of polynomials generated by linear operators

Zaj F., Abtahi M.>

Let E be a Banach space and A be a commutative Banach algebra with identity. Let IP(E, A) be
the space of A-valued polynomials on E generated by bounded linear operators (an n-homogenous
polynomial in P(E, A) is of the form P = Y2 T/', where T; : E — A, 1 < i < oo, are bounded
linear operators and Y ;2 ; ||T;||* < o0). For a compact set K in E, we let IP(K, A) be the closure in
¢ (K, A) of the restrictions P|k of polynomials P in IP(E, A). Itis proved that IP(K, A) is an A-valued
uniform algebra and that, under certain conditions, it is isometrically isomorphic to the injective
tensor product Py (K) @ A, where Py (K) is the uniform algebra on K generated by nuclear scalar-
valued polynomials. The character space of P(K, A) is then identified with Ky x 9t(A), where Ky
is the nuclear polynomially convex hull of K in E, and 9t(A) is the character space of A.

Key words and phrases: vector-valued uniform algebra, polynomial on a Banach space, nuclear
polynomial, polynomial convexity, tensor product.
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1 Introduction

Let E be a Banach space and A be a commutative unital Banach algebra, over the com-
plex field C. For a compact set K in E, let ¥ (K, A) be the algebra of all continuous functions
f : K = A equipped with uniform norm

Ifllx = sup {{If(x)]| : x € K}. 1)

When A = C, we write ¢ (K) instead of ¢ (K,C). Given an element 2 € A, the same
notation a is used for the constant function given by a(x) = a for all x € K, and A is regarded
as a closed subalgebra of €' (K, A). We denote by 1 the unit element of A, and identify C with
the closed subalgebra C1 = {a1 : « € C} of A. Therefore, every function f € ¢ (K) can be seen
as the A-valued function x — f(x)1. We use the same notation f for this A-valued function,
and regard %' (K) as a closed subalgebra of (K, A). By an A-valued uniform algebra on K we
mean a closed subalgebra A of ¢ (K, A) that contains the constant functions and separates
points of K (see [1,12]). A comprehensive discussion on complex function algebras appears
in [5, Chapter 4].

We are mostly interested in those A-valued uniform algebras that are invariant under com-
position with characters of A. An A-valued uniform algebra A is called admissible if po f € A
whenever f € Aand ¢ : A — C is a character of A. Recall that a character is just a nonzero
multiplicative linear functional. Denoted by M(A), the set of all characters of A, equipped
with the Gelfand topology, is a compact Hausdorff space.
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When A is admissible, we let 2 be the subalgebra of A consisting of scalar-valued functions,
that is, A = AN % (K). In this case, A = {¢po f : f € A} for every ¢ € M(A). The algebra
% (K, A) is admissible with 2l = € (K). It is well-known that ¢ (K, A) is isometrically isomor-
phic to the injective tensor product ¢ (K) ®e A, and that M(%' (K, A)) = K x M(A) (see [8]).
In general, given an admissible A-valued uniform algebra A, it is natural to ask whether
the analogous equalities A = 2 ®. A and M(A) = M(A) x M(A) hold. In this paper, we
investigate these questions for a certain A-valued uniform algebra that is generated by linear
operators.

Remark 1. For an admissible A-valued uniform algebra A with A = € (K) N A, let AA de-
note the subalgebra of A generated by AU A. Indeed, AA consists of elements of the form
f = fia; +-- -+ fuan, where f; € Aanda; € A forl <i <n,n € IN. The following statements
are equivalent.

1. A =A®e A (isometrically isomorphic).
2. The subalgebra A is dense in A.

In fact, the mapping A : f ® a — fa defines a homomorphism of 2 ® A onto AA, and,
using Hahn-Banach theorem, we have

HA0<Zﬁ®ai> =sup || ) fi(x)a;| = sup sup | Y fi(x)p(a;)
i=1 K xeK Il j=1 xerpeA{ i=1
= sup | 5ot = sup sup |y ( L Ac)e0a))
peAT Il i=1 K ¢peA]peA] i=1
= sup sup | Y ¢(fi)p(a)| = || Y fi®al ,
peA; peA; | i=1 i=1 €

where 2} and A} denote the unit balls of 20* and A*, respectively. Therefore, A extends to an
isometry of 2 ®c A onto AA. Given f € 2 and a € A, we may identify the A-valued function
fa with the elementary tensor f ® a.

