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Algebras of polynomials generated by linear operators

Zaj F., Abtahi M.

Let E be a Banach space and A be a commutative Banach algebra with identity. Let P(E, A) be

the space of A-valued polynomials on E generated by bounded linear operators (an n-homogenous

polynomial in P(E, A) is of the form P = ∑
∞
i=1 Tn

i , where Ti : E → A, 1 ≤ i < ∞, are bounded

linear operators and ∑
∞
i=1 ‖Ti‖n < ∞). For a compact set K in E, we let P(K, A) be the closure in

C (K, A) of the restrictions P|K of polynomials P inP(E, A). It is proved thatP(K, A) is an A-valued

uniform algebra and that, under certain conditions, it is isometrically isomorphic to the injective

tensor product PN(K) ⊗̂ǫ A, where PN(K) is the uniform algebra on K generated by nuclear scalar-

valued polynomials. The character space of P(K, A) is then identified with K̂N ×M(A), where K̂N

is the nuclear polynomially convex hull of K in E, and M(A) is the character space of A.
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polynomial, polynomial convexity, tensor product.
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1 Introduction

Let E be a Banach space and A be a commutative unital Banach algebra, over the com-

plex field C. For a compact set K in E, let C (K, A) be the algebra of all continuous functions

f : K → A equipped with uniform norm

‖ f‖K = sup
{
‖ f (x)‖ : x ∈ K

}
. (1)

When A = C, we write C (K) instead of C (K, C). Given an element a ∈ A, the same

notation a is used for the constant function given by a(x) = a for all x ∈ K, and A is regarded

as a closed subalgebra of C (K, A). We denote by 1 the unit element of A, and identify C with

the closed subalgebra C1 = {α1 : α ∈ C} of A. Therefore, every function f ∈ C (K) can be seen

as the A-valued function x 7→ f (x)1. We use the same notation f for this A-valued function,

and regard C (K) as a closed subalgebra of C (K, A). By an A-valued uniform algebra on K we

mean a closed subalgebra A of C (K, A) that contains the constant functions and separates

points of K (see [1, 12]). A comprehensive discussion on complex function algebras appears

in [5, Chapter 4].

We are mostly interested in those A-valued uniform algebras that are invariant under com-

position with characters of A. An A-valued uniform algebra A is called admissible if φ ◦ f ∈ A

whenever f ∈ A and φ : A → C is a character of A. Recall that a character is just a nonzero

multiplicative linear functional. Denoted by M(A), the set of all characters of A, equipped

with the Gelfand topology, is a compact Hausdorff space.
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When A is admissible, we let A be the subalgebra of A consisting of scalar-valued functions,

that is, A = A ∩ C (K). In this case, A = {φ ◦ f : f ∈ A} for every φ ∈ M(A). The algebra

C (K, A) is admissible with A = C (K). It is well-known that C (K, A) is isometrically isomor-

phic to the injective tensor product C (K) ⊗̂ǫ A, and that M
(
C (K, A)

)
= K ×M(A) (see [8]).

In general, given an admissible A-valued uniform algebra A, it is natural to ask whether

the analogous equalities A = A ⊗̂ǫ A and M(A) = M(A) ×M(A) hold. In this paper, we

investigate these questions for a certain A-valued uniform algebra that is generated by linear

operators.

Remark 1. For an admissible A-valued uniform algebra A with A = C (K) ∩ A, let AA de-

note the subalgebra of A generated by A ∪ A. Indeed, AA consists of elements of the form

f = f1a1 + · · ·+ fnan, where fi ∈ A and ai ∈ A for 1 ≤ i ≤ n, n ∈ N. The following statements

are equivalent.

1. A = A ⊗̂ǫ A (isometrically isomorphic).

2. The subalgebra AA is dense in A.

In fact, the mapping Λ0 : f ⊗ a 7→ f a defines a homomorphism of A⊗ A onto AA, and,

using Hahn-Banach theorem, we have

∥∥∥∥Λ0

( n

∑
i=1

fi ⊗ ai

)∥∥∥∥
K

= sup
x∈K

∥∥∥∥
n

∑
i=1

fi(x)ai

∥∥∥∥ = sup
x∈K

sup
φ∈A∗

1

∣∣∣∣
n

∑
i=1

fi(x)φ(ai)

∣∣∣∣

= sup
φ∈A∗

1

∥∥∥∥
n

∑
i=1

fi(·)φ(ai)