Remark 2 ([10]). It is always possible to define a product (a,b) + ab on the Banach space E in
order to make it an algebra with identity. Indeed, take a nonzero functional € E* and a vector
e € E such that ¢(e) # 0 and ||e|| = 1. Then E = ker ¢ ® Ce. Fora,b € E, writea = x + (a)e
andb =y +(b)e, withx,y € kerp, and define ab = (b)x + ¢(a)y + P (a)p(b)e. This makes
E an algebra with identity e. Define a norm on E by ||a||; = |(a)| + ||x||, wherea = x + y(a)e.
Then, || - ||; is an equivalent norm on E making it a commutative unital Banach algebra. This
observation allows us to consider ¢ (K, E) as a Banach algebra, even if the Banach space E is
not assumed to be an algebra in the first place.

In this paper, we consider the space P(E, A) of all A-valued polynomials on E generated
by bounded linear operators T : E — A. By definition, an n-homogenous polynomial P in
P(E, A) is of the form P = Y _° | T/", where (T;) is a sequence of bounded linear operators of
E into A such that };°; || T;||" < oco. This class of polynomials was introduced in [10] with
further study carried out in [7]. For a compact set K in E, we let P(K, A) be the closure in
%' (K, A) of the restrictions P|g of polynomials P € P(E, A). It is proved that P(K, A) is an
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admissible A-valued uniform algebra on K with 2 = Py(K), where Py (K) represents the
(complex) uniform algebra on K generated by nuclear polynomials. In fact, f € Py(K) if and
only if there is a sequence (Py) of nuclear scalar-valued polynomials on E such that P, — f
uniformly on K. We prove that the following are equivalent:

(i) P(K, A) = Pn(K) ®, A for a Banach algebra A,
(ii) P(K,E) = Py(K) ®¢ E (see Remark 2),
(iii) I € Pn(K) ®¢ E, where I : E — E is the identity operator.

In this situation, the character space 9 (IP(K, A)) is identified with Ky x 9(A), where Ky
denotes the nuclear polynomially convex hull of K in E.

2 Algebras of polynomials generated by linear operators

First, let us recall basic definitions, notations and some results of the theory of polynomials
on Banach spaces. For comprehensive texts, see [6,11,13].

Let E and F be Banach spaces over C. The space of all continuous symmetric n-linear
operators T : E" — F is denoted by Ls("E,F). For T € Ls("E,F), define T(x) = T(x,...,x),
x € E. A mapping P : E — F is said to be an n-homogeneous polynomial if P = T for
some T € L;("E,F). For convenience, 0-homogeneous polynomials are defined as constant
mappings from E into F. The vector space of all n-homogeneous polynomials from E into F is
denoted by P("E, F). The shortened notation P("E) is used when F = C. A norm on P("E, F)
is defined as

1Pl| = sup{|[P(x)I| : |x]| <1}, P e P(E,E). @

Continuity of P (and of the corresponding symmetric n-linear operator T) is then equiva-
lent to finiteness of ||P||. Given an n-homogeneous polynomial P € P("E, F), the symmetric
n-linear mapping T that gives rise to P can be recovered by any of several polarization formu-
lae, e.g.,

1 n
T(x1,...,%) = o Z 61---enP<Ze]-x]->. (3)
e=%1 j=1

As a special case, for a,b € A and m,n € IN, we get

1 m-+n >m+n

m
a"h' = ——————— Z 61---€m+n<Z€gﬂ+ Z €/b
2men(m +n)t =,y (=1 (=m+1

(4)

Therefore, n-homogeneous polynomials and symmetric n-linear operators are in one-to-
one correspondence, and the polarization inequality ||P|| < ||T|| < Z;||P|| shows that these
spaces are isomorphic (see [6, Corollary 1.7 and Proposition 1.8]).

Notation. Let T € L;("E,F) and x,y € E. For 0 < k < n, let
T(xk,y”_k) =T(X,% ..., Y, Y,...,Y). (5)

k times n—k times

Then, by [11, Theorem 1.8], we have the Leibniz formula

T((x+y)") = kXZ <Z> T(xk,y" %), (6)
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21 The A-valued uniform algebra generated by linear operators

To continue, we restrict ourselves to Banach algebra valued polynomials. We let A be a
commutative Banach algebra with identity 1. Adopting notations from [10], we denote by
P ("E, A) the space of n-homogeneous A-valued polynomials on E of the form

P(x) =) Ti(x)", x€E, (7)
where (T;) is a sequence in L(E, A) such that Y52 ; || T;||" < o0. Anorm on P ("E, A) is defined
by

Pl =in{ S 1T P = 17, ®)
i=1 i=1

where the infimum is taken over all possible representations of P in (7). It is easy to verify
that || - ||| is @ norm and that ||P|| < |[|P]| for all P € P ("E, A). The following shows that
convergence with respect to this norm implies uniform convergence on compact sets.

Proposition 1. Let K be a compact set in E. Then there is M > 0 such that
IPllx < MH[PII, P eP("E A). )
Consequently, the series in (7) converges uniformly on K.

Proof. Since K is compact, there is a constant M such that ||x| < M for all x € K. Therefore,
| Tx|| < M||T|| forevery x € Kand T € L(E, A). If a polynomial P is defined by (7), then

ZT H<supZHT )" SM”iHTiH”.

x€K i

IP|lx = sup
xeK

The above inequality holds for any representation of P in (7). Taking infimum over all those
representations, as in (8), we get
IPllx < M[PI]-

Also, we have

S
HP—ZT[’ H ZT” < M" ZT” < M" 2 |Ti|I" =0 as s — co.
i=1 =s+1 =s+1
This shows that the series in (7) converges uniformly on K. O

If A is replaced by C, we reach the nuclear (scalar-valued) polynomials. By definition, an
n-homogenous polynomial P : E — C is called nuclear if it can be written in a form

xX) = igbi(x)", x € E, (10)
i=1

where (¢;) is a sequence in E* with Y72, ||¢;||" < oo. We denote by Py("E) the space of all
n-homogenous nuclear (scalar-valued) polynomials on E. In fact, Py ("E) = P ("E,C).
Nuclear polynomials between Banach spaces have been studied by many authors (see [2—4,15]).

We are now in a position to introduce the A-valued uniform algebras that these polyno-
mials generate. Let P(E, A) be the space of all polynomials on E of the form P = }_, P,
where P, € P (kE, A), 0 <k < n,n € N. In the same fashion, the space Py(E) of all linear
combinations of homogenous nuclear polynomials on E is defined. In fact, Py (E) = P(E,C).
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Definition 1. Let K be a compact set in the Banach space E. Define
Py(K,A) ={P|x: P € P(E,A)}, Pn,(K)={P|x:P € Pn(E)}.

We define P (K, A) as the closure of Py(K, A) in ¢ (K, A). Similarly, Py(K) is defined to be the
closure of Py, (K) in € (K).

Therefore, f € P(K, A) (respectively, f € Pyn(K)) if and only if there is a sequence (Py) of
polynomials in P(E, A) (respectively, Pn(E)), such that Py — f uniformly on K.

Clearly, P(K, A) is a closed subspace of € (K, A). We are aiming to show that P(K, A) is
a subalgebra of ¢'(K, A). To achieve this, one may think of proving that the space P(E, A)
itself is an algebra (that is, if P € P(™E, A) and Q € P("E, A), then PQ € P(""E, A)). This
manner is naturally expected. However, the authors do not currently have strong evidence
supporting or opposing the possibility that P(E, A) is an algebra. Our approach, therefore, is
to give a direct proof of the fact that P(K, A) is an algebra, as follows.

Theorem 1. For a compact set K in E, let A = P(K, A). Then A is an admissible A-valued
uniform algebra on K with 20 = Py (K).