∥∥∥∥
K

= sup
φ∈A∗

1

sup
ψ∈A∗

1

∣∣∣∣ψ
( n

∑
i=1

fi(·)φ(ai)

)∣∣∣∣

= sup
ψ∈A∗

1

sup
φ∈A∗

1

∣∣∣∣
n

∑
i=1

ψ( fi)φ(ai)

∣∣∣∣ =
∥∥∥∥

n

∑
i=1

fi ⊗ ai

∥∥∥∥
ǫ

,

where A∗
1 and A∗

1 denote the unit balls of A∗ and A∗, respectively. Therefore, Λ0 extends to an

isometry of A ⊗̂ǫ A onto AA. Given f ∈ A and a ∈ A, we may identify the A-valued function

f a with the elementary tensor f ⊗ a.

Remark 2 ([10]). It is always possible to define a product (a, b) 7→ ab on the Banach space E in

order to make it an algebra with identity. Indeed, take a nonzero functional ψ ∈ E∗ and a vector

e ∈ E such that ψ(e) 6= 0 and ‖e‖ = 1. Then E = ker ψ ⊕ Ce. For a, b ∈ E, write a = x + ψ(a)e

and b = y + ψ(b)e, with x, y ∈ ker ψ, and define ab = ψ(b)x + ψ(a)y + ψ(a)ψ(b)e. This makes

E an algebra with identity e. Define a norm on E by ‖a‖1 =
∣∣ψ(a)

∣∣+ ‖x‖, where a = x + ψ(a)e.

Then, ‖ · ‖1 is an equivalent norm on E making it a commutative unital Banach algebra. This

observation allows us to consider C (K, E) as a Banach algebra, even if the Banach space E is

not assumed to be an algebra in the first place.

In this paper, we consider the space P(E, A) of all A-valued polynomials on E generated

by bounded linear operators T : E → A. By definition, an n-homogenous polynomial P in

P(E, A) is of the form P = ∑
∞
i=1 Tn

i , where (Ti) is a sequence of bounded linear operators of

E into A such that ∑
∞
i=1 ‖Ti‖n < ∞. This class of polynomials was introduced in [10] with

further study carried out in [7]. For a compact set K in E, we let P(K, A) be the closure in

C (K, A) of the restrictions P|K of polynomials P ∈ P(E, A). It is proved that P(K, A) is an



Algebras of polynomials generated by linear operators 311

admissible A-valued uniform algebra on K with A = PN(K), where PN(K) represents the

(complex) uniform algebra on K generated by nuclear polynomials. In fact, f ∈ PN(K) if and

only if there is a sequence (Pk) of nuclear scalar-valued polynomials on E such that Pk → f

uniformly on K. We prove that the following are equivalent:

(i) P(K, A) = PN(K) ⊗̂ǫ A for a Banach algebra A,

(ii) P(K, E) = PN(K) ⊗̂ǫ E (see Remark 2),

(iii) I ∈ PN(K) ⊗̂ǫ E, where I : E → E is the identity operator.

In this situation, the character space M
(
P(K, A)

)
is identified with K̂N ×M(A), where K̂N

denotes the nuclear polynomially convex hull of K in E.

2 Algebras of polynomials generated by linear operators

First, let us recall basic definitions, notations and some results of the theory of polynomials

on Banach spaces. For comprehensive texts, see [6, 11, 13].

Let E and F be Banach spaces over C. The space of all continuous symmetric n-linear

operators T : En → F is denoted by Ls(nE, F). For T ∈ Ls(nE, F), define T̂(x) = T(x, . . . , x),

x ∈ E. A mapping P : E → F is said to be an n-homogeneous polynomial if P = T̂ for

some T ∈ Ls(nE, F). For convenience, 0-homogeneous polynomials are defined as constant

mappings from E into F. The vector space of all n-homogeneous polynomials from E into F is

denoted by P(nE, F). The shortened notation P(nE) is used when F = C. A norm on P(nE, F)

is defined as

‖P‖ = sup{‖P(x)‖ : ‖x‖ ≤ 1}, P ∈ P(nE, F). (2)

Continuity of P (and of the corresponding symmetric n-linear operator T) is then equiva-

lent to finiteness of ‖P‖. Given an n-homogeneous polynomial P ∈ P(nE, F), the symmetric

n-linear mapping T that gives rise to P can be recovered by any of several polarization formu-

lae, e.g.,

T (x1, . . . , xn) =
1

2nn! ∑
ǫj=±1

ǫ1 · · · ǫnP
( n

∑
j=1

ǫjxj

)
. (3)

As a special case, for a, b ∈ A and m, n ∈ N, we get

ambn =
1

2m+n(m + n)! ∑
ǫℓ=±1

ǫ1 · · · ǫm+n

( m

∑
ℓ=1

ǫℓa +
m+n

∑
ℓ=m+1

ǫℓb

)m+n

. (4)

Therefore, n-homogeneous polynomials and symmetric n-linear operators are in one-to-

one correspondence, and the polarization inequality ‖P‖ ≤ ‖T‖ ≤ nn

n! ‖P‖ shows that these

spaces are isomorphic (see [6, Corollary 1.7 and Proposition 1.8]).