Proof. Since P(E, A) contains 0-homogenous polynomials, we see that A contains the constant
functions, and since IP(E, A) contains the 1-homogenous polynomials of the form P = 11 with
¢ € E*, we see that A separates points of K. To prove that A is an algebra, we show that it is
closed under multiplication, that is,

f,ge A= fgeA. (11)

Given f,g € A, there exist sequences (Pg) and (Qi) of polynomials in P(E, A), such that
Py — f and Qi — g uniformly on K, from which we get P,Q; — fg uniformly on K. Therefore,
(11) reduces to the following implication

P,Qe P(E,A) = PQ € A. (12)

Since every polynomial in P(E, A) is a linear combination of homogenous polynomials, we
may assume that P € P("E, A) and Q € P("E, A).
Consider two cases:

(1) mn=>1,
(2) m>1landn = 0.

In case (1), write P = Y32, 5" and Q = Y24 T, where (Si) and (T;) are sequences of
operators in L(E, A). By Proposition 1, these series converge uniformly on K, i.e.

S S
lim |[P—) S"| =1lm|Q—) T'| =0.
5—00 1221 ! Kk 50 ]; ] K
Therefore,
S S S S
1im‘PQ—Zs;ﬂZT;7 = lim ‘PQ—ZZS?Tf =0. (13)
sTree =1 j=1 ko % i=1j=1 K
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Applying polarization formula (4), we have

m+n
m m-+n
mon __ . ,
SIT} = Ty (25+2T) -
€= = =m

With suitable choice of scalars a; and operators Uy, 1 < k < 21 e have

pm+n

SITH =) ey,

meaning that 57'T}" € P(™"E, A). Now, (13) shows that PQ is approximated (uniformly on K)
by elements of P("*"E, A) and thus PQ € A.

In case (2), write P = }°; S and Q = b, where b € A is a constant. Since A is as-

sumed to have an identity 1, the proof of [10, Proposition 2.1] shows that if A, = 12627"T1kl and

27tki

ap=b+em1,1<k<mthenb= Aaf +---+ Apay. Therefore, if
2k

m2 tki
by = S <b+e2mk1), k=1,2,...,m,

then b = bf" + - - - + by;. Now, for every x € E, we have

m m

(PQ)(x) = P(x)b = z% e f; kfl (W05 = Y ((x)b)"

k=1j=1

Set Tjx = iby and P = Z] 1 ]k Then P, € P(™E, A) and PQ = P; + - - - + Py,. Therefore, PQ
is an m-homogenous polynomial in P(E, A). In particular, PQ € A.
Finally, we show that P(K, A) is admissible, that is,

feA ¢eMA) =¢ofeA. (14)

Given f € A, let (P) be a sequence of polynomials in P(E, A) such that Py — f uniformly
on K. For every ¢ € M(A), since ||¢|| < 1, we have

lpoPe—¢ofllk <[P flix,
and thus ¢ o P — ¢ o f uniformly on K. Therefore, (14) reduces to the following implication
PeP(E,A), ¢ € MA) = ¢oPeA. (15)

Given P € P(E, A), since it is a linear combination of homogenous polynomials, we may
assume that P itself is an n-homogenous polynomial and write P = } 2, T/ for T; € L(E, A).
Then, for every x € E,

(e 9]

(9o P)(x (ZT" ) - il o (Ti(x)") = i«p(n(x))” =Y (poTi(x)".

i=1
We see that ¢ o P is a nuclear polynomial, i.e. p o P € Pn(E). Set ¢; = o T; and S; = 9;1.
Then S; € L(E, A), [|Si]| < [|T;[|, and

(poP)1 = i(t[zz Z S e P(K, A).

i=1
We conclude that P(K, A) is admissible with 20 = Py(K). O
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2.2 Representing as tensor product

We now investigate conditions that imply the equality P(K, A) = Py(K) ®¢ A. In the
following, I : E — E is the identity operator.

Theorem 2. Let K be a compact set in the Banach space E. The following statements are
equivalent.

(i) P(K, A) = Pn(K) &, A for every unital Banach algebra A.
(ii) P(K,E) = Pn(K) ®¢E.
(iii) I € Pn(K) ® E.

Proof. The implication (i) = (ii) is trivial (see Remark 2). The implication (ii) = (iii) is also
trivial since always I € P(K, E).