Notation. Let T ∈ Ls(nE, F) and x, y ∈ E. For 0 ≤ k ≤ n, let

T
(

xk, yn−k
)
= T(x, x, . . . , x︸ ︷︷ ︸

k times

, y, y, . . . , y︸ ︷︷ ︸
n−k times

). (5)

Then, by [11, Theorem 1.8], we have the Leibniz formula

T
(
(x + y)n

)
=

n

∑
k=1

(
n

k

)
T
(

xk, yn−k
)
. (6)
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2.1 The A-valued uniform algebra generated by linear operators

To continue, we restrict ourselves to Banach algebra valued polynomials. We let A be a

commutative Banach algebra with identity 1. Adopting notations from [10], we denote by

P (nE, A) the space of n-homogeneous A-valued polynomials on E of the form

P(x) =
∞

∑
i=1

Ti(x)n, x ∈ E, (7)

where (Ti) is a sequence in L(E, A) such that ∑
∞
i=1 ‖Ti‖n

< ∞. A norm on P (nE, A) is defined

by

|||P||| = inf

{ ∞

∑
i=1

‖Ti‖n : P =
∞

∑
i=1

Tn
i

}
, (8)

where the infimum is taken over all possible representations of P in (7). It is easy to verify

that ||| · ||| is a norm and that ‖P‖ ≤ |||P||| for all P ∈ P (nE, A). The following shows that

convergence with respect to this norm implies uniform convergence on compact sets.

Proposition 1. Let K be a compact set in E. Then there is M > 0 such that

‖P‖K ≤ Mn|||P|||, P ∈ P (nE, A) . (9)

Consequently, the series in (7) converges uniformly on K.

Proof. Since K is compact, there is a constant M such that ‖x‖ ≤ M for all x ∈ K. Therefore,

‖Tx‖ ≤ M‖T‖ for every x ∈ K and T ∈ L(E, A). If a polynomial P is defined by (7), then

‖P‖K = sup
x∈K

∥∥∥∥
∞

∑
i=1

Ti(x)n

∥∥∥∥ ≤ sup
x∈K

∞

∑
i=1

∥∥Ti(x)
∥∥n ≤ Mn

∞

∑
i=1

‖Ti‖n.

The above inequality holds for any representation of P in (7). Taking infimum over all those

representations, as in (8), we get

‖P‖K ≤ Mn|||P|||.
Also, we have

∥∥∥∥P −
s

∑
i=1

Tn
i

∥∥∥∥
K

=

∥∥∥∥
∞

∑
i=s+1

Tn
i

∥∥∥∥
K

≤ Mn
∣∣∣
∣∣∣
∣∣∣

∞

∑
i=s+1

Tn
i

∣∣∣
∣∣∣
∣∣∣ ≤ Mn

∞

∑
i=s+1

‖Ti‖n → 0 as s → ∞.

This shows that the series in (7) converges uniformly on K.

If A is replaced by C, we reach the nuclear (scalar-valued) polynomials. By definition, an

n-homogenous polynomial P : E → C is called nuclear if it can be written in a form

P(x) =
∞

∑
i=1

ψi(x)n, x ∈ E, (10)

where (ψi) is a sequence in E∗ with ∑
∞
i=1 ‖ψi‖n < ∞. We denote by PN(

nE) the space of all

n-homogenous nuclear (scalar-valued) polynomials on E. In fact, PN (nE) = P (nE, C).

Nuclear polynomials between Banach spaces have been studied by many authors (see [2–4,15]).

We are now in a position to introduce the A-valued uniform algebras that these polyno-

mials generate. Let P(E, A) be the space of all polynomials on E of the form P = ∑
n
k=0 Pk,

where Pk ∈ P
(

kE, A
)
, 0 ≤ k ≤ n, n ∈ N. In the same fashion, the space PN(E) of all linear

combinations of homogenous nuclear polynomials on E is defined. In fact, PN(E) = P(E, C).
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Definition 1. Let K be a compact set in the Banach space E. Define

P0(K, A) = {P|K : P ∈ P(E, A)}, PN0
(K) = {P|K : P ∈ PN(E)}.

We define P(K, A) as the closure of P0(K, A) in C (K, A). Similarly, PN(K) is defined to be the

closure of PN0
(K) in C (K).

Therefore, f ∈ P(K, A)
(
respectively, f ∈ PN(K)

)
if and only if there is a sequence (Pk) of

polynomials in P(E, A)
(
respectively, PN(E)

)
, such that Pk → f uniformly on K.

Clearly, P(K, A) is a closed subspace of C (K, A). We are aiming to show that P(K, A) is

a subalgebra of C (K, A). To achieve this, one may think of proving that the space P(E, A)

itself is an algebra (that is, if P ∈ P(mE, A) and Q ∈ P(nE, A), then PQ ∈ P(m+nE, A)). This

manner is naturally expected. However, the authors do not currently have strong evidence

supporting or opposing the possibility that P(E, A) is an algebra. Our approach, therefore, is

to give a direct proof of the fact that P(K, A) is an algebra, as follows.

Theorem 1. For a compact set K in E, let A = P(K, A). Then A is an admissible A-valued

uniform algebra on K with A = PN(K).

Proof. SinceP(E, A) contains 0-homogenous polynomials, we see that A contains the constant

functions, and sinceP(E, A) contains the 1-homogenous polynomials of the form P = ψ1 with

ψ ∈ E∗, we see that A separates points of K. To prove that A is an algebra, we show that it is

closed under multiplication, that is,

f , g ∈ A ⇒ f g ∈ A. (11)

Given f , g ∈ A, there exist sequences (Pk) and (Qk) of polynomials in P(E, A), such that

Pk → f and Qk → g uniformly on K, from which we get PkQk → f g uniformly on K. Therefore,

(11) reduces to the following implication

P, Q ∈ P(E, A) ⇒ PQ ∈ A. (12)

Since every polynomial in P(E, A) is a linear combination of homogenous polynomials, we

may assume that P ∈ P(mE, A) and Q ∈ P(nE, A).

Consider two cases:

(1) m, n ≥ 1,

(2) m ≥ 1 and n = 0.

In case (1), write P = ∑
∞
i=1 Sm

i and Q = ∑
∞
j=1 Tn

j , where (Si) and (Tj) are sequences of

operators in L(E, A). By Proposition 1, these series converge uniformly on K, i.e.

lim
s→∞

∥∥∥∥P −
s

∑
i=1

Sm
i

∥∥∥∥
K

= lim
s→∞

∥∥∥∥Q −
s

∑
j=1

Tn
j

∥∥∥∥
K

= 0.

Therefore,

lim
s→∞

∥∥∥∥PQ −
s

∑
i=1

Sm
i

s

∑
j=1

Tn
j

∥∥∥∥
K

= lim
s→∞

∥∥∥∥PQ −
s

∑
i=1

s

∑
j=1

Sm
i Tn

j

∥∥∥∥
K

= 0. (13)
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Applying polarization formula (4), we have

Sm
i Tn

j =
1

2m+n(m + n)! ∑
ǫℓ=±1

ǫ1 · · · ǫm+n

(
m

∑
ℓ=1

ǫℓSi +
m+n

∑
ℓ=m+1

ǫℓTj

)m+n

.

With suitable choice of scalars αk and operators Uk, 1 ≤ k ≤ 2m+n, we have

Sm
i Tn

j =
2m+n

∑
k=1

αkUm+n
k ,

meaning that Sm
i Tn

j ∈ P(m+nE, A). Now, (13) shows that PQ is approximated (uniformly on K)

by elements of P(m+nE, A) and thus PQ ∈ A.

In case (2), write P = ∑
∞
i=1 Sm

i and Q = b, where b ∈ A is a constant. Since A is as-

sumed to have an identity 1, the proof of [10, Proposition 2.1] shows that if λk = 1
m2 e

2πki
m and

ak = b + e
2πki

m 1, 1 ≤ k ≤ m, then b = λ1am
1 + · · ·+ λmam

m. Therefore, if

bk =
e

2πki
m2

m
√

m2

(
b + e

2πki
m 1
)

, k = 1, 2, . . . , m,

then b = bm
1 + · · ·+ bm

m. Now, for every x ∈ E, we have

(PQ)(x) = P(x)b =
∞

∑
j=1

ψj(x)m
m

∑
k=1

bm
k =

∞

∑
j=1

m

∑
k=1

(
ψj(x)bk

)m
=

m

∑
k=1

∞

∑
j=1

(
ψj(x)bk

)m
.