We prove the implication (iii) = (i). Let A be a unital Banach algebra. In view of Re-
mark 1 and Theorem 1, we always have Py(K) ®e A C P(K, A). To prove the reverse inclu-
sion, since Py(K, A) = P(K, A), we just need to show that Py(K, A) C Pn(K) @ A, this is,
P € Pn(K) ®e A for every polynomial P € P(E, A). We argue by induction on n = deg(P).

The base case, n = 0, trivially hold. In fact, if deg(P) = 0 then P is a constant polynomial
and belongs to Py (K) ®¢ A. For the inductive step, take n € IN and assume that

every polynomial Q with deg(Q) < n belongs to Py (K) ®, A. (16)
Let P be a polynomial with deg(P) = n. Subtracting from P a polynomial Q with

deg(Q) < n —1, if necessary, we may assume that P is an n-homogenous polynomial and
that P = T for some T € Ls("E, A). Let € > 0. By the assumption, I € Py(K) & E. Therefore,
by Remark 1, there exist functions fi, .. ., fi in Py (K) and vectors ay, . .., a,, in E such that

Hl(x) - i:ifi(x)ai <e xek (17)

Using notation (5) and Leibniz formula (6), we get

(-3 flow) ) = ¥ () (- i:f;ﬁ(x)ai)"_k). "

gr(x) = <Z> T<xk, (— ifi(x)aZ)nk) for 0<k<n—1and x € K.
i=1

We have

Define

n—2(x) =n(n—1) Zlfl(x)f] (x)T(x”_Z, aj, tl]-)
ij=
90(x) = (1" DB T A T (a0, ),
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where the last summation is taken over all multi-indices & = (aq,...,a,) in ING' such that
lo| =1+ +ay =n.

We see that each Sjs 0 <j < n—1,is an algebraic combination (multiplication and addi-
tion) of functions f1, f2, ..., fm in Pn(K), and some polynomials of degree j which, by assump-
tion (16), belong to Py (K) ®e A. Therefore, 0,81, - - -, 8n—1 € Pn(K)QA.

On the other hand, for every x € K,

_ HT(x”) + kg <Z> T<xk, < - gﬁ(x)al) "k>

_ HT<<x _ gﬁ(x)aiY) H < |7

where ||T|| is the operator norm of T in £s(E, A). Since € is arbitrary, this means that P is
approximated uniformly on K by functions in Py(K) ® A. Therefore, P € Py(K) ®¢ A and
the inductive argument is complete.

We conclude that P(K, A) = Py(K) ®, A. O

X = ifi(x)ai

Ip0+ g0
j=0

n

< [|Tle",

Recall (see, e.g., [11, Definition 27.3]) that a Banach space E has the approximation property if
for every € > 0 and every compact set K in E there exists a finite rank operator T : E — E such
that || T(x) — x|| < e for every x € K.

Proposition 2. Suppose that the Banach space E has the approximation property. Then
I € Pn(K)®¢E for any compact set K in E.

Proof. Let e > 0. By the approximation property, there is a finite-rank operator T : E — E such
that ||I — T||x < e. The finite-rank operator T can be represented in a form

T =1a1 + - + Puam,

where ; € E*,a; € E,1 < i < m. This means that T € Py(K) &, E. Since ¢ is arbitrary, we
conclude that I € Py (K)&¢E. O

For the Banach algebra A, let us denote by A, the space A* equipped with the topology
of compact convergence, i.e. the topology of uniform convergence on compact subsets of A.
Given a set S in A*, we say that S generates A} if (S) is dense in A}, where (S) denotes the
linear span of S in A*.