Set Tjk = ψjbk and Pk = ∑
∞
j=1 Tm

jk . Then Pk ∈ P(mE, A) and PQ = P1 + · · ·+ Pm. Therefore, PQ

is an m-homogenous polynomial in P(E, A). In particular, PQ ∈ A.

Finally, we show that P(K, A) is admissible, that is,

f ∈ A, φ ∈ M(A) ⇒ φ ◦ f ∈ A. (14)

Given f ∈ A, let (Pk) be a sequence of polynomials in P(E, A) such that Pk → f uniformly

on K. For every φ ∈ M(A), since ‖φ‖ ≤ 1, we have

‖φ ◦ Pk − φ ◦ f‖K ≤ ‖Pk − f‖K ,

and thus φ ◦ Pk → φ ◦ f uniformly on K. Therefore, (14) reduces to the following implication

P ∈ P(E, A), φ ∈ M(A) ⇒ φ ◦ P ∈ A. (15)

Given P ∈ P(E, A), since it is a linear combination of homogenous polynomials, we may

assume that P itself is an n-homogenous polynomial and write P = ∑
∞
i=1 Tn

i for Ti ∈ L(E, A).

Then, for every x ∈ E,

(φ ◦ P)(x) = φ

( ∞

∑
i=1

Tn
i (x)

)
=

∞

∑
i=1

φ (Ti(x)n) =
∞

∑
i=1

φ (Ti(x))n =
∞

∑
i=1

(
φ ◦ Ti(x)

)n
.

We see that φ ◦ P is a nuclear polynomial, i.e. φ ◦ P ∈ PN(E). Set ψi = φ ◦ Ti and Si = ψi1.

Then Si ∈ L(E, A), ‖Si‖ ≤ ‖Ti‖, and

(φ ◦ P)1 =
∞

∑
i=1

(ψi1)
n =

∞

∑
i=1

Sn
i ∈ P(K, A).

We conclude that P(K, A) is admissible with A = PN(K).
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2.2 Representing as tensor product

We now investigate conditions that imply the equality P(K, A) = PN(K) ⊗̂ǫ A. In the

following, I : E → E is the identity operator.

Theorem 2. Let K be a compact set in the Banach space E. The following statements are

equivalent.

(i) P(K, A) = PN(K) ⊗̂ǫ A for every unital Banach algebra A.

(ii) P(K, E) = PN(K) ⊗̂ǫ E.

(iii) I ∈ PN(K) ⊗̂ǫ E.

Proof. The implication (i) ⇒ (ii) is trivial (see Remark 2). The implication (ii) ⇒ (iii) is also

trivial since always I ∈ P(K, E).

We prove the implication (iii) ⇒ (i). Let A be a unital Banach algebra. In view of Re-

mark 1 and Theorem 1, we always have PN(K) ⊗̂ǫ A ⊂ P(K, A). To prove the reverse inclu-

sion, since P0(K, A) = P(K, A), we just need to show that P0(K, A) ⊂ PN(K) ⊗̂ǫ A, this is,

P ∈ PN(K) ⊗̂ǫ A for every polynomial P ∈ P(E, A). We argue by induction on n = deg(P).

The base case, n = 0, trivially hold. In fact, if deg(P) = 0 then P is a constant polynomial

and belongs to PN(K) ⊗̂ǫ A. For the inductive step, take n ∈ N and assume that

every polynomial Q with deg(Q) < n belongs to PN(K) ⊗̂ǫ A. (16)

Let P be a polynomial with deg(P) = n. Subtracting from P a polynomial Q with

deg(Q) ≤ n − 1, if necessary, we may assume that P is an n-homogenous polynomial and

that P = T̂ for some T ∈ Ls(nE, A). Let ǫ > 0. By the assumption, I ∈ PN(K) ⊗̂ǫ E. Therefore,

by Remark 1, there exist functions f1, . . . , fm in PN(K) and vectors a1, . . . , am in E such that
∥∥∥∥I(x)−

m

∑
i=1

fi(x)ai

∥∥∥∥ ≤ ǫ, x ∈ K. (17)

Using notation (5) and Leibniz formula (6), we get

T

((
x −

m

∑
i=1

fi(x)ai

)n)
=

n

∑
k=0

(
n

k

)
T

(
xk,

(
−

m

∑
i=1

fi(x)ai

)n−k)
. (18)

Define

gk(x) =

(
n

k

)
T

(
xk,

(
−

m

∑
i=1

fi(x)ai

)n−k)
for 0 ≤ k ≤ n − 1 and x ∈ K.

We have

gn−1(x) = −n
m

∑
i=1

fi(x)T
(

xn−1, ai

)
,

gn−2(x) = n(n − 1)
m

∑
i,j=1

fi(x) fj(x)T
(

xn−2, ai, aj

)
,

...

g0(x) = (−1)n ∑
α

n!

α!

m

∏
i=1

fi(x)αi T
(

aα1
1 , aα2

2 , . . . , aαm
m

)
,
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where the last summation is taken over all multi-indices α = (α1, . . . , αm) in Nm
0 such that

|α| = α1 + · · ·+ αm = n.

We see that each gj, 0 ≤ j ≤ n − 1, is an algebraic combination (multiplication and addi-

tion) of functions f1, f2, . . . , fm in PN(K), and some polynomials of degree j which, by assump-

tion (16), belong to PN(K) ⊗̂ǫ A. Therefore, g0, g1, . . . , gn−1 ∈ PN(K)⊗̂ǫA.

On the other hand, for every x ∈ K,

∥∥∥∥P(x) +
n−1

∑
j=0

gj(x)

∥∥∥∥ =

∥∥∥∥T(xn) +
n−1

∑
k=0

(
n

k

)
T

(
xk,

(
−

m

∑
i=1

fi(x)ai

)n−k)∥∥∥∥

=

∥∥∥∥T

((
x −

m

∑
i=1

fi(x)ai

)n)∥∥∥∥ ≤ ‖T‖
∥∥∥∥x −

m

∑
i=1

fi(x)ai

∥∥∥∥
n

≤ ‖T‖ǫn ,

where ‖T‖ is the operator norm of T in Ls(E, A). Since ǫ is arbitrary, this means that P is

approximated uniformly on K by functions in PN(K) ⊗̂ǫ A. Therefore, P ∈ PN(K) ⊗̂ǫ A and

the inductive argument is complete.

We conclude that P(K, A) = PN(K) ⊗̂ǫ A.

Recall (see, e.g., [11, Definition 27.3]) that a Banach space E has the approximation property if

for every ǫ > 0 and every compact set K in E there exists a finite rank operator T : E → E such

that
∥∥T(x)− x

∥∥ < ǫ for every x ∈ K.

Proposition 2. Suppose that the Banach space E has the approximation property. Then

I ∈ PN(K)⊗̂ǫE for any compact set K in E.

Proof. Let ǫ > 0. By the approximation property, there is a finite-rank operator T : E → E such

that ‖I − T‖K ≤ ǫ. The finite-rank operator T can be represented in a form

T = ψ1a1 + · · ·+ ψmam,

where ψi ∈ E∗, ai ∈ E, 1 ≤ i ≤ m. This means that T ∈ PN(K) ⊗̂ǫ E. Since ǫ is arbitrary, we

conclude that I ∈ PN(K)⊗̂ǫE.

For the Banach algebra A, let us denote by A∗
cc the space A∗ equipped with the topology

of compact convergence, i.e. the topology of uniform convergence on compact subsets of A.

Given a set S in A∗, we say that S generates A∗
cc if 〈S〉 is dense in A∗

cc, where 〈S〉 denotes the

linear span of S in A∗.

Proposition 3. Suppose that the Banach algebra A has the approximation property. If M(A)

generates A∗
cc, then P(K, A) = PN(K)⊗̂ǫ A for any compact set K in any Banach space E.

Proof. Let K be a compact set in a Banach space E and take a function f ∈ P(K, A). First, we

show that φ ◦ f ∈ PN(K) for every φ ∈ A∗. By Theorem 1, we have φ ◦ f ∈ PN(K), for every

φ ∈ M(A), whence φ ◦ f ∈ PN(K) for every φ ∈ 〈M(A)〉, the linear span of M(A) in A∗.