Proposition 3. Suppose that the Banach algebra A has the approximation property. If M(A)

generates A}, then P(K, A) = Pn(K)&A for any compact set K in any Banach space E.
Proof. Let K be a compact set in a Banach space E and take a function f € P(K, A). First, we
show that ¢ o f € Pn(K) for every ¢ € A*. By Theorem 1, we have ¢ o f € Py(K), for every
¢$ € M(A), whence p o f € Pyn(K) for every ¢ € (M(A)), the linear span of M(A) in A*.
Since M(A) generates A, given ¢ € A*, there exists a net (¢n) in (M(A)) such that ¢, — ¢
in the compact convergence topology of A*. The set f(K) is compact in A, and thus ¢, — ¢
uniformly on f(K). This implies that ¢, o f — ¢ o f uniformly on K. Since ¢, o f € Pn(K) for
all v, we get p o f € Pn(K).
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Now;, let € > 0. Since A has the approximation property and f(K) is compact in A, there
exists a finite rank operator T = )" ; ¢;b; with ¢; € A*, b; € A, 1 <i <m, m € N, such that

ly =T = Hy - i@(]/)bi <e yef(K).
Replacing y with f(x), x € K, we get
Hf(x) - igbiof(x)bi <e x€eK.

From the first part of the proof, we get Y-, (¢; o f)b; € Pn(K) ®c A. Since € > 01is arbitrary,
we have f € Py(K) ®e A. O

To support the above result, we present some examples.

Example 1. Suppose that X is a compact Hausdorff space and that A = ¢ (X). Itis well-known
that A has the approximation property and that M(A) = {dy : x € X}, wheredy : f — f(x)
is the point mass measure at x. Indeed, MM(A) coincides with the set of extreme points of the
unit ball A}. By the Krein-Millman theorem, A} equals the weak* closed convex hull of M(A).
Therefore, given ¢ € Aj, there exists a net (¢,) in the convex hull of M(A) such that ¢, — ¢
in the weak* topology. Since (¢, ) is bounded, we get ¢, — ¢ uniformly on compact sets. This
means that ¢, — ¢ in A}, and thus M(A) generates A’.. Now, by Proposition 3, we have
P(K, ¢ (X)) = Pn(K) ®e € (X) for any compact set K in a Banach space E. It is worth noting
that

-~

Pn(K) ®e €(X) = €(X) ®e Pn(K) = € (X, Pn(K)).

Example 2. Let S be any nonempty set, and A = (F(S) for some p € (1,00). Then A* = ¢1(S)
with 1/p + 1/q = 1. Define multiplication on A point-wise, that is, (fg)(s) = f(s)g(s) for all
s € S. It is a matter of calculation to verify that

YA < X 16 L [3(s)

seS seS seS

p, f.g €A

Therefore (A, | -||,) is a commutative Banach algebra. For every s € S, the evaluation
homomorphism ¢s : f — f(s) is a character of A. Conversely, let ¢ : A — C be a character.
Suppose that x; is the characteristic function ats € S. Then, given f € A, we have f =
Yses f(s)xs, and thus ¢(f) = Yecs f(s)p(xs). Since ¢ # 0, there must be a point sy € S

such that ¢(xs,) # 0. If s # so, then ¢(xs)P(Xs,) = P(Xsxso) = 0, so that ¢(xs) = 0. Also
P (xsy)* = ¢(xs,) and thus ¢(xs,) = 1. Therefore, we have

¢(f) = Zsf(s)qb(?cs) = f(s0) = ¢s,(f)-
We conclude that M(A) = {¢s : s € S}. The fact that (M(A)) is dense in A* = (1(S) in

the norm topology yields that (A) generates A}.. Moreover, if S is countable then (¥ (S) has
a Schauder basis and thus it has the approximation property.
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2.3 The character space

Let K be a compact set in the Banach space E. The character space of a function algebra on
K generated by a certain class P of polynomials is closely related to the polynomially convex
hull of K with respect to the given class P.

Definition 2. The nuclear polynomially convex hull of K is defined as
Ry ={a€E:|P(a)| <|P|k P € Pn(E)} (19)
It is said that K is nuclear polynomially convex if K = Ky.

Theorem 3. The character space of Py(K) is homeomorphic to Ky, and Py (K) is isometrically
isomorphic to Py (Ky).

Proof. Leta € Ky. Given f € Py(K), there is a sequence (P;) of polynomials in Py, (K) such
that Py — f uniformly on K, and thus |P(a) — Pj(a)| < ||Px — P;||x — O as k, j — oo.