Since M(A) generates A∗
cc, given φ ∈ A∗, there exists a net (φα) in 〈M(A)〉 such that φα → φ

in the compact convergence topology of A∗. The set f (K) is compact in A, and thus φα → φ

uniformly on f (K). This implies that φα ◦ f → φ ◦ f uniformly on K. Since φα ◦ f ∈ PN(K) for

all α, we get φ ◦ f ∈ PN(K).
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Now, let ǫ > 0. Since A has the approximation property and f (K) is compact in A, there

exists a finite rank operator T = ∑
m
i=1 φibi with φi ∈ A∗, bi ∈ A, 1 ≤ i ≤ m, m ∈ N, such that

∥∥y − T(y)
∥∥ =

∥∥∥∥y −
m

∑
i=1

φi(y)bi

∥∥∥∥ ≤ ǫ, y ∈ f (K).

Replacing y with f (x), x ∈ K, we get

∥∥∥∥ f (x) −
m

∑
i=1

φi ◦ f (x)bi

∥∥∥∥ ≤ ǫ, x ∈ K.

From the first part of the proof, we get ∑
m
i=1(φi ◦ f )bi ∈ PN(K) ⊗̂ǫ A. Since ǫ > 0 is arbitrary,

we have f ∈ PN(K) ⊗̂ǫ A.

To support the above result, we present some examples.

Example 1. Suppose that X is a compact Hausdorff space and that A = C (X). It is well-known

that A has the approximation property and that M(A) = {δx : x ∈ X}, where δx : f 7→ f (x)

is the point mass measure at x. Indeed, M(A) coincides with the set of extreme points of the

unit ball A∗
1 . By the Krein-Millman theorem, A∗

1 equals the weak* closed convex hull of M(A).

Therefore, given φ ∈ A∗
1 , there exists a net (φα) in the convex hull of M(A) such that φα → φ

in the weak* topology. Since (φα) is bounded, we get φα → φ uniformly on compact sets. This

means that φα → φ in A∗
cc, and thus M(A) generates A∗

cc. Now, by Proposition 3, we have

P

(
K, C (X)

)
= PN(K) ⊗̂ǫ C (X) for any compact set K in a Banach space E. It is worth noting

that

PN(K) ⊗̂ǫ C (X) = C (X) ⊗̂ǫ PN(K) = C
(
X,PN(K)

)
.

Example 2. Let S be any nonempty set, and A = ℓp(S) for some p ∈ (1, ∞). Then A∗ = ℓq(S)

with 1/p + 1/q = 1. Define multiplication on A point-wise, that is, ( f g)(s) = f (s)g(s) for all

s ∈ S. It is a matter of calculation to verify that

∑
s∈S

∣∣ f (s)
∣∣p∣∣g(s)

∣∣p ≤ ∑
s∈S

∣∣ f (s)
∣∣p

∑
s∈S

∣∣g(s)
∣∣p, f , g ∈ A.

Therefore
(

A, ‖ · ‖p

)
is a commutative Banach algebra. For every s ∈ S, the evaluation

homomorphism φs : f 7→ f (s) is a character of A. Conversely, let φ : A → C be a character.

Suppose that χs is the characteristic function at s ∈ S. Then, given f ∈ A, we have f =

∑s∈S f (s)χs , and thus φ( f ) = ∑s∈S f (s)φ(χs). Since φ 6= 0, there must be a point s0 ∈ S

such that φ(χs0) 6= 0. If s 6= s0, then φ(χs)φ(χs0) = φ(χsχs0) = 0, so that φ(χs) = 0. Also

φ(χs0)
2 = φ(χs0) and thus φ(χs0) = 1. Therefore, we have

φ( f ) = ∑
s∈S

f (s)φ(χs) = f (s0) = φs0( f ).

We conclude that M(A) = {φs : s ∈ S}. The fact that 〈M(A)〉 is dense in A∗ = ℓq(S) in

the norm topology yields that M(A) generates A∗
cc. Moreover, if S is countable then ℓp(S) has

a Schauder basis and thus it has the approximation property.
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2.3 The character space

Let K be a compact set in the Banach space E. The character space of a function algebra on

K generated by a certain class P of polynomials is closely related to the polynomially convex

hull of K with respect to the given class P .

Definition 2. The nuclear polynomially convex hull of K is defined as

K̂N = {a ∈ E :
∣∣P(a)

∣∣ ≤ ‖P‖K, P ∈ PN(E)}. (19)

It is said that K is nuclear polynomially convex if K = K̂N .

Theorem 3. The character space of PN(K) is homeomorphic to K̂N , and PN(K) is isometrically

isomorphic to PN(K̂N).