This means that (P(a)) is a Cauchy sequence in C. Define ¢,(f) = kh—l;lgo P(a). If (Qp)
is another sequence of polynomials in Py, (K) such that Q;y — f uniformly on K, then
|Qk(a) — Pe(a)| < [|Qk — Pllx — 0. This shows that ¢,(f) is well-defined. An standard ar-
gument shows that ¢ (f +g) = ¢a(f) + ¢a(g) and s (£g) = ¢a(f)a(g) forall £, g € Py (K).
Therefore, ¢, € M (Pn(K)).

Conversely, assume that ¢ : Py(K) — C is a character. Consider the dual space E* as
a subspace of Py (E) consisting of 1-homogenous polynomials. Then the restriction of ¢ to
E* is a linear functional on E*. We show that ¢ is weak* continuous on norm bounded sub-
sets of E*. Let (¢o) be a bounded net in E* that converges in the weak* topology to some
Yo € E*. Then ¢, — pp uniformly on K. Since ¢ is continuous with respect to || - ||k, we get
¢(ha) = ¢(Po). This shows that ¢ is weak* continuous on bounded subsets of E*, as desired.
By [9, Corollary 4], ¢ is weak* continuous on E* and thus there is a € E such that ¢(¢) = ¢(a)
for all ¢ € E*. Now, take an n-homogenous nuclear polynomial P = Y ** ; ¢ with ¢; € E* and
Y21 ll¢i]|™ < oo. By Proposition 1, the series converges uniformly on K, and thus

S S S
o(P) = p( Jim 397 ) = lim 09" = lim - )" = Pla)

§—00 4
i=1

Note that |P(a)| = |¢(P)| < ||P||x for every P € Py(E), which shows that a € Ky. Thus
¢ = ¢a on Py, (K), a dense subspace of Py (K), whence ¢ = ¢, on Py (K). Finally, the mapping
Ry 2 a > ¢s € M(Pn(K)) is an embedding of K onto 9 (Pn(K)) (see [5, Chapter 4]). O

We conclude this paper with the following result on the character space of P(K, A).

Theorem 4. The character space M (P(K, A)) contains Ky x 9(A) as a closed subset. If either
of the conditions in Theorem 2, Proposition 2 or Proposition 3 hold, then

M(P(K,A)) = Ky x M(A).

Proof. 1t follows from previous results and from Tomiyama theorem, proved in [14]. O
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Hexait E — 6anaxoBmii mpocTip, a A — KoMyTaTuBHa 6aHaxoBa aarebpa 3 oamaEIiero. Hexait
P(E, A) — mpocrip A-3Ha4HMX TOAIHOMIB Ha E, TOpOAXXeHNX 06Me>KeHUMIL AIHIHIMY OTlepaTopa-
mu (n-oaHOpiAEWIA MOAIHOM B IP(E, A) Mae Burasa P = Y22 T/, pe T; : E — A, 1 < i < o0, ¢
06MeXeHVMI AiHIHYMIY omtepaTopamu i Y 2 || T;]|" < 00). AAsI AOBIABHOI KOMITAKTHOI MHOXMHM K
B E mosHaunmo uepes P(K, A) samuxansst B 4 (K, A) 3Byxenp P|g morinomis P B P(E, A). Aose-
AeHo, o P(K, A) e A-3HaUHO PiBHOMIPHOI aATe6pOIo, sika 3a IEBHMX YMOB € i30MeTpuYHO i30-
MOpdHOIO iH eKTMBHOMY TeH30pHOMY 206yTKY PN (K) ®e A, Ae PN(K) — piBHOMipHa arrebpa Ha
K, mopoaxeHa siAepHMMM CKaASIPHMME IToAiHOMaMt. Toai npoctip xapakrepis npocropy P (K, A)
OTOTOXHIOETHCST 3 Ky X M(A), e Ry — sIAepHa IOAIHOMIaAbHa omykAa oboaonka K B E, a M(A) —
IIPOCTip XapakTepis aarebpm A.

Kouosi ciosa i ppasu: BeKTOPHO-3HAUHA piBHOMIpHa aAre6pa, HOAIHOM Ha 6aHAXOBOMY IIPOCTO-
pi, SAepHWMIT TOAIHOM, TIOAIHOMiaABHA OITYKAICTB, TEH30PHMI AOOYTOK.