Proof. Let a ∈ K̂N. Given f ∈ PN(K), there is a sequence (Pk) of polynomials in PN0
(K) such

that Pk → f uniformly on K, and thus
∣∣Pk(a)− Pj(a)

∣∣ ≤ ‖Pk − Pj‖K → 0 as k, j → ∞.

This means that (Pk(a)) is a Cauchy sequence in C. Define φa( f ) = lim
k→∞

Pk(a). If (Qk)

is another sequence of polynomials in PN0
(K) such that Qk → f uniformly on K, then∣∣Qk(a) − Pk(a)

∣∣ ≤ ‖Qk − Pk‖K → 0. This shows that φa( f ) is well-defined. An standard ar-

gument shows that φa( f + g) = φa( f ) + φa(g) and φa( f g) = φa( f )φa(g) for all f , g ∈ PN(K).

Therefore, φa ∈ M
(
PN(K)

)
.

Conversely, assume that φ : PN(K) → C is a character. Consider the dual space E∗ as

a subspace of PN(E) consisting of 1-homogenous polynomials. Then the restriction of φ to

E∗ is a linear functional on E∗. We show that φ is weak* continuous on norm bounded sub-

sets of E∗. Let (ψα) be a bounded net in E∗ that converges in the weak* topology to some

ψ0 ∈ E∗. Then ψα → ψ0 uniformly on K. Since φ is continuous with respect to ‖ · ‖K, we get

φ(ψα) → φ(ψ0). This shows that φ is weak* continuous on bounded subsets of E∗, as desired.

By [9, Corollary 4], φ is weak* continuous on E∗ and thus there is a ∈ E such that φ(ψ) = ψ(a)

for all ψ ∈ E∗. Now, take an n-homogenous nuclear polynomial P = ∑
∞
i=1 ψn

i with ψi ∈ E∗ and

∑
∞
i=1 ‖ψi‖n < ∞. By Proposition 1, the series converges uniformly on K, and thus

φ(P) = φ

(
lim
s→∞

s

∑
i=1

ψn
i

)
= lim

s→∞

s

∑
i=1

φ(ψi)
n = lim

s→∞

s

∑
i=1

ψi(a)
n = P(a).

Note that
∣∣P(a)

∣∣ =
∣∣φ(P)

∣∣ ≤ ‖P‖K for every P ∈ PN(E), which shows that a ∈ K̂N . Thus

φ = φa on PN0
(K), a dense subspace of PN(K), whence φ = φa on PN(K). Finally, the mapping

K̂N ∋ a 7→ φa ∈ M
(
PN(K)

)
is an embedding of K onto M

(
PN(K)

)
(see [5, Chapter 4]).

We conclude this paper with the following result on the character space of P(K, A).

Theorem 4. The character space M
(
P(K, A)

)
contains K̂N ×M(A) as a closed subset. If either

of the conditions in Theorem 2, Proposition 2 or Proposition 3 hold, then

M
(
P(K, A)

)
= K̂N ×M(A).

Proof. It follows from previous results and from Tomiyama theorem, proved in [14].
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Зай Ф., Абтахi М. Алгебри полiномiв, породженi лiнiйними операторами // Карпатськi матем.

публ. — 2024. — Т.16, №1. — C. 309–319.

Нехай E − банаховий простiр, а A − комутативна банахова алгебра з одиницею. Нехай

P(E, A) − простiр A-значних полiномiв на E, породжених обмеженими лiнiйними оператора-

ми (n-однорiдний полiном в P(E, A) має вигляд P = ∑
∞
i=1 Tn

i , де Ti : E → A, 1 ≤ i < ∞, є

обмеженими лiнiйними операторами i ∑
∞
i=1 ‖Ti‖n < ∞). Для довiльної компактної множини K

в E позначимо через P(K, A) замикання в C (K, A) звужень P|K полiномiв P в P(E, A). Дове-

дено, що P(K, A) є A-значною рiвномiрною алгеброю, яка за певних умов є iзометрично iзо-

морфною iн’єктивному тензорному добутку PN(K) ⊗̂ǫ A, де PN(K) − рiвномiрна алгебра на

K, породжена ядерними скалярними полiномами. Тодi простiр характерiв простору P(K, A)

ототожнюється з K̂N ×M(A), де K̂N − ядерна полiномiальна опукла оболонка K в E, а M(A)−
простiр характерiв алгебри A.

Ключовi слова i фрази: векторно-значна рiвномiрна алгебра, полiном на банаховому просто-

рi, ядерний полiном, полiномiальна опуклiсть, тензорний добуток.


